1
|
Sharma R, Mittal A, Gupta V, Aggarwal NK. Production, purification and characterization of phytase from Pichia kudriavevii FSMP-Y17and its application in layers feed. Braz J Microbiol 2024:10.1007/s42770-024-01492-x. [PMID: 39162933 DOI: 10.1007/s42770-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Phytase, recognized for its ability to enhance the nutritional value of phytate-rich foods, has has gained significant prominence. The production of this enzyme has been significantly boosted while preserving economic efficiency by utilizing natural substrates and optimizing essential factors. This study focuses on optimizing phytase production through solid-state fermentation and evaluating its effectiveness in enhancing nutrient utilization in chicken diets. OBJECTIVE The objective is to optimize phytase production via solid-state fermentation, characterize purified phytase properties, and assess its impact on nutrient utilization in chicken diets. Through these objectives, we aim to deepen understanding of phytase's role in poultry nutrition and contribute to more efficient feed formulations for improved agricultural outcomes. METHODOLOGY We utilized solid-state fermentation with Pichia kudriavzevii FSMP-Y17 yeast on orange peel substrate, optimizing variables like temperature, pH, incubation time, and supplementing with glucose and ammonium sulfate. Following fermentation, we purified the phytase enzyme using standard techniques, characterizing its properties, including molecular weight, optimal temperature and pH, substrate affinity, and kinetic parameters. RESULTS The optimized conditions yielded a remarkable phytase yield of 7.0 U/gds. Following purification, the enzyme exhibited a molecular weight of 64 kDa and displayed optimal activity at 55 °C and pH 5.5, with kinetic parameters (Km = 3.39 × 10-3 M and a Vmax of 7.092 mM/min) indicating efficient substrate affinity. CONCLUSION The addition of purified phytase to chicken diets resulted in significant improvements in nutrient utilization and overall performance, including increased feed intake, improved feed conversion ratio, enhanced bird growth, better phosphorus retention, and improved egg production and quality. By addressing challenges associated with phytate-rich diets, such as reduced nutrient availability and environmental pollution, phytase utilization promotes animal welfare and sustainability in poultry production.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Arpana Mittal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Varun Gupta
- Gobind Ballabh Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
2
|
Georgiev D, Kostova M, de Oliveira AC, Muhovski Y. Investigation of the potential of yeast strains for phytase biosynthesis in a two-step screening procedure. J Microbiol Methods 2024; 217-218:106890. [PMID: 38272400 DOI: 10.1016/j.mimet.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Research into phytase production is useful for improving the efficiency of animal production, reducing environmental impact, and contributing to the development of sustainable and efficient animal production systems. This study aims to investigate the potential of yeast strains for phytase biosynthesis in nutrient media. Phytase is a phosphomonoesterase (E.C 3.1.3.8) catalyzing in a ladder-like manner the dephosphorylation of phytic acid and its salts, with various resulting myo-inositol phosphates and phosphoric acid. Yeasts of the genera Saccharomyces, Zygosaccharomyces, Candida, and Pichia were evaluated in a two-step screening procedure for phytase production. One hundred and eighteen strains were screened in the first stage, which was conducted on four types of solid culture media containing calcium phytate as the selected background. On PSM medium, many strains were found to form halos as early as the 24th hour of development. Several strains with significant potential for enzyme production were evaluated in the second step of the screening. It was conducted in a liquid culture medium. In conclusion, the strain C. melibiosica 2491 was selected for further studies when cultured in a YPglu culture medium. Further research will focus on finding suitable conditions that increase the biosynthesis of the enzyme, which is of significant technological and practical interest for animal nutrition.
