1
|
Bhatt A, Sahu N, Dada AC, Kumar Prajapati S, Arora P. Assessing sustainability of microalgae-based wastewater treatment: Environmental considerations and impacts on human health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120435. [PMID: 38402790 DOI: 10.1016/j.jenvman.2024.120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
An integrated life cycle assessment (LCA) and quantitative microbial risk assessment (QMRA) were conducted to assess microalgae-mediated wastewater disinfection (M-WWD). M-WWD was achieved by replacing ultraviolet disinfection with a microalgal open raceway pond in an existing sewage treatment plant (STP) in India. Regarding impacts on human health, both M-WWD and STP yielded comparable life cycle impacts, around 0.01 disability-adjusted life years (DALYs) per person per year. However, QMRA impacts for M-WWD (0.053 DALYs per person per year) were slightly lower than that for STP while considering exposure to E. coli O157:H7 and adenovirus. Additionally, a comparative LCA resolved the dilemma about the appropriate utilization of microalgal biomass. Among biodiesel, biocrude, and biogas production, the lowest impacts of 0.015 DALYs per person per year were obtained for biocrude for 1 m3 water treated by M-WWD. Electricity consumption in microalgae cultivation was a major environmental hotspot. Overall, M-WWD, followed by production of microalgal biocrude, emerged as a sustainable alternative from environmental and public health perspectives. These findings set the foundation for pilot-scale M-WWD system development, testing, and economic evaluation. Such comprehensive investigations, encompassing LCA, QMRA, and resource recovery scenarios, offer crucial insights for stakeholders and decision-makers in wastewater treatment and environmental management.
Collapse
Affiliation(s)
- Ankita Bhatt
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nitin Sahu
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | | | - Sanjeev Kumar Prajapati
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
2
|
Butterworth S, Fallowfield H. Comparison of the wastewater treatment performance of continuously and discontinuously mixed high-rate algal ponds at Kingston on Murray. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:505-512. [PMID: 38358485 PMCID: wst_2024_020 DOI: 10.2166/wst.2024.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
High-rate algal ponds (HRAPs) incorporate shallow raceway designs and paddlewheel mixing. HRAPs use UV disinfection and the symbiotic environment between microalgal photosynthesis and heterotrophic bacteria for the assimilation of nutrients for efficient wastewater treatment. Mixing of a HRAP provides a homogenous environment and influences both the disinfection of pathogens and algal growth by exposing the wastewater to sunlight. Guidelines require continuous mixing of the HRAP. This study aimed to determine the effect of cessation of mixing for 10 days, on wastewater treatment by comparison with a continuously mixed pond operated over the same period. The period of 10 days was equivalent to the HRAP hydraulic retention time. Samples of inlet and HRAP-treated wastewater were collected from the HRAP at Kingston on Murray. Parameters measured were Escherichia coli, chlorophyll a, total suspended solids (TSS), NH4-N, NO2-N, NO3-N, PO4-P and biochemical oxygen demand (BOD5). The discontinuously mixed and the continuously mixed HRAPs complied with the wastewater effluent guidelines, of an E. coli concentration ≤104 MPN100 mL-1 and a BOD5 of <20 mg L-1. An E. coli log reduction value of >1 was also recorded. This study shows that cessation of mixing for 10 days had no significant effect on HRAP wastewater treatment performance.
