1
|
Atta L, Mushtaq M, Siddiqui AR, Khalid A, Ul-Haq Z. Targeting glucosyltransferases to combat dental caries: Current perspectives and future prospects. Int J Biol Macromol 2024; 278:134645. [PMID: 39128764 DOI: 10.1016/j.ijbiomac.2024.134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The emergence of antimicrobial resistance within bacterial communities poses formidable challenges to existing therapeutic strategies aimed at mitigating biofilm-mediated infections. Recent advancements in this domain have spurred the development of targeted antimicrobial agents, designed to selectively eradicate the primary etiological agents while preserving the beneficial microbial diversity of the oral cavity. Targeting glucosyltransferases (GTFs), which play crucial roles in dental biofilm formation, offers a precise strategy to inhibit extracellular polysaccharide synthesis without compromising oral microbiota. This review article delves into the intricate mechanisms underlying dental caries, with a specific focus on the role of GTFs, enzymes produced by S. mutans. It further provides an overview of current research on GTF inhibitors, exploring their mechanisms of action, efficacy, and potential applications in clinical practice. Furthermore, it discusses the challenges and opportunities in the development of novel GTF inhibitors, emphasizing the need for innovative approaches to combat biofilm-mediated oral diseases effectively.
Collapse
Affiliation(s)
- Lubna Atta
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ali Raza Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Assad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Zhu Y, Wang Y, Zhang S, Li J, Li X, Ying Y, Yuan J, Chen K, Deng S, Wang Q. Association of polymicrobial interactions with dental caries development and prevention. Front Microbiol 2023; 14:1162380. [PMID: 37275173 PMCID: PMC10232826 DOI: 10.3389/fmicb.2023.1162380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Dental caries is a common oral disease. In many cases, disruption of the ecological balance of the oral cavity can result in the occurrence of dental caries. There are many cariogenic microbiota and factors, and their identification allows us to take corresponding prevention and control measures. With the development of microbiology, the caries-causing bacteria have evolved from the traditional single Streptococcus mutans to the discovery of oral symbiotic bacteria. Thus it is necessary to systematically organized the association of polymicrobial interactions with dental caries development. In terms of ecology, caries occurs due to an ecological imbalance of the microbiota, caused by the growth and reproduction of cariogenic microbiota due to external factors or the disruption of homeostasis by one's own factors. To reduce the occurrence of dental caries effectively, and considering the latest scientific viewpoints, caries may be viewed from the perspective of ecology, and preventive measures can be taken; hence, this article systematically summarizes the prevention and treatment of dental caries from the aspects of ecological perspectives, in particular the ecological biofilm formation, bacterial quorum sensing, the main cariogenic microbiota, and preventive measures.
Collapse
Affiliation(s)
- Yimei Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Shuyang Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xin Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuanyuan Ying
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jinna Yuan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Gu M, Cheng J, Lee YG, Cho JH, Suh JW. Discovery of Novel Iminosugar Compounds Produced by Lactobacillus paragasseri MJM60645 and Their Anti-Biofilm Activity against Streptococcus mutans. Microbiol Spectr 2022; 10:e0112222. [PMID: 35863019 PMCID: PMC9431463 DOI: 10.1128/spectrum.01122-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
The oral cavity contains a number of microbes. They interact with each other and play an important role in human health. Among oral cariogenic microbes, Streptococcus mutans is recognized a major etiological bacteria of dental caries. Lactobacilli strains have been promoted as possible probiotic agents against S. mutans. However, their inhibitory mechanism has not been well elucidated yet. In the present study, two new compounds with strong antibiofilm activities were purified from the culture supernatant of Lactobacillus paragasseri MJM60645, which was isolated from the human oral cavity. These compounds showed strong inhibitory activities against S. mutans biofilm formation, with IC50 (concentration at which 50% biofilm was inhibited) of 30.4 μM for compound 1 and 18.9 μM for compound 2. However, these compounds did not show bactericidal activities against S. mutans. Structure elucidation by nuclear magnetic resonance (NMR) and mass spectrometry showed that compound 1 was composed of two arabinofuranose iminosugars jointed with one glycerol and oleic acid, and compound 2 was composed of two arabinofuranose iminosugars jointed with one glycerol and nervonic acid. To the best of our knowledge, these structures were discovered for the first time in this study. Treatment of S. mutans with compound 1 strongly downregulated expression levels of genes related to biofilm formation, including gtfB, gtfC, gtfD, gbpB, brpA, spaP, ftf, and smu0630 without affecting the expression of comDE or relA. This study provides new insights into novel molecules produced by Lactobacillus to regulate the pathogenesis of S. mutans, facilitating a better understanding of the mechanism for interactions between Lactobacillus and S. mutans. IMPORTANCE In this study, we isolated lactic acid bacteria that inhibit streptococcal biofilm from the oral cavity of infants and identified two novel compounds from the supernatant of their culture broth. The two compounds are structurally similar, and both consist of iminosugars, glycerol, and unsaturated fatty acid. A search of the SciFinder database revealed that these structures are novel and were discovered for the first time in this study. Mechanism studies have shown that these compounds can inhibit the expression of biofilm synthesis-related genes. This is the first report that lactic acid bacteria inhibit streptococcal biofilms by small molecules with new chemical structures. This study not only expands the understanding of natural products derived from lactic acid bacteria but also provides a new paradigm for the understanding of the interaction of bacteria in the oral microbiota.
