1
|
Vaccalluzzo A, Pino A, Grimaldi RL, Caggia C, Cianci S, Randazzo CL. Lacticaseibacillus rhamnosus TOM 22.8 (DSM 33500) is an effective strategy for managing vaginal dysbiosis, rising the lactobacilli population. J Appl Microbiol 2024; 135:lxae110. [PMID: 38755019 DOI: 10.1093/jambio/lxae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
AIM The present study is a single-centre, randomized, controlled clinical trial aimed to evaluate the effectiveness of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 (DSM 33500) strain, orally administrated, to treat vaginal dysbiosis. METHODS AND RESULTS Overall, 80 women, with signs and symptoms of vaginal dysbiosis, were enrolled and allocated to the treatment group (A, n=60), who took 1 capsule of the probiotic strain for 10 consecutive days, or the non-treatment group (B, n=20), who did not receive any treatment. Clinical (vaginal signs and symptoms; pH of the vaginal fluid; Amsel criteria; Nugent score; Lactobacillary grade) and microbiological examinations were performed at baseline (T0), 10 days (T1), and 30 (T2) days after the oral administration of the probiotic TOM 22.8 strain. The latter resulted in a restoration of the physiological pH, accompanied by remission or attenuation of clinical signs and symptoms as well as the improvement of the quality of life (QoL). Microbiological data revealed a significant reduction of potentially pathogenic bacteria. CONCLUSION The administration of the L. rhamnosus TOM 22.8 probiotic strain could be proposed as an effective strategy for the treatment of vaginal dysbiosis.
Collapse
Affiliation(s)
- Amanda Vaccalluzzo
- Department of Agriculture, Food and Environment, University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
| | - Raffaela Luisa Grimaldi
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Santa Sofia Street, 78, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
| | - Stefano Cianci
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adult and Childhood "G. Barresi", University of Messina, 98122 Messina, Italy
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
- ProBioEtna SRL, Spin off of the University of Catania, Santa Sofia Street, 100, 95123 Catania, Italy
| |
Collapse
|
2
|
Floridia V, Russo N, D'Alessandro E, Lopreiato V, Pino A, Amato A, Liotta L, Caggia C, Randazzo CL. Effect of olive cake supplementation on faecal microbiota profile of Holstein and Modicana dairy cattle. Microbiol Res 2023; 277:127510. [PMID: 37801779 DOI: 10.1016/j.micres.2023.127510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
The present study aimed to investigate the effect of olive cake supplementation on faecal microbiota of Holstein (n = 16) and Modicana (n = 16) dairy cows. Although no difference in richness was detected, within breeds and between the two dietary treatment, the PERMANOVA analysis applied to the beta diversity allowed to discriminate samples according to breeds (p < 0.001) and treatment (p < 0.001). In Holstein cows, the olive cake supplementation led to the increase of Pseudobutyrivibrio and Christensenellaceae_R7-group genera (p < 0.05) recognized as health-promoting or associated with feed efficiency. Differently, no difference was detected between control and treated groups for Modicana suggesting a high adaptive capacity to diet changes. In addition, the higher prevalence of Firmicutes phyla in the Modicana microbiota reflected its better capacity to digest the fibrous sources. Our study supports the suitability of olive cake as a feed supplement for cows and could help validating a sustainable livestock system in the Mediterranean area, characterized by a relevant oil production and by a native breeds reared with extensive systems.