Collapse
Affiliation(s)
- Sam Butterworth
- Health and Environment Group, College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia E-mail:
| | - Howard Fallowfield
- Health and Environment Group, College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
3
|
Torres-Franco AF, Leroy-Freitas D, Martinez-Fraile C, Rodríguez E, García-Encina PA, Muñoz R. Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems. WATER RESEARCH 2024; 248:120834. [PMID: 37984037 DOI: 10.1016/j.watres.2023.120834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Anaerobic and microalgae-based technologies for municipal wastewater treatment have emerged as sustainable alternatives to activated sludge systems. However, viruses are a major sanitary concern for reuse applications of liquid and solid byproducts from these technologies. To assess their capacity to reduce viruses during secondary wastewater treatment, enveloped Phi6 and nonenveloped MS2 bacteriophages, typically used as surrogates of several types of wastewater viruses, were spiked into batch bioreactors treating synthetic municipal wastewater (SMWW). The decay of Phi6 and MS2 in anaerobic and microalgae-based reactors was compared with the decay in activated sludge batch reactors for 96 h (Phi6) and 144 h (MS2). In each reactor, bacteriophages in the soluble and solids fractions were titered, allowing the assessment of virus partitioning to biomass over time. Moreover, the influence of abiotic conditions such as agitation, oxygen absence and light excess in activated sludge, anaerobic and microalgae reactors, respectively, was assessed using dedicated SMWW control reactors. All technologies showed Phi6 and MS2 reductions. Phi6 was reduced in at least 4.7 to 6.5 log10 units, with 0 h concentrations ranging from 5.0 to 6.5 log10 PFU mL-1. Similarly, reductions achieved for MS2 were of at least 3.9 to 7.2 log10 units, from starting concentrations of 8.0 to 8.6 log10 PFU mL-1. Log-logistic models adjusted to bacteriophages' decay indicated T90 values in activated sludge and microalgae reactors of 2.2 and 7.9 h for Phi6 and of 1.0 and 11.5 h for MS2, respectively, all within typical hydraulic retention times (HRT) of full-scale operation. In the case of the microalgae technology, T99 values for Phi6 and MS2 of 12.7 h and 13.6 h were also lower than typical operating HRTs (2-10 d), while activated sludge and anaerobic treatment achieved less than 99 % of Phi6 and 50 % of MS2 inactivation within 12 h of typical HRT, respectively. Thus, the microalgae-based treatment exhibited a higher potential to reduce the disinfection requirements of treated wastewater.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Cristina Martinez-Fraile
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Elisa Rodríguez
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
Farias SL, Ruas G, Serejo ML, Boncz MÁ. Evaluation of the effect of the feeding regime on the removal of metals and pathogens in microalgae-bacterial systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:11-22. [PMID: 37452530 PMCID: wst_2023_194 DOI: 10.2166/wst.2023.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Microalgae-bacteria systems are used for the treatment of effluents, using a technology that has stood out with excellent results, as reported in the literature. However, investigating these systems in more depth can improve our understanding of the removal mechanisms for a wide range of existing and emerging pollutants and help improve the guidelines for design and operation, in order to improve the treatment efficiency as well as biomass productivity. This work studied the impact of the feeding regime on the removal of metals and pathogens from primary domestic wastewater in high rate algal ponds (HRAPs). For this, one reactor was fed continuously (HRAP1) while two reactors were fed in semi-continuous mode, during 12 h day-1 (HRAP2) and 0.1 h day-1 (HRAP3). Although removal efficiencies of 82 ± 5% for Mn and 90% for E. coli were reached in the semi-continuously fed reactors, there was no significant difference between the conditions studied. On the other hand, for biomass productivity, the semi-continuous feeding regime was more advantageous with a growth of ≈ 22 mg L-1 day-1.
