1
|
Saroha P, Patil RS, Rathore AS. Recent advancements in soluble expression of recombinant antibody fragments in microbial host systems. Prep Biochem Biotechnol 2025; 55:131-140. [PMID: 39196757 DOI: 10.1080/10826068.2024.2394446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Recombinant fabs dominate the pharmaceutical pipelines today with microbial host systems continuing to be a major contributor toward their production. Escherichia coli is a versatile host for recombinant protein expression due to its simplicity, affordability, and ability to be cultivated at high cell density. It is particularly suitable for non-glycosylated proteins and small proteins. Despite the aforementioned benefits, the use of E. coli as the host for the synthesis of recombinant antibody fragments often suffers from low yield and reduced activity. In most cases, proteins are expressed as inclusion bodies and need to undergo refolding to achieve their active forms and this refolding step is generally low-yielding. In this article, we review the various approaches that researchers have taken to enhance the production of recombinant antibody fragments in E. coli. Molecular biology-oriented approaches such as cloning, chaperone-mediated folding, and host cell screening as well as process optimization involving examination of process parameters, media, and feeding have been addressed.
Collapse
Affiliation(s)
- Preeti Saroha
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| | - Rucha S Patil
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
2
|
Sharma R, Anupa A, Kateja N, Rathore AS. Optimization of the in-vitro refolding of biotherapeutic Fab Ranibizumab. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Challenges in Expression and Purification of Functional Fab Fragments in E. coli: Current Strategies and Perspectives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial host systems remain the most efficient and cost-effective chassis for biotherapeutics production. Escherichia coli is often the preferred host due to ease of cloning, scale-up, high product yields, and most importantly, cost-effective cultivation. E. coli often experience difficulties in producing biologically active therapeutics such as Fab fragments, which require protein folding and subsequent three-dimensional structure development. This paper outlines the recent improvements in upstream and downstream unit operations for producing Fab fragments in E. coli. Monoclonal antibody fragments (Fab) are a rising class of biotherapeutics and their production has been optimised using coexpression of molecular chaperones such as DsbC or DnaK–DnaJ–GrpE, as well as strain engineering for post-translational modifications such as disulphide bridging. Different media systems such as EnBase and combining nitrogen source supplementation with low-temperature cultivation have resulted in improvement in cell integrity, protein expression, and protein refolding. The recovery of native proteins from insoluble inclusion bodies can be improved by adjusting refolding conditions, as well as by incorporating multimodal and affinity chromatography for achieving high product yields in purification. Recent developments summarised in this review may tune the E. coli expression system to produce more complex and glycosylated proteins for therapeutic use in the near future.
Collapse
|
4
|
Chen H, Chen JS, Paerhati P, Jakos T, Bai SY, Zhu JW, Yuan YS. Strategies and Applications of Antigen-Binding Fragment (Fab) Production in Escherichia coli. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1735145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWith the advancement of genetic engineering, monoclonal antibodies (mAbs) have made far-reaching progress in the treatment of various human diseases. However, due to the high cost of production, the increasing demands for antibody-based therapies have not been fully met. Currently, mAb-derived alternatives, such as antigen-binding fragments (Fab), single-chain variable fragments, bispecifics, nanobodies, and conjugated mAbs have emerged as promising new therapeutic modalities. They can be readily prepared in bacterial systems with well-established fermentation technology and ease of manipulation, leading to the reduction of overall cost. This review aims to shed light on the strategies to improve the expression, purification, and yield of Fab fragments in Escherichia coli expression systems, as well as current advances in the applications of Fab fragments.
Collapse
Affiliation(s)
- Hui Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jun-Sheng Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Tanja Jakos
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Si-Yi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Yun-Sheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Eaglesham JB, Garcia A, Berkmen M. Production of antibodies in SHuffle Escherichia coli strains. Methods Enzymol 2021; 659:105-144. [PMID: 34752282 DOI: 10.1016/bs.mie.2021.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are globally important macromolecules, used for research, diagnostics, and as therapeutics. The common mammalian antibody immunoglobulin G (IgG) is a complex glycosylated macromolecule, composed of two heavy chains and two light chains held together by multiple disulfide bonds. For this reason, IgG and related antibody fragments are usually produced through secretion from mammalian cell lines, such as Chinese Hamster Ovary cells. However, there is growing interest in production of antibodies in prokaryotic systems due to the potential for rapid and cheap production in a highly genetically manipulable system. Research on oxidative protein folding in prokaryotes has enabled engineering of Escherichia coli strains capable of producing IgG and other disulfide bonded proteins in the cytoplasm, known as SHuffle. In this protocol, we provide a review of research on prokaryotic antibody production, guidelines on cloning of antibody expression constructs, conditions for an initial expression and purification experiment, and parameters which may be optimized for increased purification yields. Last, we discuss the limitations of prokaryotic antibody production, and highlight potential future avenues for research on antibody expression and folding.