Collapse
Affiliation(s)
- Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Republic of Korea
| | - Jinhua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
4
|
Pan T, Liu FS, Lin H, Zhou Y. Anti-biofilm studies of synthetic imidazolium salts on dental biofilm in vitro. J Oral Microbiol 2022; 14:2075309. [PMID: 35600163 PMCID: PMC9116249 DOI: 10.1080/20002297.2022.2075309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Biofilm formation under cariogenic conditions contributes to dental caries development, in which Streptococcus mutans (S. mutans) is regarded as the major cariogenic bacteria. Here, we synthesized a series of imidazolium salts. Their properties of antimicrobial and anti-biofilm were investigated. Methods The microdilution method crystal violet staining, and cell counting Kit-8 assay were used to screen imidazolium salts. Then, the bacterial composition in multi-species biofilm composed of S. mutans, Actinomyces naeslundii, and Streptococcus gordonii was quantified by quantitative PCR. The exopolysaccharide and morphology of the structure of multi-species biofilm were further observed by confocal laser scanning microscopy and scanning electron microscope, respectively. Results Imidazolium salts exhibited highly antimicrobial activity against oral pathogens, especially for S. mutans . Compounds with ortho-diisopropyl and para-methoxyl on N-moieties as well as bearing ancenaphthyl skeleton (C5) showed the lowest cytotoxicity and most efficient anti-biofilm activity. C5 inhibited approximately 50% of multi-species biofilm at 0.98 μg/mL. Notably, C5 resulted in 98.97% live S. mutans and 77.65% A. naeslundii decreased. Furthermore, the exopolysaccharide was reduced by 88%, along with a sparse and scattered microstructure. Conclusion The imidazolium salts present low cytotoxicity and remarkable antimicrobial activity against S. mutans in multi-species biofilm, suggesting that they may have a great potential in anti-biofilm clinical applications.
Collapse
Affiliation(s)
- Ting Pan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory for Dental Disease Prevention and Control, Sun Yat-sen University, Guangzhou, China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Huancai Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory for Dental Disease Prevention and Control, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory for Dental Disease Prevention and Control, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Development of small molecules that work cooperatively with ciprofloxacin to clear salmonella biofilms in a chronic gallbladder carriage model. Eur J Med Chem 2022; 232:114203. [PMID: 35219950 PMCID: PMC8930541 DOI: 10.1016/j.ejmech.2022.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
Abstract
Salmonella enterica serovars cause millions of infections each year that result either in typhoid fever or salmonellosis. Among those serovars that cause typhoid fever, Salmonella enterica subspecies Typhi can form biofilms on gallstones in the gallbladders of acutely-infected patients, leading to chronic carriage of the bacterium. These biofilms are recalcitrant to antibiotic-mediated eradication, leading to chronic fecal shedding of the bacteria, which results in further disease transmission. Herein, we report the synthesis and anti-biofilm activity of a 55-member library of small molecules based upon a previously identified hit that both inhibits and disrupts S. Typhi and S. Typhimurium (a nontyphoidal model serovar for S. Typhi) biofilms. Lead compounds inhibit S. Typhimurium biofilm formation in vitro at sub-micromolar concentrations, and disperse biofilms with five-fold greater potentency than the parent compound. Three of the most promising compounds demonstrated synergy with ciprofloxacin in a murine model of chronic Salmonella carriage. This work furthers the development of effective anti-biofilm agents as a promising therapeutic avenue for the eradication of typhoidal Salmonella.