Collapse
Affiliation(s)
- Sarah Lacerda Farias
- Post-graduate Programme of Environmental Technology (PGTA), Faculty of Engineering, Architecture and Urbanism, and Geography, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS 79070-900, Brazil E-mail:
| | - Graziele Ruas
- School of Engineering, São Paulo State University (UNESP), Bauru, SP 17000-000, Brazil
| | - Mayara Leite Serejo
- Federal Institute of Mato Grosso do Sul (IFMS), Campus Aquidauana, Aquidauana, MS 79200-000, Brazil
| | - Marc Árpád Boncz
- Post-graduate Programme of Environmental Technology (PGTA), Faculty of Engineering, Architecture and Urbanism, and Geography, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS 79070-900, Brazil
| |
Collapse
|
5
|
Mousazadeh M, Kabdaşlı I, Khademi S, Sandoval MA, Moussavi SP, Malekdar F, Gilhotra V, Hashemi M, Dehghani MH. A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2? JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103077. [PMID: 35990175 PMCID: PMC9381433 DOI: 10.1016/j.jwpe.2022.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, 34469 Maslak, İstanbul, Turkey
| | - Sara Khademi
- Health, Safety, and Environment Specialist, North Drilling Company, Ahvaz, Iran
| | - Miguel Angel Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | - Fatemeh Malekdar
- Department of Foot and Mouth Disease Vaccine Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered 2022; 13:10412-10453. [PMID: 35441582 PMCID: PMC9161886 DOI: 10.1080/21655979.2022.2056823] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
The scarcity of water resources and environmental pollution have highlighted the need for sustainable wastewater treatment. Existing conventional treatment systems are energy-intensive and not always able to meet stringent disposal standards. Recently, algal-bacterial systems have emerged as environmentally friendly sustainable processes for wastewater treatment and resource recovery. The algal-bacterial systems work on the principle of the symbiotic relationship between algae and bacteria. This paper comprehensively discusses the most recent studies on algal-bacterial systems for wastewater treatment, factors affecting the treatment, and aspects of resource recovery from the biomass. The algal-bacterial interaction includes cell-to-cell communication, substrate exchange, and horizontal gene transfer. The quorum sensing (QS) molecules and their effects on algal-bacterial interactions are briefly discussed. The effect of the factors such as pH, temperature, C/N/P ratio, light intensity, and external aeration on the algal-bacterial systems have been discussed. An overview of the modeling aspects of algal-bacterial systems has been provided. The algal-bacterial systems have the potential for removing micropollutants because of the diverse possible interactions between algae-bacteria. The removal mechanisms of micropollutants - sorption, biodegradation, and photodegradation, have been reviewed. The harvesting methods and resource recovery aspects have been presented. The major challenges associated with algal-bacterial systems for real scale implementation and future perspectives have been discussed. Integrating wastewater treatment with the algal biorefinery concept reduces the overall waste component in a wastewater treatment system by converting the biomass into a useful product, resulting in a sustainable system that contributes to the circular bioeconomy.
Collapse
Affiliation(s)
- Raj Kumar Oruganti
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| | - Keerthi Katam
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Malaysia
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid, South Dakota, USA
| | | | - Debraj Bhattacharyya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India
| |
Collapse
|
7
|
Espinosa MF, Verbyla ME, Vassalle L, Leal C, Leroy-Freitas D, Machado E, Fernandes L, Rosa-Machado AT, Calábria J, Chernicharo C, Mota Filho CR. Reduction and liquid-solid partitioning of SARS-CoV-2 and adenovirus throughout the different stages of a pilot-scale wastewater treatment plant. WATER RESEARCH 2022; 212:118069. [PMID: 35077942 PMCID: PMC8759026 DOI: 10.1016/j.watres.2022.118069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 05/04/2023]
Abstract
Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.
Collapse
Affiliation(s)
| | | | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cintia Leal
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Elayne Machado
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luyara Fernandes
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Juliana Calábria
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Carlos Chernicharo
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | |
Collapse
|
8
|
Chambonniere P, Bronlund JE, Guieysse B. Study from microcosms and mesocosms reveals Escherichia coli removal in high rate algae ponds during domestic wastewater treatment is primarily caused by dark decay. PLoS One 2022; 17:e0265576. [PMID: 35298558 PMCID: PMC8929646 DOI: 10.1371/journal.pone.0265576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
While high rate algal ponds (HRAPs) can provide efficient pathogen removal from wastewater, the mechanisms involved remain unclear. To address this knowledge gap, the mechanisms potentially causing Escherichia coli (E. coli) removal during microalgae-based wastewater treatment were successively assessed using laboratory microcosms designed to isolate known mechanisms, and bench scale assays performed in real HRAP broth. During laboratory assays, E. coli decay was only significantly increased by alkaline pH (above temperature-dependent thresholds) due to pH induced toxicity, and direct sunlight exposure via UV-B damage and/or endogenous photo-oxidation. Bench assays confirmed alkaline pH toxicity caused significant decay but sunlight-mediated decay was not significant, likely due to light attenuation in the HRAP broth. Bench assays also evidenced the existence of uncharacterized ‘dark’ decay mechanism(s) not observed in laboratory microcosms. To numerically evaluate the contribution of each mechanism and the uncertainty associated, E. coli decay was modelled assuming dark decay, alkaline pH induced toxicity, and direct sunlight-mediated decay were independent mechanisms. The simulations confirmed E. coli decay was mainly caused by dark decay during bench assays (48.2–89.5% estimated contribution to overall decay at the 95% confidence level), followed by alkaline-pH induced toxicity (8.3–46.5%), and sunlight-mediated decay (0.0–21.9%).