Collapse
Affiliation(s)
- Viviana Floridia
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; ProBioEtna srl, Spin-off of University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Enrico D'Alessandro
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; ProBioEtna srl, Spin-off of University of Catania, Via S. Sofia, 100, 95123 Catania, Italy.
| | - Annalisa Amato
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; ProBioEtna srl, Spin-off of University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; ProBioEtna srl, Spin-off of University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| |
Collapse
|
3
|
Lionetti E, Dominijanni V, Iasevoli M, Cimadamore E, Acquaviva I, Gatti S, Monachesi C, Catassi G, Pino A, Faragalli A, Randazzo CL, Gesuita R, Malamisura B, Catassi C. Effects of the supplementation with a multispecies probiotic on clinical and laboratory recovery of children with newly diagnosed celiac disease: A randomized, placebo-controlled trial. Dig Liver Dis 2023; 55:1328-1337. [PMID: 37164895 DOI: 10.1016/j.dld.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVE To evaluate the efficacy of a multispecies probiotic on clinical and laboratory recovery of children with celiac disease (CeD) at diagnosis. METHODS Children with newly diagnosed CeD entered a randomized double-blind placebo-controlled trial. A gluten-free diet (GFD) plus a multispecies probiotic or placebo were administered for 12 weeks. Growth, laboratory, and clinical parameters were recorded at enrollment, after 3 and 6 months of follow-up. RESULTS Overall, 96 children completed the study: 49 in group A (placebo) and 47 in group B (probiotic). A significant increase of BMI-Z score was found in both groups after 3 and 6 months of treatment (p < 0.001), however the increase of BMI-Z score was significantly higher and faster in Group B than in Group A. Other clinical and laboratory parameters improved in both groups after 3 and 6 months (p<0.001), but no difference was found between the groups and a comparable time trend was observed in both groups. CONCLUSIONS Treatment with a multispecies probiotic induced a higher and faster increase of BMI in children with newly diagnosed CeD. The mechanism of this positive effect remains to be elucidated.
Collapse
Affiliation(s)
- Elena Lionetti
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Vera Dominijanni
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Mario Iasevoli
- Pediatric Unit and Center for Celiac Disease - University Hospital of Salerno, Campus of Cava de' Tirreni, Italy
| | - Elisa Cimadamore
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Ilaria Acquaviva
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Simona Gatti
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Chiara Monachesi
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy
| | - Giulia Catassi
- Pediatric Gastroenterology and Liver Unit, Department of Maternal and Child Health, Sapienza-University of Rome, Rome, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy; ProBioEtna S.r.l., Spin off of the University of Catania, Catania, Italy
| | - Andrea Faragalli
- Center of Epidemiology, Biostatistics and Medical Information Technology, Marche Polytechnic University, Ancona, Italy; Department of Biomedical Science and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy; ProBioEtna S.r.l., Spin off of the University of Catania, Catania, Italy
| | - Rosaria Gesuita
- Center of Epidemiology, Biostatistics and Medical Information Technology, Marche Polytechnic University, Ancona, Italy; Department of Biomedical Science and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Basilio Malamisura
- Pediatric Unit and Center for Celiac Disease - University Hospital of Salerno, Campus of Cava de' Tirreni, Italy
| | - Carlo Catassi
- Division of Pediatrics and Center for Celiac Research, DISCO Department, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
4
|
Zarezadeh M, Mahmoudinezhad M, Hosseini B, Khorraminezhad L, Razaghi M, Alvandi E, Saedisomeolia A. Dietary pattern in autism increases the need for probiotic supplementation: A comprehensive narrative and systematic review on oxidative stress hypothesis. Clin Nutr 2023; 42:1330-1358. [PMID: 37418842 DOI: 10.1016/j.clnu.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorders (ASDs) are associated with specific dietary habits, including limited food selection and gastrointestinal problems, resulting in an altered gut microbiota. Autistic patients have an elevated abundance of certain gut bacteria associated with increased oxidative stress in the gastrointestinal tract. Probiotic supplementation has been shown to decrease oxidative stress in a simulated gut model, but the antioxidant effects of probiotics on the oxidative stress of the gut in autistic patients have not been directly studied. However, it is speculated that probiotic supplementation may help decrease oxidative stress in the gastrointestinal tract of autistic patients due to their specific dietary habits altering the microbiota. PubMed, Scopus and Web of Science databases and Google Scholar were searched up to May 2023. This systematic-narrative review aims to present the latest evidence regarding the changes in eating habits of autistic children which may further increase the gut microbiota induced oxidative stress. Additionally, this review will assess the available literature on the effects of probiotic supplementation on oxidative stress parameters.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Banafshe Hosseini
- Clinical Research and Knowledge Transfer Unit on Childhood Asthma, Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada
| | - Leila Khorraminezhad
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - Maryam Razaghi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ehsan Alvandi
- School of Medicine, Western Sydney University, NSW, Australia
| | - Ahmad Saedisomeolia
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada.