Collapse
|
6
|
Rajasekhar S, Karuppasamy R, Chanda K. Exploration of potential inhibitors for tuberculosis via structure-based drug design, molecular docking, and molecular dynamics simulation studies. J Comput Chem 2021; 42:1736-1749. [PMID: 34216033 DOI: 10.1002/jcc.26712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance in tuberculosis is major threat to human population. In the present investigation, we aimed to identify novel and potent benzimidazole molecules to overcome the resistance management. A series of 20 benzimidazole derivatives were examined for its activity as selective antitubercular agents. Initially, AutodockVina algorithm was performed to assess the efficacy of the molecules. The results are further enriched by redocking by means of Glide algorithm. The binding free energies of the compounds were then calculated by MM-generalized-born surface area method. Molecular docking studies elucidated that benzimidazole derivatives has revealed formation of hydrogen bond and strong binding affinity in the active site of Mycobacterium tuberculosis protein. Note that ARG308, GLY189, VAL312, LEU403, and LEU190 amino acid residues of Mycobacterium tuberculosis protein PrpR are involved in binding with ligands of benzimidazoles. Interestingly, the ligands exhibited same binding potential to the active site of protein complex PrpR in both the docking programs. In essence, the result portrays that benzimidazole derivatives such as 1p, 1q, and 1 t could be potent and selective antitubercular agents than the standard drug isoniazid. These compounds were then subjected to molecular dynamics simulation to validate the dynamics activity of the compounds against PrpR. Finally, the inhibitory behavior of compounds was predicted using a machine learning algorithm trained on a data collection of 15,000 compounds utilizing graph-based signatures. Overall, the study concludes that designed benzimidazoles can be employed as antitubercular agents. Indeed, the results are helpful for the experimental biologists to develop safe and non-toxic drugs against tuberculosis.
Collapse
Affiliation(s)
- Sreerama Rajasekhar
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
7
|
Lin Y, Chen J, Zhou X, Li Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol 2021; 47:667-677. [PMID: 33938347 DOI: 10.1080/1040841x.2021.1915959] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dental caries is one of the most prevalent and costly biofilm-associated infectious diseases affecting most of the world's population. In particular, dental caries is driven by dysbiosis of the dental biofilm adherent to the enamel surface. Specific types of acid-producing bacteria, especially Streptococcus mutans, colonize the dental surface and cause damage to the hard tooth structure in the presence of fermentable carbohydrates. Streptococcus mutans has been established as the major cariogenic pathogen responsible for human dental caries, with a high ability to form biofilms. The exopolysaccharide (EPS) matrix, mainly contributed by S. mutans, has been considered as a virulence determinant of cariogenic biofilm. As EPS is an important virulence factor, targeting EPS metabolism could be useful in preventing cariogenic biofilm formation. This review summarizes plausible strategies targeting S. mutans biofilms by degrading EPS structure, inhibiting EPS production, and disturbing the EPS metabolism-related gene expression and regulatory systems.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhu Y, Yan J, Mujtaba BM, Li Y, Wei H, Huang S. The dual anti-caries effect of carboxymethyl chitosan nanogel loaded with chimeric lysin ClyR and amorphous calcium phosphate. Eur J Oral Sci 2021; 129:e12784. [PMID: 33786916 DOI: 10.1111/eos.12784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/09/2023]
Abstract
In this study, we evaluated the anti-biofilm and anti-demineralization abilities of a novel material, CMC-ClyR-ACP nanogel, designed by loading the chimeric lysin ClyR and amorphous calcium phosphate (ACP) into a nanocarrier material carboxymethyl chitosan (CMC), in a demineralization model. Dynamic light scattering, transmission electron microscopy, and Fourier transmission infrared spectroscopy showed that CMC-ClyR-ACP nanogel was synthesized successfully. Enamel samples prepared from premolars were divided into five groups according to their treatments with: (i) double distilled water ddH2 O, (ii) CMC-ACP, (iii) CMC-ClyR-ACP, (iv) ClyR, or (v) 0.12% chlorhexidine. Streptococcus mutans was allowed to form biofilms on the teeth for two days before treatment procedures were carried out from day 3 to day 6. The relative biofilm viability analyzed by Cell Counting Kit-8 showed that it was significantly lower (at 55.7%) for CMC-ClyR-ACP than seen for ddH2 O (89.9%), which was consistent with result of confocal laser scanning microscopy. The percentage surface hardness loss of CMC-ClyR-ACP (29.2%) was significantly lower than that of CMC-ACP (51.0%) and ClyR (58.7%) alone, and there was no significant difference between CMC-ClyR-ACP and chlorhexidine (26.9%), which was confirmed by scanning electron microscopy. Therefore, CMC-ClyR-ACP nanogel may be an effective strategy for the control of enamel demineralization.