Collapse
Affiliation(s)
- Paul Chambonniere
- Department of Chemical and Bioprocess Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- * E-mail:
| | - John E. Bronlund
- Department of Chemical and Bioprocess Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Benoit Guieysse
- Department of Chemical and Bioprocess Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Pathogens Removal in a Sustainable and Economic High-Rate Algal Pond Wastewater Treatment System. SUSTAINABILITY 2021. [DOI: 10.3390/su132313232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study evaluates the efficiency of a sustainable technology represented in an integrated pilot-scale system, which includes a facultative pond (FP), a high-rate algal pond (HRAP), and a rock filter (RF) for wastewater treatment to produce water that complies with the Egyptian standards for treated wastewater reuse. Still, limited data are available on pathogen removal through HRAP systems. Thus, in this study, the performance of the integrated system was investigated for the removal of Escherichia coli (E. coli), coliform bacteria, eukaryotic pathogens (Cryptosporidium spp., Giardia intestinalis, and helminth ova), somatic coliphages (SOMCPH), and human adenovirus (HAdV). Furthermore, physicochemical parameters were determined in order to evaluate the performance of the integrated system. The principal component analysis and non-metric multidimensional scaling analysis showed a strong significant effect of the integrated system on changing the physicochemical and microbial parameters from inlet to outlet. The mean log10 removal values for total coliform, fecal coliform, and E. coli were 5.67, 5.62, and 5.69, respectively, while 0.88 log10 and 1.65 log10 reductions were observed for HAdV and SOMCPH, respectively. The mean removal of Cryptosporidium spp. and Giardia intestinalis was 0.52 and 2.42 log10, respectively. The integrated system achieved 100% removal of helminth ova. The results demonstrated that the system was able to improve the chemical and microbial characteristics of the outlet to acceptable levels for non-food crops irrigation. Such findings together with low operation and construction costs of HRAPs should facilitate wider implementation of these nature-based systems in remote and rural communities. Overall, this study provides a novel insight into the performance of such systems to eliminate multiple microbial pathogens from wastewater.
Collapse
|
10
|
Autoflocculation of microalgae, via magnesium hydroxide precipitation, in a high rate algal pond treating municipal wastewater in the South Australian Riverland. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Kuzniewski S. Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2. REMEDIATION (NEW YORK, N.Y.) 2021; 31:97-110. [PMID: 34539159 PMCID: PMC8441782 DOI: 10.1002/rem.21691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.