| |
Collapse
|
5
|
Russo N, Floridia V, D’Alessandro E, Lopreiato V, Pino A, Chiofalo V, Caggia C, Liotta L, Randazzo CL. Influence of olive cake dietary supplementation on fecal microbiota of dairy cows. Front Microbiol 2023; 14:1137452. [PMID: 37206333 PMCID: PMC10188969 DOI: 10.3389/fmicb.2023.1137452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Olive by-products represent a valuable low-price feed supplement for animal nutrition. In the present study, the effect of the dietary destoned olive cake supplementation, on both composition and dynamics of the fecal bacterial biota of cow, was assessed by Illumina MiSeq analysis of the 16S rRNA gene. In addition, metabolic pathways were predicted by using the PICRUSt2 bioinformatic tool. Eighteen lactating cows, according to the body condition score, the days from calving, and the daily milk production were homogeneously allocated into two groups, control or experimental, and subjected to different dietary treatments. In detail, the experimental diet contained, along with the components of the control one, 8% of destoned olive cake. Metagenomics data revealed significant differences in abundance rather than in richness between the two groups. Results showed that Bacteroidota and Firmicutes were identified as the dominant phyla, accounting for over 90% of the total bacterial population. The Desulfobacterota phylum, able to reduce sulfur compounds, was detected only in fecal samples of cows allocated to the experimental diet whereas the Elusimicrobia phylum, a common endosymbiont or ectosymbiont of various flagellated protists, was detected only in cows subjected to the control diet. In addition, both Oscillospiraceae and Ruminococcaceae families were mainly found in the experimental group whereas fecal samples of control cows showed the presence of Rikenellaceae and Bacteroidaceae families, usually associated with the high roughage or low concentrate diet. Based on the PICRUSt2 bioinformatic tool, pathways related to carbohydrate, fatty acid, lipid, and amino acids biosynthesis were mainly up regulated in the experimental group. On the contrary, in the control group, the metabolic pathways detected with the highest occurrence were associated with amino acids biosynthesis and degradation, aromatic compounds degradation, nucleosides and nucleotides biosynthesis. Hence, the present study confirms that the destoned olive cake is a valuable feed supplement able to modulate the fecal microbiota of cows. Further studies will be conducted in order to deepen the inter-relationships between the GIT microbiota and the host.