Collapse
Affiliation(s)
- Yun Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiarong Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Babar Muhammad Mujtaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shengfu Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhang J, Kuang X, Zhou Y, Yang R, Zhou X, Peng X, Luo Y, Xu X. Antimicrobial activities of a small molecule compound II-6s against oral streptococci. J Oral Microbiol 2021; 13:1909917. [PMID: 33854741 PMCID: PMC8018465 DOI: 10.1080/20002297.2021.1909917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: The side effects of present antimicrobials like chlorhexidine (CHX) and the emergence of drug resistance necessitate the development of alternative agents to control dental caries. Aim: This study developed a novel small molecule, namely II-6s, and investigated its antimicrobial activities against common oral streptococci associated with dental caries. Methods: The susceptibility of streptococci to II-6s was evaluated by the microdilution method, time-kill assay and scanning electron microscopy. The exopolysaccharides, dead/live bacteria and bacterial composition of the II-6s-treated Streptococcus mutans/Streptococcus gordonii/Streptococcus sanguinis 3-species biofilms were analyzed by confocal laser scanning microscopy, fluorescent in situ hybridization and quantitative PCR. The anti-demineralization effect and cytotoxicity of II-6s were evaluated by transverse microradiography and CCK-8 assay, respectively. Repeated exposure of S. mutans to II-6s was performed to assess if II-6s could induce drug resistance. Results: II-6s exhibited antimicrobial activity similar to CHX against S. mutans, S. gordonii and S. sanguinis and significantly inhibited exopolysaccharides production, live bacteria and the demineralizing capability of the 3-species streptococcal biofilms. Besides, II-6s showed reduced cytotoxicity relative to CHX and did not induce drug resistance in S. mutans after 15 passages. Conclusion: - II-6s may serve as a promising part of a successful caries management plan.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanzheng Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Yang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Sandala JL, Eichar BW, Kuo LG, Hahn MM, Basak AK, Huggins WM, Woolard K, Melander C, Gunn JS. A dual-therapy approach for the treatment of biofilm-mediated Salmonella gallbladder carriage. PLoS Pathog 2020; 16:e1009192. [PMID: 33370414 PMCID: PMC7793255 DOI: 10.1371/journal.ppat.1009192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/08/2021] [Accepted: 11/29/2020] [Indexed: 01/12/2023] Open
Abstract
Asymptomatic carriage of Salmonella Typhi continues to facilitate the transmission of typhoid fever, resulting in 14 million new infections and 136,000 fatalities each year. Asymptomatic chronic carriage of S. Typhi is facilitated by the formation of biofilms on gallstones that protect the bacteria from environmental insults and immune system clearance. Here, we identified two unique small molecules capable of both inhibiting Salmonella biofilm growth and disrupting pre-formed biofilm structures without affecting bacterial viability. In a mouse model of chronic gallbladder Salmonella carriage, treatment with either compound reduced bacterial burden in the gallbladder by 1–2 logs resulting in bacterial dissemination to peripheral organs that was associated with increased mortality. Co-administration of either compound with ciprofloxacin not only enhanced compound efficacy in the gallbladder by a further 1–1.5 logs for a total of 3–4.5 log reduction, but also prevented bacterial dissemination to peripheral organs. These data suggest a dual-therapy approach targeting both biofilm and planktonic populations can be further developed as a safe and efficient treatment of biofilm-mediated chronic S. Typhi infections. Typhoid fever is an infectious disease caused by Salmonella Typhi (S. Typhi), a bacterium that causes as many as 14 million new infections and 136,000 deaths annually. Asymptomatic chronic carriers of S. Typhi play a major role in the transmission of typhoid fever, as they intermittently shed the bacteria and can unknowingly infect surrounding individuals. Here, we characterized novel compounds that target biofilm formation, a process utilized by S. Typhi to establish and maintain chronic carriage in the gallbladder, in hopes that they may be eventually used in conjunction with traditional antibiotics to prevent and/or cure chronic infections more efficiently than antibiotics alone.