Collapse
|
12
|
Espinosa MF, Verbyla ME, Vassalle L, Rosa-Machado AT, Zhao F, Gaunin A, Mota CR. Reduction and partitioning of viral and bacterial indicators in a UASB reactor followed by high rate algal ponds treating domestic sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144309. [PMID: 33348164 DOI: 10.1016/j.scitotenv.2020.144309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 05/13/2023]
Abstract
Human enteric pathogens are a major global concern, as they are responsible for thousands of preventable deaths every year. New pathogens in wastewater are constantly emerging. For example, SARS-CoV-2 has been recently detected in domestic sewage and primary sludge. Knowledge about the reduction of viruses in wastewater treatment and their partitioning between the treated liquid effluent versus the sludge or biosolids is still very scarce, especially in countries with emerging economies and tropical climates. Upflow anaerobic sludge blanket (UASB) reactors are among the top three most commonly used technologies for the treatment of sewage in Latin America and the Caribbean, and their use has become increasingly common in many other low- and middle-income countries. High-rate algal ponds (HRAP) are regarded as a sustainable technology for the post-treatment of UASB effluent. This study evaluated the overall reduction and the liquid-solid partitioning of somatic coliphages, F-specific coliphages, and E. coli in a pilot-scale system comprised of a UASB reactor followed by HRAPs treating real wastewater. Average log removal for somatic and F-specific coliphages were 0.40 and 0.56 for the UASB reactor, and 1.15 and 1.70 for HRAPs, respectively. The overall removal of both phages in the system was 2.06-log. Removal of E. coli was consistently higher. The number of viruses leaving the system in the UASB solids and algal biomass was less than 10% of the number leaving in the clarified liquid effluent. The number of E. coli leaving the system in solids residuals was estimated to be approximately one order of magnitude higher than the number of E. coli leaving in the liquid effluent. Results from this study demonstrate the suitability of UASB-HRAP systems to reduce viral and bacterial indicators from domestic sewage and the importance of adequately treating sludge for pathogen reduction before they are used as biosolids.
Collapse
Affiliation(s)
| | - Matthew E Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Fei Zhao
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Anaïs Gaunin
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - César Rossas Mota
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
13
|
Lahrich S, Laghrib F, Farahi A, Bakasse M, Saqrane S, El Mhammedi MA. Review on the contamination of wastewater by COVID-19 virus: Impact and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142325. [PMID: 33182015 PMCID: PMC7481832 DOI: 10.1016/j.scitotenv.2020.142325] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 04/14/2023]
Abstract
Emerging viruses are a major public health problem. Most zoonotic pathogens originate in wildlife, including human immunodeficiency virus (HIV), influenza, Ebola, and coronavirus. Severe acute respiratory syndrome (SARS) is a viral respiratory illness caused by a coronavirus called SARS-associated coronavirus (SARS-CoV). Viruses are charged colloidal particles that have the ability to adsorb on surfaces depending on pH. Their sorptive interaction with solid particles has important implications for their behavior in aquatic environments, soils, sewage sludge, and other solid materials and their removal or concentration by water treatment processes. Current state of knowledge on the potential of wastewater surveillance to understand the COVID-19 pandemic is reviewed. This study also identified wastewater irrigation systems with a higher risk of COVID-19 transmission. Emphasis was placed on methodologies for the detection and quantification of SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Cité Dakhla, Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco.
| |
Collapse
|
14
|
Conventional vs. algal wastewater technologies: Reclamation of microbially safe water for agricultural reuse. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Hisee AR, Hisee M, McKerral JC, Rosenbauer SR, Paterson JS, Mitchell JG, Fallowfield HJ. Changes of viral and prokaryote abundances in a high rate algal pond using flow cytometry detection. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1062-1069. [PMID: 33055396 DOI: 10.2166/wst.2020.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High rate algal ponds (HRAPs) are shallow, mixed systems for wastewater treatment, which use sunlight exposure for disinfection. Little is known regarding the relationships between the bacteria and viruses within HRAP systems. Uniquely, flow cytometry permits the rapid identification of bacterial and viral populations in wastewater samples, separating populations based on genome and particle size. Treated wastewater samples were collected from an HRAP at Kingston on Murray, South Australia. Flow cytometry analysis detected bacterial populations and discriminated virus-like particles (VLP) and large VLP (LVLP). Rapid, short term, fluctuations in the abundance of all three populations were observed. Changes in the abundance of these populations was compared; wastewater composition was used as metadata for the comparisons. Linear regression determined relationships in abundances between bacteria and LVLP (R2 0.2985); LVLP and VLP (R2 0.5829) and bacteria and VLP (R2 0.5778) all with p-values of <0.001. Bacterial, LVLP and VLP abundance positively correlated with each other, indicating potential microbial interactions. Overall, the results suggest a parasitic relationship was occurring and driving the abundances of bacteria and viruses within the system.