Collapse
Affiliation(s)
- Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna SRL, Spin-Off of University of Catania, Catania, Italy
| | - Viviana Floridia
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Enrico D’Alessandro
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Vincenzo Lopreiato
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna SRL, Spin-Off of University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, Catania, Italy
- *Correspondence: Alessandra Pino,
| | - Vincenzo Chiofalo
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Messina, Italy
- Consortium Research of Meat and Agribusiness Chain, Messina, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna SRL, Spin-Off of University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luigi Liotta
- Animal Production Unit, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna SRL, Spin-Off of University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Pino A, Rapisarda AMC, Vaccalluzzo A, Sanfilippo RR, Coman MM, Grimaldi RL, Caggia C, Randazzo CL, Russo N, Panella MM, Cianci A, Verdenelli MC. Oral Intake of the Commercial Probiotic Blend Synbio ® for the Management of Vaginal Dysbiosis. J Clin Med 2022; 12:jcm12010027. [PMID: 36614828 PMCID: PMC9821595 DOI: 10.3390/jcm12010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
A healthy vaginal microbiota is Lactobacillus-dominated. Several factors can interfere with the state of balance leading to dysbiosis, such as vaginal infections caused by bacteria and Candida species. The present single-arm, uncontrolled open-label study aimed to evaluate the ability of the SYNBIO® probiotic combination, taken as an oral formulation, to contribute to vaginal health. Thirty pre-menopausal participants were included in the study. Participants were instructed for daily oral intake of SYNBIO® probiotic capsules for 15 days. Vaginal swabs were collected at baseline (T0), 15 days after the start of the treatment (T1), and 7 days after the end of the treatment (T2). Amsel criteria, Nugent score, and vaginal pH were evaluated at each sampling time. In addition, the participants' quality of life was assessed by the WHOQOL-BREF questionnaire. The administration of SYNBIO® once daily for 15 days resulted in a substantial improvement in the vaginal flora in terms of an increase in lactobacilli and a decrease in enterococci, staphylococci, Gardnerella spp., and Candida spp. According to the results, statistically significant changes in leucorrhoea, itching, and vulvo-vaginal erythema/edema as well as a decrease in all the Amsel criteria were recorded. The oral consumption of SYNBIO® demonstrated enhanced benefits for vaginal health.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, A. Doria Street 6, 95125 Catania, Italy
| | - Agnese Maria Chiara Rapisarda
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Rosamaria Roberta Sanfilippo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | | | - Raffaela Luisa Grimaldi
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, A. Doria Street 6, 95125 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, A. Doria Street 6, 95125 Catania, Italy
- Correspondence:
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Marco Marzio Panella
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Antonio Cianci
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy
| | | |
Collapse
|
7
|
Lacticaseibacillus rhamnosus CA15 (DSM 33960) as a Candidate Probiotic Strain for Human Health. Nutrients 2022; 14:nu14224902. [PMID: 36432588 PMCID: PMC9694283 DOI: 10.3390/nu14224902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Lactobacilli with probiotic properties have emerged as promising tools for both the prevention and treatment of vaginal dysbiosis. The present study aimed to study the in vitro probiotic potential of the Lacticaseibacillus rhamnosus CA15 (DSM 33960) strain isolated from a healthy vaginal ecosystem. The strain was evaluated for both functional (antagonistic activity against pathogens; H2O2, organic acid, and lactic acid production; antioxidant and anti-inflammatory activities; ability to adhere to intestinal mucus and to both CaCo-2 and VK7/E6E7 cell lines; exopolysaccharide production; surface properties; and ability to survive during gastrointestinal transit) and safety (hemolytic, DNase, and gelatinase activities; mucin degradation ability; production of biogenic amines; and resistance to antimicrobials) characteristics. Data revealed that the tested strain was able to antagonize a broad spectrum of vaginal pathogens. In addition, the adhesion capacity to both vaginal and intestinal cell lines, as well as anti-inflammatory and antioxidant activities, was detected. The ability of the Lacticaseibacillus rhamnosus CA15 (DSM 33960) strain to survive under harsh environmental conditions occurring during the gastrointestinal passage suggests its possible oral delivery. Thus, in vitro data highlighted interesting probiotic properties of the CA15 (DSM 33960) strain, which could represent a valuable candidate for in vivo vaginal infections treatment.