Collapse
Affiliation(s)
- Jenna L. Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Bradley W. Eichar
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Laura G. Kuo
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Mark M. Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Akash K. Basak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - William M. Huggins
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Katherine Woolard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Seneviratne CJ, Suriyanarayanan T, Widyarman AS, Lee LS, Lau M, Ching J, Delaney C, Ramage G. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit Rev Microbiol 2020; 46:759-778. [PMID: 33030973 DOI: 10.1080/1040841x.2020.1828817] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of omics technologies has greatly improved our understanding of microbial biology, particularly in the last two decades. The field of microbial biofilms is, however, relatively new, consolidated in the 1980s. The morphogenic switching by microbes from planktonic to biofilm phenotype confers numerous survival advantages such as resistance to desiccation, antibiotics, biocides, ultraviolet radiation, and host immune responses, thereby complicating treatment strategies for pathogenic microorganisms. Hence, understanding the mechanisms governing the biofilm phenotype can result in efficient treatment strategies directed specifically against molecular markers mediating this process. The application of omics technologies for studying microbial biofilms is relatively less explored and holds great promise in furthering our understanding of biofilm biology. In this review, we provide an overview of the application of omics tools such as transcriptomics, proteomics, and metabolomics as well as multi-omics approaches for studying microbial biofilms in the current literature. We also highlight how the use of omics tools directed at various stages of the biological information flow, from genes to metabolites, can be integrated via multi-omics platforms to provide a holistic view of biofilm biology. Following this, we propose a future artificial intelligence-based multi-omics platform that can predict the pathways associated with different biofilm phenotypes.
Collapse
Affiliation(s)
- Chaminda J Seneviratne
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Tanujaa Suriyanarayanan
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Grogol, West Jakarta, Indonesia
| | - Lye Siang Lee
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Matthew Lau
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Christopher Delaney
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol 2019; 34:169-182. [PMID: 31389653 PMCID: PMC6772003 DOI: 10.1111/omi.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.
Collapse
Affiliation(s)
- Maryta N. Sztukowska
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Mohammad Roky
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| |
Collapse
|
13
|
Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol 2019; 9:74. [PMID: 31001485 PMCID: PMC6454102 DOI: 10.3389/fcimb.2019.00074] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance constitutes one of the major challenges facing humanity in the Twenty-First century. The spread of resistant pathogens has been such that the possibility of returning to a pre-antibiotic era is real. In this scenario, innovative therapeutic strategies must be employed to restrict resistance. Among the innovative proposed strategies, anti-virulence therapy has been envisioned as a promising alternative for effective control of the emergence and spread of resistant pathogens. This review presents some of the anti-virulence strategies that are currently being developed, it will cover strategies focused on quench pathogen quorum sensing (QS) systems, disassemble of bacterial functional membrane microdomains (FMMs), disruption of biofilm formation and bacterial toxin neutralization.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Marlon Henrique Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Suzana Meira Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
14
|
Cao X, Ye Q, Fan M, Liu C. Antimicrobial effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms. J Appl Microbiol 2019; 126:740-751. [PMID: 30556937 DOI: 10.1111/jam.14178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/01/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the effects of the ginsenoside Rh2 on monospecies and multispecies cariogenic biofilms and explore the mechanism of the antibiofilm effect of Rh2 in vitro. METHODS AND RESULTS Streptococcus mutans, Streptococcus sobrinus and Streptococcus sanguinis were chosen to form the monospecies or multispecies biofilms. Crystal violet staining and laser scanning confocal microscopy were used to observe the effect of Rh2 on biofilms in vitro. Cytotoxicity was examined by the Cell Counting Kit-8. The effects of Rh2 on bacterial membranes were observed via transmission electron microscopy (TEM). The isobaric tags for relative and absolute quantification (iTRAQ) method were used to profile the common differentially expressed proteins. Gene expression was analysed by reverse transcription quantitative polymerase chain reaction. In general, the treatment of cariogenic biofilms with Rh2 significantly decreased biomass accumulation by inhibiting bacterial growth and extracellular polysaccharide synthesis without any cytotoxic effects. TEM imaging showed that Rh2 could disrupt the cell membranes of these bacteria. The iTRAQ results indicated that the levels of mannose-specific IIC/D and acetaldehyde/alcohol dehydrogenase were substantially down-regulated, while the mRNA expression of the corresponding genes were significantly changed. CONCLUSIONS Our data revealed a potential application for Rh2 in the protection against dental caries via the inhibition of cariogenic biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This study describes the first application of a ginsenoside against multispecies cariogenic biofilms. Rh2 may serve as an alternative agent to prevent dental caries by effectively modulating the pathogenic potentials of oral biofilms.