Collapse
Affiliation(s)
- Ashleigh R Hisee
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | - Matthew Hisee
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | - Jody C McKerral
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | | | - James S Paterson
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| | - Howard J Fallowfield
- College of Science and Engineering, Flinders University, Adelaide, Australia E-mail:
| |
Collapse
|
16
|
Delanka-Pedige HMK, Munasinghe-Arachchige SP, Zhang Y, Nirmalakhandan N. Bacteria and virus reduction in secondary treatment: Potential for minimizing post disinfectant demand. WATER RESEARCH 2020; 177:115802. [PMID: 32311576 DOI: 10.1016/j.watres.2020.115802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 05/20/2023]
Abstract
Today's wastewater utilities are facing the dilemma of balancing pathological threats of bacteria and viruses in their effluent against health threats associated with the byproducts of disinfection. A possible solution to this dilemma is to adopt secondary treatment technologies capable of concurrent pathogen reduction, minimizing the demand for external disinfectants. Towards this end, bacterial and viral reductions possible in algal wastewater treatment (WWT) systems are highlighted here and compared with those in conventional activated sludge (AS) systems and membrane bioreactor (MBR) systems. High log reduction values (LRV) of E. coli [>5] and fecal coliform [>7] have been achieved without any external disinfectants in the classical photoautotrophic algal WWT systems and in an emerging mixotrophic algal WWT system. LRVs of E. coli, fecal coliform, and somatic coliphages in the mixotrophic system are higher than those in AS systems and, comparable to those in MBRs. But, LRVs of F-specific coliphages, Enterovirus and Norovirus GI are greater in MBRs than in the mixotrophic and AS systems. The low-energy algal WWT systems providing high inherent reductions of bacteria and viruses can serve as affordable alternatives to the capital- and energy-intensive AS and MBR systems for greener WWT, meeting several of the United Nation's Sustainable Development Goals.
Collapse
Affiliation(s)
| | | | - Yanyan Zhang
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
17
|
Metagenomic insights into virus removal performance of an algal-based wastewater treatment system utilizing Galdieria sulphuraria. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101865] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Plouviez M, Chambonnière P, Shilton A, Packer MA, Guieysse B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Young P, Taylor MJ, Buchanan N, Lewis J, Fallowfield HJ. Case study on the effect continuous CO 2 enrichment, via biogas scrubbing, has on biomass production and wastewater treatment in a high rate algal pond. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109614. [PMID: 31563600 DOI: 10.1016/j.jenvman.2019.109614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/26/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Microalgae grown in high rate algal ponds (HRAP) treating wastewater are considered a promising feed for biofuel production. Biomass productivity is often considered to be limited by carbon availability, with the addition of CO2 being the proposed solution. Biogas from anaerobic wastewater treatment potentially provides a cheap, co-located CO2 source. Two identical 223 m2 HRAPs were constructed at Melbourne Water's Western Treatment Plant, where biogas from an anaerobic lagoon is used to generate electricity. One HRAP was fed secondary treated wastewater that had been enriched with CO2 recovered from the biogas using industry standard biogas scrubbers, the Enriched HRAP, while the other HRAP was fed the same wastewater expect it had by passed the biogas scrubbers, the Control HRAP. The biomass production and wastewater treatment performance of the two HRAPs was compared over 12 months. The inlet to the Enriched HRAP had significantly higher free CO2 and inorganic carbon, 175.00 ± 49.30 mg L-1 and 110.00 ± 10.2 mg L-1, than the inlet to the Control HRAP, 9.30 ± 7.08 mg L-1 and 89.62 ± 5.12 mg L-1. There were no significant differences in biomass production between the HRAPs as measured by dry matter, particulate organic carbon or nitrogen. Chlorophyll a was statistically higher in the Enriched HRAP, however, this measurement is potentially unreliable. Regarding wastewater treatment, only total nitrogen and ammonium removal differed significantly between the HRAPs, with the Control HRAP, 59.13 ± 21.13% and 76.46 ± 32.33%, slightly outperforming the Enriched HRAP, 53.52 ± 17.41% and 68.76 ± 31.17%. Overall, neither biomass production nor wastewater treatment was meaningfully improved by CO2 enrichment, however, wastewater treatment was still effective in both HRAPs.