Collapse
|
6
|
Talaei A, Mazaheri S, Bayat E, Bakhshandeh B, Sabzalinejad M, Damough S, Mahboudi F, Nematollahi L, Talebkhan Y. Production of Soluble and Functional Anti-TNF-α Fab' Fragment in Cytoplasm of E. coli: Investigating the Effect of Process Conditions on Cellular Biomass and Protein Yield Using Response Surface Methodology. Protein J 2021; 40:786-798. [PMID: 34023982 DOI: 10.1007/s10930-021-09996-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
With the increasing dominance of monoclonal antibodies (mAbs) in the biopharmaceutical industry and smaller antibody fragments bringing notable advantages over full-length antibodies, it is of considerable significance to choose the most suitable production system. Although mammalian expression system has been the preferred choice in recent years for mAbs production, E. coli could be the favorable host for non-glycosylated small antibody fragments due to the emergence of new engineered E. coli strains capable of forming disulfide-bonds in their cytoplasm.In this study, non-glycosylated anti-TNF-α Fab' moiety of Certolizumab pegol, produced by periplasmic expression in E. coli in previous studies, was produced in the cytoplasm of E. coli SHuffle strain. The results indicated that it is biologically functional by testing the antigen-binding activity via indirect ELISA and inhibition of TNF-α induced cytotoxicity using MTT test. Major factors affecting protein production and, optimized culture conditions were examined by analyzing growth characteristics and patterns of expression in 24 h of post-induction cultivation and, optimization of culture conditions by response surface methodology considering temperature, time of induction and concentration of inducer in small (tube) and shake-flask scale. Based on the results, temperature had the most significant influence on functional protein yield while exerting different impacts in small and shake-flask scales, which indicated that cultivation volume is also an important factor that should be taken into account in optimization process. Furthermore, richness of medium and slower cellular growth rate improved specific cellular yield of functional protein by having a positive effect on the solubility of Fab' antibody.
Collapse
Affiliation(s)
- Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Somayeh Mazaheri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Shadi Damough
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Sotoudegan F, Sotoudegan F, Talebkhan Garoosi Y, Afshar SH, Barkhordari F, Davami F. Anti-Aβ-scFv-loaded polymeric nano-micelles with enhanced plasma stability. J Pharm Pharmacol 2021; 73:460-472. [PMID: 33793837 DOI: 10.1093/jpp/rgaa068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Immunotherapy using recombinant monoclonal antibodies specifically Anti-amyloid-beta (Anti-Aβ) scFv is envisaged as an appropriate therapeutic for Alzheimer through reduction of amyloid-beta aggregation. The solubilization of therapeutics using polymeric micelles facilitates an improved bioavailability and extended blood half-life. In this study, the optimum production condition for Anti-amyloid-beta (Anti-Aβ) scFv was obtained. To increase the stability of plasma, Anti-Aβ-loaded polymeric micelles were synthesized. METHODS Escherichia coli SHuffle expression strain was used and purified by Ni-NTA. Pluronics P85 and F127 micelles were used for the Anti-Aβ delivery and were characterized in terms of morphology, drug loading and drug release in phosphate buffer and artificial cerebrospinal fluid. The stability profile was quantified at 4°C over a 30 days storage period. The stability in human plasma was also evaluated. KEY FINDINGS Proteins expressed in SHuffle resulted in increased levels of protein expression and solubility. Low critical micelle concentration value and high micelle encapsulation efficiency (<200 nm) achieved via direct dissolution method. Anti-Aβ-loaded micelles were around 2.2-fold more stable than Anti-Aβ in plasma solution. A sustained in-vitro release of Anti-Aβ from micelles was observed. CONCLUSIONS Results confirmed that Pluronic-micelles pose benefits as a nano-carrier to increase the stability of Anti-Aβ scFvin in the plasma.