Collapse
|
8
|
Formulation of germinated brown rice fermented products functionalized by probiotics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Pino A, Benkaddour B, Inturri R, Amico P, Vaccaro SC, Russo N, Vaccalluzzo A, Agolino G, Caggia C, Miloud H, Randazzo CL. Characterization of Bifidobacterium asteroides Isolates. Microorganisms 2022; 10:655. [PMID: 35336230 PMCID: PMC8950671 DOI: 10.3390/microorganisms10030655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bifidobacteria have long been recognized as bacteria with probiotic and therapeutic features. The aim of this work is to characterize the Bifidobacterium asteroides BA15 and BA17 strains, isolated from honeybee gut, to evaluate its safety for human use. An in-depth assessment was carried out on safety properties (antibiotic resistance profiling, β-hemolytic, DNase and gelatinase activities and virulence factor presence) and other properties (antimicrobial activity, auto-aggregation, co-aggregation and hydrophobicity). Based on phenotypic and genotypic characterization, both strains satisfied all the safety requirements. More specifically, genome analysis showed the absence of genes encoding for glycopeptide (vanA, vanB, vanC-1, vanC-2, vanD, vanE, vanG), resistance to tetracycline (tetM, tetL and tetO) and virulence genes (asa1, gelE, cylA, esp, hyl).
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Bachir Benkaddour
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran1, Oran 31000, Algeria; (B.B.); (H.M.)
| | - Rosanna Inturri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Pietro Amico
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Susanna C. Vaccaro
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
| | - Gianluigi Agolino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Hadadji Miloud
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran1, Oran 31000, Algeria; (B.B.); (H.M.)
| | - Cinzia L. Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| |
Collapse
|
10
|
Levin D, De Palma G, Zou H, Bazzaz AHZ, Verdu E, Baker B, Pinto-Sanchez MI, Khalidi N, Larché MJ, Beattie KA, Bercik P. Fecal microbiome differs between patients with systemic sclerosis with and without small intestinal bacterial overgrowth. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:290-298. [PMID: 35382497 PMCID: PMC8922657 DOI: 10.1177/23971983211032808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Introduction: Gastrointestinal manifestations of systemic sclerosis affect up to 90% of
patients, with symptoms including diarrhea and constipation. Small
intestinal bacterial overgrowth is a condition associated with increased
numbers of pathogenic bacteria in the small bowel. While currently unknown,
it has been suggested that dysregulation of the fecal microbiota may play a
role in the development of systemic sclerosis and small intestinal bacterial
overgrowth. Objectives: Our study aimed to describe the fecal microbiota of patients with systemic
sclerosis and compare it between those with and without a diagnosis of small
intestinal bacterial overgrowth. We also compared the fecal microbiota of
systemic sclerosis patients with that of healthy controls to understand the
association between particular bacterial taxa and clinical gastrointestinal
manifestations of systemic sclerosis. Methods: A total of 29 patients with systemic sclerosis underwent breath testing to
assess for small intestinal bacterial overgrowth, provided stool samples to
determine taxonomic assignments, and completed the University of California
Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract
2.0, which details symptoms and quality-of-life factors. Stool samples were
compared between systemic sclerosis patients with and without small
intestinal bacterial overgrowth, and between patients with systemic
sclerosis and a healthy control cohort (n = 20), aged 18–80 years. Results: Fecal microbiome analyses demonstrated differences between systemic sclerosis
patients with and without small intestinal bacterial overgrowth and
differences in the diversity of species between healthy controls and
patients with systemic sclerosis. Trends were also observed in
anticentromere antibody systemic sclerosis patients, including higher
Alistipies indistincus spp. levels associated with
increased methane levels of breath gas testing and higher
Slakia spp. levels associated with increased rates of
fecal soiling. Conclusions: Our results suggest that changes to the fecal microbiome occur in patients
with small intestinal bacterial overgrowth and systemic sclerosis when
compared to healthy controls. As a cross-sectional study, the potential
pathophysiologic role of an altered microbiome in the development of
systemic sclerosis was not considered and hence needs to be further
investigated.