Collapse
Affiliation(s)
- Paul Young
- Health and Environment Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia.
| | - Michael J Taylor
- Health and Environment Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia.
| | - Neil Buchanan
- Health and Environment Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Justin Lewis
- Melbourne Water Corporation, 990 La Trobe Street, Docklands, Victoria, 3008, Australia.
| | - Howard J Fallowfield
- Health and Environment Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
20
|
Schwarz KR, Sidhu JPS, Toze S, Li Y, Lee E, Gruchlik Y, Pritchard DL. Decay rates of Escherichia coli, Enterococcus spp., F-specific bacteriophage MS2, somatic coliphage and human adenovirus in facultative pond sludge. WATER RESEARCH 2019; 154:62-71. [PMID: 30771708 DOI: 10.1016/j.watres.2019.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to evaluate the efficacy of a waste stabilization pond (WSP) system to reduce pathogen contaminants in sludge. This included examining the factors that influence the fate and concentration of human pathogens and their indicators in two sludge layers. The decay rates of five study microorganisms were determined under in-situ conditions at a WSP. The background levels of fecal origin microorganisms were consistently detected (ranging: Escherichia coli 104 to 106, enterococci 101 to 103, F-specific bacteriophage (MS2) 101 to 103 and somatic coliphage 101 to 104 colony-forming units (CFU) mL-1, as well as 101 to 102 human adenovirus gene copies mL-1) in the primary facultative pond. Among microorganisms tested, the bacteria generally decayed faster than adenovirus and bacteriophage, particularly in the upper sludge layer. Due to the observed regrowth of E. coli, it may have a limited value as an indicator for pathogen removal in the wastewater stabilization ponds. The abundance of E. coli numbers within the pond biome followed changes in pond temperature over time. The results of the study suggest that viruses could survive for a long time, particularly in deeper layers (>1 metre) in the sludge, during winter months (T90 = 156 d). The presence of human pathogens in WSP sludge, in particular viruses, may be a barrier to its beneficial reuse in agriculture. The results indicate that additional treatment of sludge may be required to mitigate potential public health risks from reuse of sludge for agricultural purposes.
Collapse
Affiliation(s)
- K R Schwarz
- Molecular and Life Sciences, Curtin University, GPO Box U1987 Perth, Western Australia, 6845, Australia; CSIRO Oceans and Atmosphere, 41 Boggo Road, EcoSciences Precinct, Dutton Park, Queensland, 4102, Australia.
| | - J P S Sidhu
- CSIRO Oceans and Atmosphere, 41 Boggo Road, EcoSciences Precinct, Dutton Park, Queensland, 4102, Australia.
| | - S Toze
- CSIRO Land and Water, 41 Boggo Road, EcoSciences Precinct, Dutton Park, Queensland, 4102, Australia.
| | - Y Li
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| | - E Lee
- Water Corporation, 629 Newcastle St, Leederville, WA, 6007, Australia.
| | - Y Gruchlik
- Molecular and Life Sciences, Curtin University, GPO Box U1987 Perth, Western Australia, 6845, Australia.
| | - D L Pritchard
- Molecular and Life Sciences, Curtin University, GPO Box U1987 Perth, Western Australia, 6845, Australia.