Collapse
Affiliation(s)
- Danail Georgiev
- University of Plovdiv, Faculty of Biology, Department of Biochemistry and Microbiology, 24 Tsar Ivan Asen Str., Plovdiv 4000, Bulgaria
| | - Milena Kostova
- Agricultural University - Plovdiv, Faculty of Agronomy, Department of Plant physiology, Biochemistry, and Genetics, 12 Mendeleev blvd., Plovdiv 4000, Bulgaria.
| | - Ana Caroline de Oliveira
- Department of Life Sciences, Biological Engineering Unit, Walloon Agricultural Research Centre, 234 Chaussée de Charleroi, Gembloux 5030, Belgium
| | - Yordan Muhovski
- Department of Life Sciences, Biological Engineering Unit, Walloon Agricultural Research Centre, 234 Chaussée de Charleroi, Gembloux 5030, Belgium
| |
Collapse
|
3
|
Vilanculos SL, Svanberg U, Andlid T. Phytate degradation in composite wheat/cassava/sorghum bread: Effects of phytase-secreting yeasts and addition of yeast extracts. Food Sci Nutr 2024; 12:216-226. [PMID: 38268898 PMCID: PMC10804092 DOI: 10.1002/fsn3.3754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 01/26/2024] Open
Abstract
Iron deficiency anemia is highly prevalent in developing countries due to the consumption of cereal-based foods rich in phytate that chelates minerals such as iron and zinc making them unavailable for absorption by humans. The aim of the present study was to degrade phytic acid in composite flour (wheat/cassava/sorghum) bread by the addition of phytase-producing yeasts in the baking process to achieve a phytate-to-iron molar ratio <1 and a phytate-to-zinc molar ratio <15, ratios needed to achieve an enhanced absorption by humans. The high-phytase (HP)-producing yeasts were two Saccharomyces cerevisiae (YD80 and BY80) that have been genetically modified by a directed mutagenesis strategy, and Pichia kudriavzevii TY13 isolated from a Tanzanian lactic fermented maize gruel (togwa) and selected as naturally HP yeast. To further improve the phytase production by the yeasts, four different brands of phytase-promoting yeast extracts were added in the baking process. In addition, two yeast varieties were preincubated for 1 h at 30°C to initiate phytase biosynthesis. The phytate content was measured by high-performance ion chromatography (HPIC) and the mineral content by ion chromatography (HPIC). The results showed that all three HP yeasts improved the phytate degradation compared with the composite bread with no added HP yeast. The composite bread with preincubated S. cerevisiae BY80 or P. kudriavzevii TY13 plus Bacto yeast extract resulted in the lowest phytate content (0.08 μmol/g), which means a 99% reduction compared with the phytate content in the composite flour. With added yeast extracts from three of the four yeast extract brands in the baking process, all composite breads had a phytate reduction after 2-h fermentation corresponding to a phytate: iron molar ratio between 1.0 and 0.3 and a phytate: zinc molar ratio <3 suggesting a much-enhanced bioavailability of these minerals.
Collapse
Affiliation(s)
- Serafina Lídia Vilanculos
- Departamento de Engenharia Química, Faculdade de EngenhariaUniversidade Eduardo MondlaneMaputoMozambique
- Department of Life Sciences/Food and Nutrition ScienceChalmers University of TechnologyGothenburgSweden
| | - Ulf Svanberg
- Department of Life Sciences/Food and Nutrition ScienceChalmers University of TechnologyGothenburgSweden
| | - Thomas Andlid
- Department of Life Sciences/Food and Nutrition ScienceChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
4
|
Singh B, Pragya, Tiwari SK, Singh D, Kumar S, Malik V. Production of fungal phytases in solid state fermentation and potential biotechnological applications. World J Microbiol Biotechnol 2023; 40:22. [PMID: 38008864 DOI: 10.1007/s11274-023-03783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 11/28/2023]
Abstract
Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.