Collapse
Affiliation(s)
- Daniel Levin
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Hannah Zou
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Elena Verdu
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Barbara Baker
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Nader Khalidi
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Maggie J Larché
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Karen A. Beattie
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Premysl Bercik
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Han P, Gu JQ, Li LS, Wang XY, Wang HT, Wang Y, Chang C, Sun JL. The Association Between Intestinal Bacteria and Allergic Diseases-Cause or Consequence? Front Cell Infect Microbiol 2021; 11:650893. [PMID: 33937097 PMCID: PMC8083053 DOI: 10.3389/fcimb.2021.650893] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of allergic disorders has been increasing over the past few decades, especially in industrialized countries. Allergies can affect people of any age. The pathogenesis of allergic diseases is complex and involves genetic, epigenetic, and environmental factors, and the response to medication is very variable. For some patients, avoidance is the sole effective therapy, and only when the triggers are identifiable. In recent years, the intestinal microbiota has emerged as a significant contributor to the development of allergic diseases. However, the precise mechanisms related to the effects of the microbiome on the pathogenesis of allergic diseases are unknown. This review summarizes the recent association between allergic disorders and intestinal bacterial dysbiosis, describes the function of gut microbes in allergic disease development from both preclinical and clinical studies, discusses the factors that influence gut microbial diversity and advanced techniques used in microbial analysis. Ultimately, more studies are required to define the host-microbial relationship relevant to allergic disorders and amenable to new therapeutic interventions.
Collapse
Affiliation(s)
- Pei Han
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jian-Qing Gu
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Sha Li
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Yan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong-Tian Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
An overview of the level of dietary support in the gut microbiota at different stages of life: A systematic review. Clin Nutr ESPEN 2021; 42:41-52. [PMID: 33745615 DOI: 10.1016/j.clnesp.2021.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The gut microbiome is an essential factor for the health of the host. Several factors may alter the gut's microbiota composition, including genetic factors, lifestyle, aging, and dietary intervention. This process can be an essential element in the prevention and treatment of diseases associated with microbiome dysfunction through appropriate dietary interventions. Based on this context, a systematic review was carried out in order to assess the effect of dietary intervention on the profile of the gut microbiota throughout different stages of life. METHODS The systematic review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), with the eligibility criteria following the principle of PICOS. The literature search was carried out in 2019 throughout PubMed/MEDLINE, Scopus, and Science Direct. Thus, 1237 studies were selected, and 40 articles were included by criteria. RESULTS According to the level of evidence of Centre for Evidence-Based Medicine (OCEBM), 21 studies reached the level of evidence B1, 15 articles were classified with B2, and four articles with B3. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. On the other hand, dietary interventions alter the intestinal microbiota in different pathological realities. CONCLUSIONS Different dietary interventions change the microbiome composition at all stages of life in healthy and pathological individuals. However, more clinical studies are needed to identify the specifics of each stage in response to interventions.
Collapse
|
13
|
Li N, Gao S, Tong J, Yu Y, Zhang Q, Xu C. Probiotics as a functional food ingredient in allergic diseases: regulation of CD4+ T helper cell differentiation. Crit Rev Microbiol 2020; 46:463-474. [PMID: 32720543 DOI: 10.1080/1040841x.2020.1796578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Allergic diseases are increasing worldwide, associating with increased health costs and decreased quality of life. Allergy is immune-related diseases caused by an allergic immune response to innocuous substance in the environment. At present, research has focussed on the study of the relevance to the microbiome and the phenotypes of allergy, including the relationships among the gastrointestinal microbiome, immune function, and allergic sensitisation. Probiotics as functional food ingredient are thought to secrete functional metabolites that have antibacterial effects on ameliorating intestinal health and CD4+ T helper cells-mediated immunity. This review will summarise the role of probiotics in the immune regulation and flora balance, highlighting recent advances in our understanding of the imbalance of Th subsets and cytokine leading to the immunopathology of allergic reactions. Finally, we discussed the unresolved problems and future research directions in order to promote the clinical application of probiotics immunotherapy.