Collapse
Affiliation(s)
- X Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q Ye
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - M Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Bistrović A, Krstulović L, Stolić I, Drenjančević D, Talapko J, Taylor MC, Kelly JM, Bajić M, Raić-Malić S. Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. J Enzyme Inhib Med Chem 2018; 33:1323-1334. [PMID: 30165753 PMCID: PMC6127852 DOI: 10.1080/14756366.2018.1484733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 02/09/2023] Open
Abstract
Amidinobenzimidazole derivatives connected to 1-aryl-substituted 1,2,3-triazole through phenoxymethylene linkers 7a-7e, 8a-8e, and 9a-9e were designed and synthesised with the aim of evaluating their anti-bacterial and anti-trypanosomal activities and DNA/RNA binding affinity. Results from anti-bacterial evaluations of antibiotic-resistant pathogenic bacteria revealed that both o-chlorophenyl-1,2,3-triazole and N-isopropylamidine moieties in 8c led to strong inhibitory activity against resistant Gram-positive bacteria, particularly the MRSA strain. Furthermore, the non-substituted amidine and phenyl ring in 7a induced a marked anti-bacterial effect, with potency against ESBL-producing Gram-negative E. coli better than those of the antibiotics ceftazidime and ciprofloxacin. UV-Vis and CD spectroscopy, as well as thermal denaturation assays, indicated that compounds 7a and 8c showed also binding affinities towards ctDNA. Anti-trypanosomal evaluations showed that the p-methoxyphenyl-1,2,3-triazole moiety in 7b and 9b enhanced inhibitory activity against T. brucei, with 8b being more potent than nifurtimox, and having minimal toxicity towards mammalian cells.
Collapse
Affiliation(s)
- Andrea Bistrović
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Stolić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drenjančević
- Department of Transfusion Medicine, Osijek University Hospital, Osijek, Croatia
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Jasminka Talapko
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martin C. Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M. Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Rivera-Pérez WA, Yépes-Pérez AF, Martínez-Pabón MC. Molecular docking and in silico studies of the physicochemical properties of potential inhibitors for the phosphotransferase system of Streptococcus mutans. Arch Oral Biol 2018; 98:164-175. [PMID: 30500666 DOI: 10.1016/j.archoralbio.2018.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/27/2022]
Abstract
This study identified potential inhibitory compounds of the phosphoenolpyruvate-sugar. Phosphotransferase system of S. mutans, specifically enzyme II mannose transporter (EIIMan) in its subunits IIA, IIB and IIC by means of a selection protocol and in silico molecular analysis. Intervening the phosphotransferase system would compromise the physiological behavior and the pathogenic expression of S. mutans, and possibly other acidogenic bacteria that use phosphotransferases in their metabolism-making the phosphotransferase system a therapeutic target for the selective control of acidogenic microorganisms in caries control. Several computational techniques were used to evaluate molecular, physicochemical, and toxicological aspects of various compounds. Molecular docking was used to calculate the binding potential (ΔG) between receptor protein subunits and more than 836,000 different chemical compounds from the ZINC database. Physicochemical parameters related to the compounds' pharmacokinetic and pharmacodynamic indicators were evaluated, including absorption, distribution, metabolism, excretion, and toxicity (ADMET), and chemical analysis characterized the compounds structures. Thirteen compounds with EII binding potential of the phosphotransferase system of S. mutans and favorable ADMET properties were identified. Six spirooxindoles and three pyrrolidones stand out from the found compounds; unique structural characteristics of spirooxindoles and pyrrolidones associated with various reported biological activities like anti-microbial, antiinflammatory, anticancer, nootropic, neuroprotective and antiepileptic effects, among other pharmacological effects with surprising differences in terms of mechanisms of action. Following studies will provide more evidence of the action of these compounds on the phosphotransferase system of S. mutans, and its possible applications.
