1
|
Buhr TL, Borgers-Klonkowski E, Gutting BW, Hammer EE, Hamilton SM, Huhman BM, Jackson SL, Kennihan NL, Lilly SD, Little JD, Luck BB, Matuczinski EA, Miller CT, Sides RE, Yates VL, Young AA. Ultraviolet dosage and decontamination efficacy were widely variable across 14 UV devices after testing a dried enveloped ribonucleic acid virus surrogate for SARS-CoV-2. Front Bioeng Biotechnol 2022; 10:875817. [PMID: 36267449 PMCID: PMC9578676 DOI: 10.3389/fbioe.2022.875817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: The dosages and efficacy of 14 ultraviolet (UV) decontamination technologies were measured against a SARS-CoV-2 surrogate virus that was dried onto different materials for laboratory and field testing. Methods and results: A live enveloped, ribonucleic acid (RNA) virus surrogate for SARS-CoV-2 was dried on stainless steel 304 (SS304), Navy Top Coat-painted SS304 (NTC), cardboard, polyurethane, polymethyl methacrylate (PMMA), and acrylonitrile butadiene styrene (ABS) materials at > 8.0 log10 plaque-forming units (PFU) per test coupon. The coupons were then exposed to UV radiation during both laboratory and field testing. Commercial and prototype UV-emitting devices were measured for efficacy: four handheld devices, three room/surface-disinfecting machines, five air disinfection devices, and two larger custom-made machines. UV device dosages ranged from 0.01 to 729 mJ cm-2. The antiviral efficacy among the different UV devices ranged from no decontamination up to nearly achieving sterilization. Importantly, cardboard required far greater dosage than SS304. Conclusion: Enormous variability in dosage and efficacy was measured among the different UV devices. Porous materials limit the utility of UV decontamination. Significance and impact of the study: UV devices have wide variability in dosages, efficacy, hazards, and UV output over time, indicating that each UV device needs independent technical measurement and assessment for product development prior to and during use.
Collapse
Affiliation(s)
- Tony L. Buhr
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Erica Borgers-Klonkowski
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Bradford W. Gutting
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Emlyn E. Hammer
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Shelia M. Hamilton
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Brett M. Huhman
- Naval Research Laboratory (Plasma Physics Division), Washington, DC, United States
| | - Stuart L. Jackson
- Naval Research Laboratory (Plasma Physics Division), Washington, DC, United States
| | - Neil L. Kennihan
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Samuel D. Lilly
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - John D. Little
- Naval Research Laboratory (Plasma Physics Division), Washington, DC, United States
| | - Brooke B. Luck
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Emily A. Matuczinski
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Charles T. Miller
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Rachel E. Sides
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Vanessa L. Yates
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Alice A. Young
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| |
Collapse
|
2
|
Wood J, Touati A, Abdel-Hady A, Aslett D, Delafield F, Calfee W, Silvestri E, Serre S, Mickelsen L, Tomlinson C, Mikelonis A. Decontamination of soil contaminated at the surface with Bacillus anthracis spores using dry thermal treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111684. [PMID: 33303252 PMCID: PMC7899236 DOI: 10.1016/j.jenvman.2020.111684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In the event of a large, aerosol release of Bacillus anthracis spores in a major metropolitan area, soils and other outdoor materials may become contaminated with the biological agent. A study was conducted to assess the in-situ remediation of soil using a dry thermal treatment approach to inactivate a B. anthracis spore surrogate inoculated into soil samples. The study was conducted in two phases, using loam, clay and sand-based soils, as well as biological indicators and spore-inoculated stainless-steel coupons. Initial experiments were performed in an environmental test chamber with temperatures controlled between 80 and 110 °C, with and without added humidity, and with contact times ranging from 4 h to 7 weeks. Tests were then scaled up to assess the thermal inactivation of spores in small soil columns, in which a heating plate set to 141 °C was applied to the soil surface. These column tests were conducted to assess time requirements to inactivate spores as a function of soil depth and soil type. Results from the initial phase of testing showed that increasing the temperature and relative humidity reduced the time requirements to achieve samples in which no surrogate spores were detected. For the test at 80 °C with no added humidity, 49 days were required to achieve soil samples with no spores detected in clay and loam. At 110 °C, 24 h were required to achieve samples in which no spores were detected. In the column tests, no spores were detected at the 2.5 cm depth at four days and at the 5.1 cm depth at 21 days, for two of the three soils. The experiments described in the study demonstrate the feasibility of using dry thermal techniques to decontaminate soils that have been surficially contaminated with B. anthracis spores.