Collapse
Affiliation(s)
- Farnaz Sotoudegan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzaneh Sotoudegan
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sahar H Afshar
- Faculty of Pharmacy International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
9
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
10
|
Zarei B, Javidan Z, Fatemi E, Rahimi Jamnani F, Khatami S, Khalaj V. Targeting c-Met on gastric cancer cells through a fully human fab antibody isolated from a large naive phage antibody library. Daru 2020; 28:221-235. [PMID: 32193747 PMCID: PMC7238820 DOI: 10.1007/s40199-020-00334-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The aberrant Hepatocyte growth factor (HGF)/ mesenchymal-epithelial transition factor (c-Met) signaling pathway in various malignancies and its correlation with tumor invasion and poor prognosis has validated c-Met as a compelling therapeutic target. Up to now, several monoclonal antibodies and small molecule inhibitors targeting c-Met have been introduced with different outcomes, none are yet clinically approved. Toward the generation of novel fully human anti-c-Met molecules, we generated a large naïve Fab antibody library using phage display technology, which subsequently screened for novel Fabs against c-Met. METHODS A phage library, with a functional size of 5.5 × 1010 individual antibody clones, was prepared using standard protocols and screened for c-Met-specific Fabs by successive rounds of panning. A panel of Fabs targeting c-Met were isolated, from which four clones were selected and further characterized by DNA sequencing. The c-Met binding ability of our selected Fabs was evaluated by c-Met ELISA assay and flow cytometry techniques. RESULTS Among the confirmed anti-c-Met Fabs, clone C16, showed the highest affinity (Kaff: 0.3 × 109 M-1), and 63% binding to MKN45 cells (a human gastric adenocarcinoma cell-line) as compared to c-Met negative T47D cell-line (9.03%). CONCLUSION Together, our study presents a single-pot antibody library, as a valuable source for finding a range of antigen-specific Fab antibodies, and also, a fully human, high affinity and specific anti c-Met Fab antibody, C16, which has the potential of developing as a therapeutic or chemotherapeutic delivery agent for killing c-Met-positive tumor cells.
Collapse
Affiliation(s)
- Bahareh Zarei
- Medical Biotechnology Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Javidan
- Medical Biotechnology Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Fatemi
- Medical Biotechnology Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research,
Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology
Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Wang Z, Gao Y, Luo M, Cagliero C, Jiang H, Xie Y, Zhu J, Lu H. A PhoA-STII Based Method for Efficient Extracellular Secretion and Purification of Fab from Escherichia coli. Bio Protoc 2019; 9:e3370. [PMID: 33654866 DOI: 10.21769/bioprotoc.3370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 11/02/2022] Open
Abstract
In comparison with full-length IgGs, antigen binding fragments (Fabs) are smaller in size and do not require the complexed post-translational modification. Therefore, Fab can be cost-effectively produced using an Escherichia coli (E. coli) expression system. However, the disulfide-bonds containing exogenous protein, including Fab, tend to form insoluble inclusion bodies in E. coli, which has been the bottleneck for exogenous protein expressions using this system. The secretory expression of proteins in periplasm or extracellular medium are promising strategies to prevent the formation of inclusion bodies to improve the efficiency to produce Fabs from E. coli. The extracellular expression is of particularly interest since it releases the product into the medium, while periplasmic expression yield is limited to the periplasm space. In addition, the extracellular expression allows for the direct harvesting of proteins from the culture supernatant, sparing the procedures of cell lysis and reducing contamination of host cell protein or DNA. Using anti-VEGF Fab as an example, here we provide a protocol based on the alkaline phosphatase (phoA) promoter and the heat-stable enterotoxin II (STII) leader sequence. Using phosphate starvation to induce the secretory expression, the protocol could be generally used for the efficient production of Fabs.