Collapse
Affiliation(s)
- Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, 123029, Haryana, India
| | - Sandeep Kumar
- Department of Biotechnology, Shobhit Institute of Engineering and Technology (Deemed to Be University), Modipurum, Meerut, 250110, UP, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
5
|
Vashishth A, Tehri N, Tehri P, Sharma A, Sharma AK, Kumar V. Unraveling the potential of bacterial phytases for sustainable management of phosphorous. Biotechnol Appl Biochem 2023; 70:1690-1706. [PMID: 37042496 DOI: 10.1002/bab.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Phosphorous actively participates in numerous metabolic and regulatory activities of almost all living organisms including animals and humans. Therefore, it is considered as an essential macronutrient required supporting their proper growth. On contrary, phytic acid (PA), an antinutritional substance, is widely known for its strong affinity to chelate essential mineral ions including PO4 3- , Ca2+ , Fe2+ , Mg2+ , and Zn2+ . Being one the major reservoir of PO4 3- ions, PA has great potential to bind PO4 3- ions in diverse range of foods. Once combined with P, PA transforms into an undigested and insoluble complex namely phytate. Produced phytate leads to a notable reduction in the bioavailability of P due to negligible activity of phytases in monogastric animals and humans. This highlights the importance and consequent need of enhancement of phytase level in these life forms. Interestingly, phytases, catalyzing the breakdown of phytate complex and recycling the phosphate into ecosystem to its available form, have naturally been reported in a variety of plants and microorganisms over past few decades. In pursuit of a reliable solution, the focus of this review is to explore the keynote potential of bacterial phytases for sustainable management of phosphorous via efficient utilization of soil phytate. The core of the review covers detailed discussion on bacterial phytases along with their widely reported applications viz. biofertilizers, phosphorus acquisition, and plant growth promotion. Moreover, meticulous description on fermentation-based strategies and future trends on bacterial phytases have also been included.
Collapse
Affiliation(s)
- Amit Vashishth
- Department of Science and Humanities, SRM Institute of Science & Technology, Ghaziabad, Uttar Pradesh, India
| | - Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Piyush Tehri
- Department of Applied Sciences, MIET, Meerut, Uttar Pradesh, India
| | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan, India
| |
Collapse
|
6
|
Capusoni C, Serra I, Donzella S, Compagno C. Screening For Yeast Phytase Leads to the Identification of a New Cell-Bound and Secreted Activity in Cyberlindnera jadinii CJ2. Front Bioeng Biotechnol 2021; 9:662598. [PMID: 34109165 PMCID: PMC8181137 DOI: 10.3389/fbioe.2021.662598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Phytic acid is an anti-nutritional compound able to chelate proteins and ions. For this reason, the food industry is looking for a convenient method which allows its degradation. Phytases are a class of enzymes that catalyze the degradation of phytic acid and are used as additives in feed-related industrial processes. Due to their industrial importance, our goal was to identify new activities that exhibit best performances in terms of tolerance to high temperature and acidic pH. As a result of an initial screening on 21 yeast species, we focused our attention on phytases found in Cyberlindnera jadinii, Kluyveromyces marxianus, and Torulaspora delbrueckeii. In particular, C. jadinii showed the highest secreted and cell-bound activity, with optimum of temperature and pH at 50°C and 4.5, respectively. These characteristics suggest that this enzyme could be successfully used for feed as well as for food-related industrial applications.
Collapse
Affiliation(s)
- Claudia Capusoni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Immacolata Serra
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Labba ICM, Andlid T, Lindgren Å, Sandberg AS, Sjöberg F. Isolation, identification, and selection of strains as candidate probiotics and starters for fermentation of Swedish legumes. Food Nutr Res 2020; 64:4410. [PMID: 33061883 PMCID: PMC7534948 DOI: 10.29219/fnr.v64.4410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The non-dairy sector is growing, fermented alternatives to dairy are sparse. Adapted starter cultures to substituting raw materials needs to be developed. OBJECTIVE Aims of this study were to isolate, identify, and phenotypically characterize lactic acid bacteria (LAB) that inhabit Swedish legumes, and assess properties necessary for selecting strains with the ability to ferment a bean beverage and with potential health beneficial properties. DESIGN Isolates of presumed LAB were obtained from legumes collected at Öland, Sweden. Strain diversity was assessed by repetitive polymerase chain reaction (rep-PCR). The strains were identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Species belonging to Enterococcus were predominant along with Pediococcus and closely related Bacillus. Strains were tested for tolerance to low pH, phenol, and bile as well as their bile salt hydrolase (BSH) activity. In addition, Enterococcus strains were tested for antibiotic resistance, and Pediococcus strains for their ability to ferment a bean beverage. RESULTS From the 25 strains characterized, five were found resistant to low pH, bile, and phenol, suggesting that they can survive a passage through the gastrointestinal tract (GIT) and hence potentially exert beneficial effects in the host. These are suggested for further investigation on specific host-beneficial properties. Two of these, belonging to Pediococcus pentosaceus, were able to ferment a bean beverage without any added nutrients, indicating that the Pediococcus strains are well adapted to the bean substrate. One of the P. pentosaceus strains were also able to markedly improve the reduction of phytate by the phytase-producing yeast strain Pichia kudriavzevii TY1322 during co-fermentation as well as increase the final cell count of the yeast strain. CONCLUSION Strain isolation and characterization performed in this study aids in selecting starter cultures for legume fermentation. Nutritional properties can be improved by co-fermentation with yeast indicating that novel nutritious fermented non-dairy products could be developed.