Collapse
Affiliation(s)
- Wbeimar Andrey Rivera-Pérez
- Faculty of Dentistry, University of Antioquia- UdeA, 64 Street No. 52-59, Block 31, Oral Microbiology Laboratory No. 216, Health Area, Medellin, Colombia.
| | - Andrés Felipe Yépes-Pérez
- Exact and Natural Sciences School, University of Antioquia-UdeA, Universidad de Antioquia. 67 street No. 53-108, Block 2, Chemistry of Colombian, Plants Laboratory, Office 330, Medellin, Colombia.
| | - Maria Cecilia Martínez-Pabón
- Faculty of Dentistry, University of Antioquia- UdeA, 64 Street No. 52-59, Block 31, Oral Microbiology Laboratory No. 216, Health Area, Medellin, Colombia.
| |
Collapse
|
17
|
Xu J, Yang H, Bi Y, Li W, Wei H, Li Y. Activity of the Chimeric Lysin ClyR against Common Gram-Positive Oral Microbes and Its Anticaries Efficacy in Rat Models. Viruses 2018; 10:v10070380. [PMID: 30036941 PMCID: PMC6070986 DOI: 10.3390/v10070380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Dental caries is a common disease caused by oral bacteria. Streptococcus mutans and Streptococcus sobrinus are the primary cariogenic microbes that often survive as biofilms on teeth. In this study, we evaluated the activity of ClyR, a well-known chimeric lysin with extended streptococcal host range, against common Gram-positive oral microbes and its anticaries efficacy in rat models. ClyR demonstrated high lytic activity against S. mutans MT8148 and S. sobrinus ATCC6715, with minor activity against Streptococcus sanguinis, Streptococcus oralis, and Streptococcus salivarius, which are considered as harmless commensal oral bacteria. Confocal laser scanning microscopy showed that the number of viable cells in 72-h aged S. mutans and S. sobrinus biofilms are significantly (p < 0.05) decreased after treatment with 50 µg/mL ClyR for 5 min. Furthermore, continuous administration of ClyR for 40 days (5 µg/day) significantly (p < 0.05) reduced the severity of caries in rat models infected with a single or a mixed bacteria of S. mutans and S. sobrinus. Therefore, ClyR could be a promising agent or additive for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Jingjing Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongli Bi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Wuyou Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
18
|
A Drug Repositioning Approach Reveals that Streptococcus mutans Is Susceptible to a Diverse Range of Established Antimicrobials and Nonantibiotics. Antimicrob Agents Chemother 2017; 62:AAC.01674-17. [PMID: 29061736 DOI: 10.1128/aac.01674-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/07/2017] [Indexed: 02/06/2023] Open
Abstract
Streptococcus mutans is the primary causative agent of dental caries and contributes to the multispecies biofilm known as dental plaque. An adenylate kinase-based assay was optimized for S. mutans to detect cell lysis when exposed to the Selleck library (Selleck Chemical, Houston, TX) of 853 FDA-approved drugs in, to our knowledge, the first high-throughput drug screen in S. mutans We found 126 drugs with activity against S. mutans planktonic cultures, and they were classified into six categories: antibacterials (61), antineoplastics (23), ion channel effectors (9), other antimicrobials (7), antifungals (6), and other (20). These drugs were also tested for activity against S. mutans biofilm cultures, and 24 compounds were found to inhibit biofilm formation, 6 killed preexisting biofilms, 84 exhibited biofilm inhibition and killing activity, and 12 had no activity against biofilms. The activities of 9 selected compounds that exhibited antimicrobial activity were further characterized for their activity against S. mutans planktonic and biofilm cultures. Together, our results suggest that S. mutans exhibits a susceptibility profile to a diverse array of established and novel antibacterials.
Collapse
|