Collapse
Affiliation(s)
- Na Li
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Tropical Medicine, Hainan Medical University, HaiKou, China
| | - Shenshen Gao
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yi Yu
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Zhang
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chundi Xu
- Pediatric Department, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
The Effects of Low-Nickel Diet Combined with Oral Administration of Selected Probiotics on Patients with Systemic Nickel Allergy Syndrome (SNAS) and Gut Dysbiosis. Nutrients 2020; 12:nu12041040. [PMID: 32283870 PMCID: PMC7230804 DOI: 10.3390/nu12041040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Nickel (Ni) oral consumption may elicit systemic reactions in patients affected by systemic nickel allergy syndrome (SNAS), including gastrointestinal symptoms, which in turn are associated with gut dysbiosis. We evaluated the effects of a low-Ni diet alone or in combination with the oral consumption of appropriate probiotics on Ni-sensitivity and urinary dysbiosis markers in SNAS patients. Methods: n = 51 patients with SNAS and concomitant intestinal dysbiosis were enrolled in the study. According to the urinary indican/skatole levels, quantified through a colorimetric and a high-performance liquid chromatographic method, respectively, patients were assigned to a dysbiosis type/grade and followed a low-Ni diet for three months. Along with the diet, 22 patients also consumed probiotics based on the dysbiosis type. In particular, a Lactobacilli- or Bifidobacteria-containing formulation was administered to patients with fermentative or putrefactive dysbiosis, respectively, while a broad-spectrum probiotic formulation containing both Lactobacilli and Bifidobacteria was administered to patients with mixed dysbiosis. After three months, patients were invited to repeat the Ni-stimulation and the dysbiosis tests. Results: The fermentative dysbiosis group represented the largest group followed by the mixed dysbiosis group, while only two patients had putrefactive dysbiosis. Overall, at three months of treatment in general (diet alone with or without probiotics), the Ni-sensitivity and dysbiosis levels were strongly ameliorated. The association of a low-Ni diet with a specific probiotic oral supplementation was significantly more effective in decreasing dysbiosis levels or reaching eubiosis than with diet alone. Conclusion: Our results, while confirming the benefits of a low-Ni diet in SNAS patients, strongly support that appropriate adjuvant treatment with probiotics significantly helps to improve intestinal dysbiosis or restore a healthy microbiota.
Collapse
|
15
|
Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients 2018; 11:nu11010022. [PMID: 30577661 PMCID: PMC6357009 DOI: 10.3390/nu11010022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Various environmental contaminants including heavy metals, pesticides and antibiotics can contaminate food and water, leading to adverse effects on human health, such as inflammation, oxidative stress and intestinal disorder. Therefore, remediation of the toxicity of foodborne contaminants in human has become a primary concern. Some probiotic bacteria, mainly Lactobacilli, have received a great attention due to their ability to reduce the toxicity of several contaminants. For instance, Lactobacilli can reduce the accumulation and toxicity of selective heavy metals and pesticides in animal tissues by inhibiting intestinal absorption of contaminants and enhancing intestinal barrier function. Probiotics have also shown to decrease the risk of antibiotic-associated diarrhea possibly via competing and producing antagonistic compounds against pathogenic bacteria. Furthermore, probiotics can improve immune function by enhancing the gut microbiota mediated anti-inflammation. Thus, these probiotic bacteria are promising candidates for protecting body against foodborne contaminants-induced toxicity. Study on the mechanism of these beneficial bacterial strains during remediation processes and particularly their interaction with host gut microbiota is an active field of research. This review summarizes the current understanding of the remediation mechanisms of some probiotics and the combined effects of probiotics and gut microbiota on remediation of foodborne contaminants in vivo.