Collapse
Affiliation(s)
- Joseph Wood
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA.
| | | | | | - Denise Aslett
- Jacobs Technology, Inc, Research Triangle Park, NC, USA
| | | | - Worth Calfee
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| | - Erin Silvestri
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Shannon Serre
- United States Environmental Protection Agency, Office of Emergency Management, Research Triangle Park, NC, USA
| | - Leroy Mickelsen
- United States Environmental Protection Agency, Office of Emergency Management, Research Triangle Park, NC, USA
| | - Christine Tomlinson
- United States Environmental Protection Agency, Office of Emergency Management, Washington, D.C., USA
| | - Anne Mikelonis
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Buhr TL, Young AA, Borgers-Klonkowski E, Kennihan NL, Barnette HK, Minter ZA, Bohmke MD, Osborn EB, Hamilton SM, Kimani MB, Hammon MW, Miller CT, Mackie RS, Innocenti JM, Bensman MD, Gutting BW, Lilly SD, Hammer EE, Yates VL, Luck BB. Hot, Humid Air Decontamination of Aircraft Confirmed That High Temperature and High Humidity Are Critical for Inactivation of Infectious, Enveloped Ribonucleic Acid (RNA) Virus. Front Bioeng Biotechnol 2020; 8:592621. [PMID: 33195159 PMCID: PMC7644820 DOI: 10.3389/fbioe.2020.592621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/03/2022] Open
Abstract
Aims: To develop infectious (live/dead) enveloped virus test indicators and response surface methodology (RSM) models that evaluate survival of an enveloped ribonucleic acid (RNA) virus on contaminated aircraft materials after exposure to hot, humid air (HHA). Methods and Results: Enveloped RNA bacteriophage Phi6 (Φ6) was dried on wiring insulation, aircraft performance coating (APC), polypropylene, and nylon at ≥ 8 log10 plaque-forming units (PFU) test coupon-1. Only 2.4 log10 inactivation was measured on APC at 70°Celsius (°C), 5% relative humidity (RH) after 24 h. In contrast, HHA RSM models showed a 90% probability of a 7 log10 inactivation at ≥63°C, 90% RH after 1 h, and decontamination kinetics were similar across different materials. HHA decontamination of C-130 and C-17 aircraft showed >7 log10 and ≥5.9 log10 inactivation of enveloped virus on 100 and 110 test indicators, respectively, with a 1-h treatment, excluding ramp-up and ramp-down times. Conclusions: Enveloped RNA virus test indicators were successfully developed, lab tested for HHA decontamination, analyzed for RSM, and field-tested in aircraft demonstrations. Significance and Impact of the Study: The utility of HHA decontamination was demonstrated after inactivating enveloped RNA virus on aircraft with a 1-h HHA treatment within aircraft temperature and RH limits.
Collapse
Affiliation(s)
- Tony L. Buhr
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cote CK, Weidner JM, Klimko C, Piper AE, Miller JA, Hunter M, Shoe JL, Hoover JC, Sauerbry BR, Buhr T, Bozue JA, Harbourt DE, Glass PJ. Biological Validation of a Chemical Effluent Decontamination System. APPLIED BIOSAFETY 2020. [DOI: 10.1177/1535676020937967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction: Failure of an existing effluent decontamination system (EDS) prompted the consideration of commercial off-the-shelf solutions for decontamination of containment laboratory waste. A bleach-based chemical EDS was purchased to serve as an interim solution. Methods: Studies were conducted in the laboratory to validate inactivation of Bacillus spores with bleach in complex matrices containing organic simulants including fetal bovine serum, humic acid, and animal room sanitation effluent. Results: These studies demonstrated effective decontamination of >106 spores at a free chlorine concentration of ≥5700 parts per million with a 2-hour contact time. Translation of these results to biological validation of the bleach-based chemical EDS required some modifications to the system and its operation. Discussion: The chemical EDS was validated for the treatment of biosafety levels 3 and 4 waste effluent using laboratory-prepared spore packets along with commercial biological indicators; however, several issues and lessons learned identified during the process of onboarding are also discussed, including bleach product source, method of validation, dechlorination, and treated waste disposal.