Collapse
Affiliation(s)
- Ziyan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yang Gao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Manyu Luo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Cedric Cagliero
- Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD 21704, USA
| | - Hua Jiang
- Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD 21704, USA
| | - Yueqing Xie
- Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD 21704, USA
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD 21704, USA
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
12
|
Luo M, Zhao M, Cagliero C, Jiang H, Xie Y, Zhu J, Yang H, Zhang M, Zheng Y, Yuan Y, Du Z, Lu H. A general platform for efficient extracellular expression and purification of Fab from Escherichia coli. Appl Microbiol Biotechnol 2019; 103:3341-3353. [DOI: 10.1007/s00253-019-09745-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
|
13
|
Barkhordari F, Raigani M, Garoosi YT, Mahboudi F, Davami F. Optimization of EnBase Fed-Batch Cultivation to Improve Soluble Fraction Ratio of α-Luffin Ribosome Inactivating Protein. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1482. [PMID: 30555837 PMCID: PMC6217263 DOI: 10.21859/ijb.1482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/04/2017] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Background The increase of the protein expression via ribosomal manipulation is one of the suggested cellular mechanisms involved in EnBase fed-batch mode of cultivation. However, this system has not been implemented for cytotoxic proteins. Objectives Here, the expression pattern of α-Luffin, a ribosome inactivation protein (RIP) with an innate toxicity, was investigated in EnBase system and the effect of low temperature cultivation on the increase of α-Luffin solubility was determined. Materials and Methods The encoding cDNA for mature α-Luffin was synthesized and subcloned into pET28a plasmid under the control of T7 promoter. The E. coli expression yield in EnBase® Flo fed-batch system was compared with traditional batch mode at two temperatures: 25 °C and 30 °C. Sampling was performed at several time intervals and solubility of recombinant-protein was checked on SDS-PAGE in pellet and supernatant samples. The purification of recombinant protein was performed by Ni-NTA column. Results In fed-batch cultivation mode, the early incubation time was desirable at 30 °C whereas the maximum amount of soluble α-Luffin was achieved from the extended protein synthesis period (12 and 24h post induction) at 25 °C. Conclusions Our founding showed that EnBase had a greater efficacy in producing higher soluble protein ratios compared to batch cultivation growth rate, however for cytotoxic proteins, incubation temperature and time need to be optimized. Owing to the advantages of natural toxins from RIP family for producing anticancer immune-conjugates, well optimization of this protein expression is of importance regarding industrial aspects. The optimized condition proposed here is promising in terms of large scale soluble production of α-Luffin without the need for refolding.
Collapse
Affiliation(s)
- Farzaneh Barkhordari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biology, Faculty of Sciences, Science and Technology Branch, Islamic Azad University, Tehran, Iran
| | - Mozhgan Raigani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
NAMVAR S, BARKHORDARI F, RAIGANI M, JAHANDAR H, NEMATOLLAHI L, DAVAMI F. Cloning and soluble expression of mature α-luffin from Luffa cylindrica in E. coli using SUMO fusion protein. Turk J Biol 2018; 42:23-32. [PMID: 30814867 PMCID: PMC6353257 DOI: 10.3906/biy-1708-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
α-Lufin, found in Luaf cylindrica seeds, is a type I ribosome inactivating proteins. Cytotoxic effects make it an appropriate candidate for the construction of immunotoxins and conjugates. Because of limited natural resources, recombinant technology is the best approach to achieve large-scale production of plant-based proteins. In the present study, α-lufin protein was expressed in E. coli and the effects of different temperature conditions, SUMO fusion tag, and cultivation strategies on total expression and solubility were investigated. Protein expression was evaluated at different intervals (0, 4, 6, 8, 24 h) postinduction. Our results showed that EnBase had higher eficiency than LB, and maximum solubility and total protein expression were achieved 24 h after induction at 30 °C and 25 °C, respectively. It was shown that SUMO tag is an effective strategy to improve protein solubility.
Collapse
Affiliation(s)
- Shaghayegh NAMVAR
- Biotechnology Research Center; Pasteur Institute of Iran
,
Tehran
- Pharmaceutical Sciences Research Center, Pharmaceutical Sciences Branch, Islamic Azad University
,
Tehran
,
Iran
| | | | - Mozhgan RAIGANI
- Biotechnology Research Center; Pasteur Institute of Iran
,
Tehran
| | - Hoda JAHANDAR
- Department of Biotechnology, Faculty of Advanced Sciences &Technology, Pharmaceutical Sciences Branch, Islamic Azad University
,
Tehran
,
Iran
- Pharmaceutical Sciences Research Center, Pharmaceutical Sciences Branch, Islamic Azad University
,
Tehran
,
Iran
| | | | - Fatemeh DAVAMI
- Biotechnology Research Center; Pasteur Institute of Iran
,
Tehran
| |
Collapse
|