Collapse
Affiliation(s)
- Inger-Cecilia Mayer Labba
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Andlid
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Åsa Lindgren
- Department of Clinical Bacteriology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Sofie Sandberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Fei Sjöberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Ogunremi OR, Agrawal R, Sanni A. Production and characterization of volatile compounds and phytase from potentially probiotic yeasts isolated from traditional fermented cereal foods in Nigeria. J Genet Eng Biotechnol 2020; 18:16. [PMID: 32507932 PMCID: PMC7276461 DOI: 10.1186/s43141-020-00031-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Probiotic strains are incorporated into food substrates to contribute to fermentation process. The technological suitability of such strains to improve the flavor and nutritional value of fermented food is strain-specific. Potentially probiotic yeasts isolated from Nigerian traditional fermented foods were assessed for production of volatile compounds by gas chromatography-mass spectrophotometry. Phytases were characterized for activity and stability at different pH (3-8) and temperatures (25-50 °C). RESULTS A total of 45 volatiles compounds were identified from intracellular cell-free extracts of Pichia kluyveri LKC17, Issatchenkia orientalis OSL11, P. kudriavzevii OG32, P. kudriavzevii ROM11, and Candida tropicalis BOM21. They include alcohols (14), carbonyls (13), esters (10), and organic acids (8). Phenylethyl alcohol was the highest higher-alcohol in Issatchenkia orientalis OSL11 (27.51 %). The largest proportion of esters was detected in P. kudriavzevii OG32 (17.38 %). Pichia kudriavzevii OG32 and C. tropicalis BOM21 showed vigorous gowth in minimal medium supplemented with sodium phytate (2 g L-1). Extracellular phytases from P. kudriavzevii OG32 and Candida tropicalis BOM2 showed optimal activiy at pH 4.6 (104.28 U) and pH 3.6 (81.43 U) respectively. CONCLUSIONS Results obtained revealed species- and strain-specific potentials of the yeast strains to improve flavor and mineral bioavailability of fermented food products. Therefore, the application of these yeasts as starter cultures during food fermentation process is a very promising method to enhance the flavor profile and enhance mineral bioavailability in indigenous cereal-based fermented food products.
Collapse
Affiliation(s)
- Omotade Richard Ogunremi
- Department of Biological Sciences, First Technical University, Ibadan, Nigeria
- Food Microbiology Department, Central Food Technological Research Institute, Mysore, India
| | - Renu Agrawal
- Food Microbiology Department, Central Food Technological Research Institute, Mysore, India
| | - Abiodun Sanni
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Johansen PG, Owusu-Kwarteng J, Parkouda C, Padonou SW, Jespersen L. Occurrence and Importance of Yeasts in Indigenous Fermented Food and Beverages Produced in Sub-Saharan Africa. Front Microbiol 2019; 10:1789. [PMID: 31447811 PMCID: PMC6691171 DOI: 10.3389/fmicb.2019.01789] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Indigenous fermented food and beverages represent a valuable cultural heritage in sub-Saharan Africa, having one of the richest selections of fermented food products in the world. In many of these indigenous spontaneously fermented food and beverages, yeasts are of significant importance. Several factors including raw materials, processing methods, hygienic conditions as well as the interactions between yeasts and other commensal microorganisms have been shown to influence yeast species diversity and successions. Both at species and strain levels, successions take place due to the continuous change in intrinsic and extrinsic growth factors. The selection pressure from the microbial stress factors leads to niche adaptation and both yeast species and strains with traits deviating from those generally acknowledged in current taxonomic keys, have been isolated from indigenous sub-Saharan African fermented food products. Yeasts are important for flavor development, impact shelf life, and nutritional value and do, in some cases, even provide host-beneficial effects. In order to sustain and upgrade these traditional fermented products, it is quite important to obtain detailed knowledge on the microorganisms involved in the fermentations, their growth requirements and interactions. While other publications have reported on the occurrence of prokaryotes in spontaneously fermented sub-Saharan food and beverages, the present review focuses on yeasts considering their current taxonomic position, relative occurrence and successions, interactions with other commensal microorganisms as well as beneficial effects and importance in human diet. Additionally, the risk of opportunistic yeasts is discussed.