Collapse
Affiliation(s)
- Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jessica M. Weidner
- Medical Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Christopher Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Ashley E. Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jeremy A. Miller
- Biosafety Office, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jennifer C. Hoover
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Brian R. Sauerbry
- Logistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Tony Buhr
- Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA, USA
| | - Joel A. Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - David E. Harbourt
- Biosafety Office, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Pamela J. Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| |
Collapse
|
5
|
Wood JP, Wendling M, Richter W, Rogers J. The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials. PLoS One 2020; 15:e0233291. [PMID: 32437373 PMCID: PMC7241793 DOI: 10.1371/journal.pone.0233291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/02/2020] [Indexed: 11/19/2022] Open
Abstract
A study was conducted to assess the efficacy of ozone gas in inactivating spores of both Bacillus anthracis and Bacillus subtilis inoculated onto six building materials (glass, wood, carpet, laminate, galvanized metal, and wallboard paper). Testing conditions consisted of ozone gas concentrations ranging from 7,000-12,000 parts per million (ppm), contact times from 4 to 12 h, and two relative humidity (RH) levels of 75 and 85%. Results showed that increasing the ozone concentration, contact time, and RH generally increased decontamination efficacy. The materials in which the highest decontamination efficacy was achieved for B. anthracis spores were wallboard paper, carpet, and wood with ≥ 6 log10 reduction (LR) occurring with 9,800 ppm ozone, 85% RH, for 6 h. The laminate and galvanized metal materials were generally more difficult to decontaminate, requiring 12,000 ppm ozone, 85% RH, and 9-12 h contact time to achieve ≥6 LR of B. anthracis. Lastly, overall, there were no significant differences in decontamination efficacy between the two species.
Collapse
Affiliation(s)
- Joseph P. Wood
- Office of Research and Development, U.S. Environmental Protection Agency, National Homeland Security Research Program, Research Triangle Park, North Carolina, United States of America
| | - Morgan Wendling
- Battelle Memorial Institute, Columbus, Ohio, United States of America
| | - William Richter
- Battelle Memorial Institute, Columbus, Ohio, United States of America
| | - James Rogers
- Battelle Memorial Institute, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Buhr T, Minter Z, Kennihan N, Young A, Borgers‐Klonkowski E, Osborn E, Bohmke M, Hamilton S, Kimani M, Miller C, Mackie R, Innocenti J, Bensman M, Lilly S. Combining spore germination and heat inactivation to decontaminate materials contaminated with
Bacillus anthracis
spores. J Appl Microbiol 2019; 128:124-137. [DOI: 10.1111/jam.14474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022]
Affiliation(s)
- T.L. Buhr
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - Z.A. Minter
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - N.L. Kennihan
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - A.A. Young
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - E.L. Borgers‐Klonkowski
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - E.B. Osborn
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - M.D. Bohmke
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - S.M. Hamilton
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - M.B. Kimani
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - C.T. Miller
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - R.S. Mackie
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - J.M. Innocenti
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - M.D. Bensman
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - S.D. Lilly
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| |
Collapse
|
7
|
Wood JP, Adrion AC. Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4045-4062. [PMID: 30901213 PMCID: PMC6547374 DOI: 10.1021/acs.est.8b05274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Since the intentional release of Bacillus anthracis spores through the U.S. Postal Service in the fall of 2001, research and development related to decontamination for this biological agent have increased substantially. This review synthesizes the advances made relative to B. anthracis spore decontamination science and technology since approximately 2002, referencing the open scientific literature and publicly available, well-documented scientific reports. In the process of conducting this review, scientific knowledge gaps have also been identified. This review focuses primarily on techniques that are commercially available and that could potentially be used in the large-scale decontamination of buildings and other structures, as well as outdoor environments. Since 2002, the body of scientific data related to decontamination and microbial sterilization has grown substantially, especially in terms of quantifying decontamination efficacy as a function of several factors. Specifically, progress has been made in understanding how decontaminant chemistry, the materials the microorganisms are associated with, environmental factors, and microbiological methods quantitatively impact spore inactivation. While advancement has been made in the past 15 years to further the state of the science in the inactivation of bacterial spores in a decontamination scenario, further research is warranted to close the scientific gaps that remain.