| |
Collapse
|
21
|
Lian Y, Mai L, Cromar N, Buchanan N, Fallowfield H, Li X. MS2 coliphage and E. coli UVB inactivation rates in optically clear water: dose, dose rate and temperature dependence. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2228-2238. [PMID: 30629550 DOI: 10.2166/wst.2018.509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Natural ultraviolet irradiance disinfection is known to play a significant role in both natural wastewater treatment systems and drinking water disinfection processes, while the influence of ultraviolet B (UVB) delivering method on sunlight disinfection outcome is still unclear. This study aims to determine the effects of environmentally relevant temperatures, UVB doses (J m-2) and dose rates (W m-2) on the inactivation and log reduction values (LRVs) of the F-RNA coliphage MS2 and Escherichia coli in optically clear water. E. coli and MS2 were separately incubated and irradiated at five different doses of UVB light that delivered using six UVB dose rates. The results of the study demonstrate that the UVB dose delivering method (combination of dose rate and exposure time) influences inactivation and LRVs of E. coli and MS2 at all UVB doses investigated (up to seven-fold difference). Two phases were identified within the UVB dose rate, UVB inactivation or LRV curves for both organisms; a UVB dose rate limited inactivation phase and a dose rate saturation inactivation phase. The results contribute to a better understanding of UVB disinfection in the environment and natural wastewater treatment systems, potentially improving the design and operation of high rate algal ponds.
Collapse
Affiliation(s)
- Yu Lian
- Key Laboratory of Environmental Biology and Pollution Control, School of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province 410082, China E-mail: ; Health and the Environment Group; School of the Environment, Flinders University, Adelaide, South Australia 5042, Australia
| | - Lei Mai
- Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Nancy Cromar
- Health and the Environment Group; School of the Environment, Flinders University, Adelaide, South Australia 5042, Australia
| | - Neil Buchanan
- Health and the Environment Group; School of the Environment, Flinders University, Adelaide, South Australia 5042, Australia
| | - Howard Fallowfield
- Health and the Environment Group; School of the Environment, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xiaoming Li
- Key Laboratory of Environmental Biology and Pollution Control, School of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province 410082, China E-mail:
| |
Collapse
|
22
|
Buchanan NA, Young P, Cromar NJ, Fallowfield HJ. Performance of a high rate algal pond treating septic tank effluent from a community wastewater management scheme in rural South Australia. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Buchanan N, Young P, Cromar NJ, Fallowfield HJ. Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:3-11. [PMID: 30101783 DOI: 10.2166/wst.2018.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
South Australian community wastewater management schemes (CWMS) treat wastewater using waste stabilisation ponds before disposal or reuse. This study compared the performance of a facultative pond, 6,300 m2, 27.5 d theoretical hydraulic retention time (THRT), with a high rate algal pond (HRAP) operated at depths of 0.32, 0.43 and 0.55 m with THRT equivalent to 4.5, 6.4 and 9.1 d respectively. Both ponds received influents of identical quality, differing only in quantity, and were operated in similar climatic conditions. The depth of HRAP operation had only a minor influence on treatment performance. The study showed that the quality of the treated effluent from the HRAP was equivalent to that of the facultative pond, 5-day biochemical oxygen demand removal >89%, NH4-N removal 59.09-74.45%. Significantly, Escherichia coli log10 reduction values by the HRAP, 1.74-2.10, were equivalent to those of the facultative pond. Consequently, HRAPs could replace facultative ponds within CWMS while maintaining treated effluent quality. The benefit would be halving the surface area requirement from 4.2 m2 capita-1 for the facultative pond to between 2.0 and 2.3 m2 capita-1, depth dependent, for an HRAP, with significant attendant reductions in the capital costs for construction.
Collapse
Affiliation(s)
- Neil Buchanan
- Health and Environment Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia E-mail:
| | - Paul Young
- Health and Environment Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia E-mail:
| | - Nancy J Cromar
- Health and Environment Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia E-mail:
| | - Howard J Fallowfield
- Health and Environment Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia E-mail:
| |
Collapse
|
24
|
Renuka N, Guldhe A, Prasanna R, Singh P, Bux F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 2018; 36:1255-1273. [DOI: 10.1016/j.biotechadv.2018.04.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
25
|
Young P, Taylor M, Fallowfield HJ. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment. World J Microbiol Biotechnol 2017; 33:117. [DOI: 10.1007/s11274-017-2282-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022]
|