Collapse
Affiliation(s)
- Pengya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Ze Ye
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Amanpreet Kaur Virk
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
16
|
Riaz Rajoka MS, Shi J, Zhu J, Shao D, Huang Q, Yang H, Jin M. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl Microbiol Biotechnol 2016; 101:35-45. [PMID: 27888334 DOI: 10.1007/s00253-016-8005-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Lactic acid bacteria are associated with the human gastrointestinal tract. They are important for maintaining the balance of microflora in the human gut. An increasing number of published research reports in recent years have denoted the importance of producing interferon-gamma and IgA for treatment of disease. These agents can enhance the specific and nonspecific immune systems that are dependent on specific bacterial strains. The mechanisms of these effects were revealed in this investigation, where the cell walls of these bacteria were modulated by the cytokine pathways, while the whole bacterial cell mediated the host cell immune system and regulated the production of tumor necrosis factors and interleukins. A supplement of highly active lactic acid bacteria strains provided significant potential to enhance host's immunity, offering prevention from many diseases including some cancers. This review summarizes the current understanding of the function of lactic acid bacteria immunity enhancement and cancer prevention.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing Zhu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| |
Collapse
|
17
|
Yang J, Zhang H, Jiang L, Guo H, Luo X, Ren F. Bifidobacterium longum BBMN68-specific modulated dendritic cells alleviate allergic responses to bovine β-lactoglobulin in mice. J Appl Microbiol 2016; 119:1127-37. [PMID: 26248977 DOI: 10.1111/jam.12923] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023]
Abstract
AIMS This study was designed to demonstrate the protective effects of Bifidobacterium longum BBMN68-specific modulated dendritic cells (DCs) on allergic inflammation in β-lactoglobulin (BLG)-sensitized mice. METHODS AND RESULTS BALB/c mice were sensitized to BLG in accordance with a model of food allergy protocol and given oral BBMN68 daily. BBMN68 was found to significantly reduce BLG-specific hypersensitivity reactions by suppressing the aberrant balance of Th1/Th2 responses with increasing the number of CD4+CD25+Foxp3+ Treg cells in mesenteric lymph nodes (MLN) by 48·1%. The level of CD103+DCs was up-regulated by 136·7 and 56·2% in payer's patches and MLN, respectively, in response to the lower expression levels of cell-surface molecules (CD86 and MHC-II) induced by BBMN68 supplementation. The CD11c+DCs isolated from BBMN68 mice showed 45·6% more Foxp3+ expression in vitro. CONCLUSIONS These data suggest that BBMN68-specific induction of CD11c+CD103+DCs and semi-mature DCs reduce BLG allergic reactions. SIGNIFICANCE AND IMPACT OF THE STUDY These data confirm that BBMN68 may be a suitable therapeutic approach to the alleviation of food allergies, and BBMN68-specific induction of CD11c+CD103+DCs and semi-mature DCs are associated with this protection.
Collapse
Affiliation(s)
- J Yang
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - H Zhang
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - L Jiang
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - H Guo
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - X Luo
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - F Ren
- The Innovation Centre of Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Akelma AZ, Kılıç Topçu Zİ. Probiotics and allergic diseases. World J Immunol 2016; 6:75-82. [DOI: 10.5411/wji.v6.i1.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
The prevalence of allergic diseases including atopic dermatitis, asthma, allergic rhinitis (AR) and food allergy is increasing worldwide and they cause a big economic and social burden. Understanding of reasons that contribute to the etiology of allergic diseases as well as new treatment approaches are very important for the follow-up and prevention of these diseases. In recent years, probiotics seem to be promising for allergic diseases. The effect of probiotics in the prevention and treatment of eczema is more extensively studied, but little is known about the association of the microbial flora of the host and allergic airway diseases and the efficacy of probiotics in decreasing the symptoms of patients with asthma and rhinitis. Hitherto, there is no strong evidence for use of probiotics in the treatment of eczema; however, administration of probiotics in breastfeeding mothers in the prenatal period and infants in the postnatal period can be accepted as a safe and helpful option in the prevention of eczema. In contrast, there is not yet reliable evidence or recommendations on use of probiotics for the prevention or treatment of asthma, AR, food allergy, and anaphylaxis currently. More standardized studies should be performed with different strains of probiotics to evaluate the protective and therapeutic effects of probiotics on other allergic diseases as well as eczema. In this review, the relationship between allergy and probiotics is handled in the light of current literature.
Collapse
|