Collapse
Affiliation(s)
- Joseph P. Wood
- United States Environmental Protection Agency, Offce of Research and Development, National Homeland Security Research Center, Research Triangle Park, North Carolina United States
- Corresponding Author: Phone: (919) 541-5029;
| | - Alden Charles Adrion
- United States Environmental Protection Agency, Offce of Research and Development, National Homeland Security Research Center, Research Triangle Park, North Carolina United States
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
8
|
Anderson GP, Shriver-Lake LC, Walper SA, Ashford L, Zabetakis D, Liu JL, Breger JC, Brozozog Lee PA, Goldman ER. Genetic Fusion of an Anti-BclA Single-Domain Antibody with Beta Galactosidase. Antibodies (Basel) 2018; 7:antib7040036. [PMID: 31544886 PMCID: PMC6698959 DOI: 10.3390/antib7040036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
The Bacillus collagen-like protein of anthracis (BclA), found in Bacillus anthracis spores, is an attractive target for immunoassays. Previously, using phage display we had selected llama-derived single-domain antibodies that bound to B. anthracis spore proteins including BclA. Single-domain antibodies (sdAbs), the recombinantly expressed heavy domains from the unique heavy-chain-only antibodies found in camelids, provide stable and well-expressed binding elements with excellent affinity. In addition, sdAbs offer the important advantage that they can be tailored for specific applications through protein engineering. A fusion of a BclA targeting sdAb with the enzyme Beta galactosidase (β-gal) would enable highly sensitive immunoassays with no need for a secondary reagent. First, we evaluated five anti-BclA sdAbs, including four that had been previously identified but not characterized. Each was tested to determine its binding affinity, melting temperature, producibility, and ability to function as both capture and reporter in sandwich assays for BclA. The sdAb with the best combination of properties was constructed as a fusion with β-gal and shown to enable sensitive detection. This fusion has the potential to be incorporated into highly sensitive assays for the detection of anthrax spores.
Collapse
Affiliation(s)
- George P Anderson
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lisa C Shriver-Lake
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Scott A Walper
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lauryn Ashford
- The Washington Center for Internships and Academic Seminars, 1333 16th Street N.W., Washington, DC 20036, USA.
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Jinny L Liu
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Joyce C Breger
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | | | - Ellen R Goldman
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| |
Collapse
|
9
|
A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation. Appl Environ Microbiol 2018; 84:AEM.00106-18. [PMID: 29654186 DOI: 10.1128/aem.00106-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10-6 Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.
Collapse
|
10
|
Cooper CJ, Koonjan S, Nilsson AS. Enhancing Whole Phage Therapy and Their Derived Antimicrobial Enzymes through Complex Formulation. Pharmaceuticals (Basel) 2018; 11:ph11020034. [PMID: 29671806 PMCID: PMC6027540 DOI: 10.3390/ph11020034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
The resurgence of research into phage biology and therapy is, in part, due to the increasing need for novel agents to treat multidrug-resistant infections. Despite a long clinical history in Eastern Europe and initial success within the food industry, commercialized phage products have yet to enter other sectors. This relative lack of success is, in part, due to the inherent biological limitations of whole phages. These include (but are not limited to) reaching target sites at sufficiently high concentrations to establish an infection which produces enough progeny phages to reduce the bacterial population in a clinically meaningful manner and the limited host range of some phages. Conversely, parallels can be drawn between antimicrobial enzymes derived from phages and conventional antibiotics. In the current article the biological limitations of whole phage-based therapeutics and their derived antimicrobial enzymes will be discussed. In addition, the ability of more complex formulations to address these issues, in the context of medical and non-medical applications, will also be included.