Collapse
Affiliation(s)
| | - James Owusu-Kwarteng
- Department of Food Science and Technology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Charles Parkouda
- Département Technologie Alimentaire, IRSAT/CNRST, Ouagadougou, Burkina Faso
| | | | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Microbial degradation of myo-inositol hexakisphosphate (IP6): specificity, kinetics, and simulation. 3 Biotech 2018; 8:268. [PMID: 29868306 DOI: 10.1007/s13205-018-1302-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/21/2018] [Indexed: 01/08/2023] Open
Abstract
Microbial degradation of myo-inositol hexakisphosphate (IP6) is crucial to deal with nutritional problems in monogastric animals as well as to prevent environmental phosphate pollution. The present study deals with the degradation of IP6 by microorganisms such as Sporosarcina spp. pasteurii, globiospora, psychrophila, Streptococcus thermophilus and Saccharomyces boulardii. These microbes were screened for phytase production under laboratory conditions. The specificity of the enzyme was tested for various phosphorylated substrates such as sodium phytate (IP6), sodium hexametaphosphate, phenyl phosphate, α-d-glucose-6 phosphate, inosine 5' monophosphate and pyridoxal 5' phosphate. These enzymes were highly specific to IP6. The influence of modulators such as phytochemicals and metal ions on the enzymatic activity was assessed. These modulators in different concentrations had varying effect on microbial phytases. Calcium (in optimal concentration of 0.5 M) played an important role in enzyme activation. The enzymes were then characterized based on their molecular weight 41~43 kDa. The phytase-producing microbes were assessed for IP6 degradation in a simulated intestinal setup. Among the selected microbes, Sporosarcina globiospora hydrolyzed IP6 effectively, as confirmed by colorimetric time-based analysis.
Collapse
|
11
|
Evaluation of Candida tropicalis (NCIM 3321) extracellular phytase having plant growth promoting potential and process development. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Qvirist LA, De Filippo C, Strati F, Stefanini I, Sordo M, Andlid T, Felis GE, Mattarelli P, Cavalieri D. Isolation, Identification and Characterization of Yeasts from Fermented Goat Milk of the Yaghnob Valley in Tajikistan. Front Microbiol 2016; 7:1690. [PMID: 27857705 PMCID: PMC5093317 DOI: 10.3389/fmicb.2016.01690] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022] Open
Abstract
The geographically isolated region of the Yaghnob Valley, Tajikistan, has allowed its inhabitants to maintain a unique culture and lifestyle. Their fermented goat milk constitutes one of the staple foods for the Yaghnob population, and is produced by backslopping, i.e., using the previous fermentation batch to inoculate the new one. This study addresses the yeast composition of the fermented milk, assessing genotypic, and phenotypic properties. The 52 isolates included in this study revealed small species diversity, belonging to Kluyveromyces marxianus, Pichia fermentans, Saccharomyces cerevisiae, and one Kazachstania unispora. The K. marxianus strains showed two different genotypes, one of which never described previously. The two genetically different groups also differed significantly in several phenotypic characteristics, such as tolerance toward high temperatures, low pH, and presence of acid. Microsatellite analysis of the S. cerevisiae strains from this study, compared to 350 previously described strains, attributed the Yaghnobi S. cerevisiae to two different ancestry origins, both distinct from the wine and beer strains, and similar to strains isolated from human and insects feces, suggesting a peculiar origin of these strains, and the existence of a gut reservoir for S. cerevisiae. Our work constitutes a foundation for strain selection for future applications as starter cultures in food fermentations. This work is the first ever on yeast diversity from fermented milk of the previously unexplored area of the Yaghnob Valley.