Collapse
Affiliation(s)
- Callum J Cooper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Shazeeda Koonjan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Anders S Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
11
|
Hu M, Gurtler JB. Selection of Surrogate Bacteria for Use in Food Safety Challenge Studies: A Review. J Food Prot 2017; 80:1506-1536. [PMID: 28805457 DOI: 10.4315/0362-028x.jfp-16-536] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nonpathogenic surrogate bacteria are prevalently used in a variety of food challenge studies in place of foodborne pathogens such as Listeria monocytogenes, Salmonella, Escherichia coli O157:H7, and Clostridium botulinum because of safety and sanitary concerns. Surrogate bacteria should have growth characteristics and/or inactivation kinetics similar to those of target pathogens under given conditions in challenge studies. It is of great importance to carefully select and validate potential surrogate bacteria when verifying microbial inactivation processes. A validated surrogate responds similar to the targeted pathogen when tested for inactivation kinetics, growth parameters, or survivability under given conditions in agreement with appropriate statistical analyses. However, a considerable number of food studies involving putative surrogate bacteria lack convincing validation sources or adequate validation processes. Most of the validation information for surrogates in these studies is anecdotal and has been collected from previous publications but may not be sufficient for given conditions in the study at hand. This review is limited to an overview of select studies and discussion of the general criteria and approaches for selecting potential surrogate bacteria under given conditions. The review also includes a list of documented bacterial pathogen surrogates and their corresponding food products and treatments to provide guidance for future studies.
Collapse
Affiliation(s)
- Mengyi Hu
- 1 U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551.,2 Department of Culinary Arts and Food Science, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104-30, USA
| | - Joshua B Gurtler
- 1 U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551
| |
Collapse
|
12
|
Li Q, Korza G, Setlow P. Killing the spores of
Bacillus
species by molecular iodine. J Appl Microbiol 2016; 122:54-64. [DOI: 10.1111/jam.13310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/12/2016] [Accepted: 09/24/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Q. Li
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
13
|
Buhr TL, Young AA, Bensman M, Minter ZA, Kennihan NL, Johnson CA, Bohmke MD, Borgers-Klonkowski E, Osborn EB, Avila SD, Theys AMG, Jackson PJ. Hot, humid air decontamination of a C-130 aircraft contaminated with spores of two acrystalliferous Bacillus thuringiensis strains, surrogates for Bacillus anthracis. J Appl Microbiol 2016; 120:1074-84. [PMID: 26786717 DOI: 10.1111/jam.13055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/13/2015] [Accepted: 12/31/2015] [Indexed: 11/29/2022]
Abstract
AIM To develop test methods and evaluate survival of Bacillus thuringiensis kurstaki cry(-) HD-1 and B. thuringiensis Al Hakam spores after exposure to hot, humid air inside of a C-130 aircraft. METHODS AND RESULTS Bacillus thuringiensis spores were either pre-inoculated on 1 × 2 or 2 × 2 cm substrates or aerosolized inside the cargo hold of a C-130 and allowed to dry. Dirty, complex surfaces (10 × 10 cm) swabbed after spore dispersal showed a deposition of 8-10 log10 m(-2) through the entire cargo hold. After hot, humid air decontamination at 75-80°C, 70-90% relative humidity for 7 days, 87 of 98 test swabs covering 0·98 m(2) , showed complete spore inactivation. There was a total of 1·67 log10 live CFU detected in 11 of the test swabs. Spore inactivation in the 98 test swabs was measured at 7·06 log10 m(-2) . CONCLUSIONS Laboratory test methods for hot, humid air decontamination were scaled for a large-scale aircraft field test. The C-130 field test demonstrated that hot, humid air can be successfully used to decontaminate an aircraft. SIGNIFICANCE AND IMPACT OF THE STUDY Transition of a new technology from research and development to acquisition at a Technology Readiness Level 7 is unprecedented.
Collapse
Affiliation(s)
- T L Buhr
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - A A Young
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - M Bensman
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - Z A Minter
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - N L Kennihan
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - C A Johnson
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - M D Bohmke
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - E Borgers-Klonkowski
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - E B Osborn
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | - S D Avila
- Naval Surface Warfare Center-Dahlgren Division, CBR Concepts and Experimentation Branch (Z21), Dahlgren, VA, USA
| | | | - P J Jackson
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|