Collapse
Affiliation(s)
- Linnea A. Qvirist
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | | | - Francesco Strati
- Department of Computational Biology, Edmund Mach FoundationSan Michele all'Adige, Italy
| | - Irene Stefanini
- Department of Computational Biology, Edmund Mach FoundationSan Michele all'Adige, Italy
| | - Maddalena Sordo
- Department of Computational Biology, Edmund Mach FoundationSan Michele all'Adige, Italy
| | - Thomas Andlid
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | | | - Paola Mattarelli
- Department of Agricultural Sciences, University of BolognaBologna, Italy
| | | |
Collapse
|
13
|
Qvirist L, Vorontsov E, Veide Vilg J, Andlid T. Strain improvement of Pichia kudriavzevii TY13 for raised phytase production and reduced phosphate repression. Microb Biotechnol 2016; 10:341-353. [PMID: 27790831 PMCID: PMC5328827 DOI: 10.1111/1751-7915.12427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022] Open
Abstract
In this work, we present the development and characterization of a strain of Pichia kudriavzevii (TY1322), with highly improved phytate‐degrading capacity. The mutant strain TY1322 shows a biomass‐specific phytate degradation of 1.26 mmol g−1 h−1 after 8 h of cultivation in a high‐phosphate medium, which is about 8 times higher compared with the wild‐type strain. Strain TY1322 was able to grow at low pH (pH 2), at high temperature (46°C) and in the presence of ox bile (2% w/v), indicating this strain's ability to survive passage through the gastrointestinal tract. The purified phytase showed two pH optima, at pH 3.5 and 5.5, and one temperature optimum at 55°C. The lower pH optimum of 3.5 matches the reported pH of the pig stomach, meaning that TY1322 and/or its phytase is highly suitable for use in feed production. Furthermore, P. kudriavzeviiTY1322 tolerates ethanol up to 6% (v/v) and shows high osmotic stress tolerance. Owing to the phenotypic characteristics and non‐genetically modified organisms nature of TY1322, this strain show great potential for future uses in (i) cereal fermentations for increased mineral bioavailability, and (ii) feed production to increase the phosphate bioavailability for monogastric animals to reduce the need for artificial phosphate fortification.
Collapse
Affiliation(s)
- Linnea Qvirist
- Department of Biology and Biological Engineering, Food and Nutritional Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Gothenburg University, SE-405 30, Gothenburg, Sweden
| | - Jenny Veide Vilg
- Department of Biology and Biological Engineering, Food and Nutritional Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Thomas Andlid
- Department of Biology and Biological Engineering, Food and Nutritional Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
14
|
Greppi A, Saubade F, Botta C, Humblot C, Guyot JP, Cocolin L. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiol 2016; 62:169-177. [PMID: 27889145 DOI: 10.1016/j.fm.2016.09.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/13/2022]
Abstract
With the aim of selecting starter cultures with interesting probiotic potential and with the ability to produce folate in a food matrix, yeast strains isolated from fermented cereal-based African foods were investigated. A total of 93 yeast strains were screened for their tolerance to pH 2 and 0.3% of bile salts. Pichia kudriavzevii isolates gave the best results. Selected P. kudriavzevii strains were tested for survival to the simulated human digestion and for adhesion to Caco-2 cells. Moreover, presence of folate biosynthesis genes was verified and production of extra and intra-cellular folate determined during growth in culture medium. 31% of yeast strains could tolerate pH 2, while 99% bile salts. Survival rate after simulated digestion ranged between 11 and 45%, while adhesion rate between 12 and 40%. Folate production was mainly intracellular, maximum after 24 h of growth. To be closer to traditional cereal-based fermentations, a P. kudriavzevii strain with good probiotic potential was co-inoculated with Lactobacillus fermentum strains in a pearl millet gruel. This resulted in in situ folate production that peaked after 4 h. The use of strains with both probiotic and nutritional enrichment properties may have a greater impact for the consumers.
Collapse
Affiliation(s)
- Anna Greppi
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy.
| | - Fabien Saubade
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Cristian Botta
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy
| | - Christèle Humblot
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Jean-Pierre Guyot
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy
| |
Collapse
|
15
|
Gabaza M, Muchuweti M, Vandamme P, Raes K. Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels? FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1196491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Molly Gabaza
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Maud Muchuweti
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Katleen Raes
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|