1
|
do Vale Pereira G, Teixeira C, Couto J, Dias J, Rema P, Gonçalves AT. Dietary Protein Quality Affects the Interplay between Gut Microbiota and Host Performance in Nile Tilapia. Animals (Basel) 2024; 14:714. [PMID: 38473099 DOI: 10.3390/ani14050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Dietary protein quality plays a key role in maintaining intestinal mucosal integrity, but also modulates the growth of luminal microorganisms. This work assessed the effect of dietary protein sources on the performance, gut morphology, and microbiome in Nile tilapia. Four isonitrogenous and isolipidic diets comprising equivalent amounts of the protein supply derived from either PLANT, ANIMAL, INSECT, or BACTERIAL (bacterial biomass) sources were fed to triplicate groups of fish (IBW: 12 g) for 46 days. Fish fed the ANIMAL and BACTERIAL diets showed significantly higher weight gains than those fed the PLANT and INSECT diets (p < 0.05). Relative abundance at the phylum level showed that Bacteroidetes, Fusobacteria, and Proteobacteria were the more abundant phyla in tilapia's intestine, while Cetobacterium was the most representative genus in all treatments. Interesting patterns were observed in the correlation between amino acid intake and genus and species abundance. Metabolism prediction analysis showed that BACTERIAL amine and polyamine degradation pathways are modulated depending on diets. In conclusion, different protein sources modulate the relationship between bacteria functional pathways and amino acid intake.
Collapse
Affiliation(s)
- Gabriella do Vale Pereira
- SPAROS Lda., 8700-221 Olhão, Portugal
- Aquaculture Department, Center of Agrarian Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88061-600, Brazil
| | | | - José Couto
- Riasearch Lda., 3870-168 Murtosa, Portugal
| | - Jorge Dias
- SPAROS Lda., 8700-221 Olhão, Portugal
- Riasearch Lda., 3870-168 Murtosa, Portugal
| | - Paulo Rema
- Departamento de Zootécnia, Universidade de Trás os Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana Teresa Gonçalves
- SPAROS Lda., 8700-221 Olhão, Portugal
- GreenCoLab, Associação Oceano Verde, 8500-139 Faro, Portugal
| |
Collapse
|
2
|
Xu YB, Li DL, Ding XQ, Wang YY, Liang S, Xie LY, Zhang YF, Fu AK, Yu WQ, Zhan XA. Probiotic characterization and comparison of broiler-derived lactobacillus strains based on technique for order preference by similarity to ideal solution analysis. Poult Sci 2023; 102:102564. [PMID: 36907127 PMCID: PMC10014310 DOI: 10.1016/j.psj.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
A total of 10 lactobacillus strains were isolated from broiler chickens and their probiotic properties including tolerance to gastrointestinal fluids and heat treatment, antimicrobial activity, adhesion capacity to intestinal cells, surface hydrophobicity, autoaggregation, antioxidative activity, and immunomodulatory effects on chicken macrophages were evaluated. The Limosilactobacillus reuteri (LR) was the most frequently isolated species, followed by Lactobacillus johnsonii (LJ) and Ligilactobacillus salivarius (LS). All isolates showed good resistance to simulated gastrointestinal conditions and antimicrobial activity against 4 indicator strains including Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis LR 21 exhibited excellent performances on autoaggregation, hydrophobicity and adhesion capacity to Caco-2 intestinal cells. In the meantime, this strain also possessed considerable tolerance to heat treatment, which indicated great potential to be used in the feed industry. However, LJ 20 strain had the highest free radical scavenging activity compared with the other strains. Furthermore, qRT-PCR results revealed that all isolated strains significantly increased the transcriptional levels of proinflammatory genes and tended to induce the M1-type polarization on HD11 macrophages. Particularly, the technique for order preference by similarity to ideal solution (TOPSIS) was adopted in our study to compare and select the most promising probiotic candidate based on in vitro evaluation tests.
Collapse
Affiliation(s)
- Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Y Y Wang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Y F Zhang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - W Q Yu
- Animal Husbandry and Veterinary Services Center of Haiyan, Jiaxing 314300, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China.
| |
Collapse
|
3
|
Siangpro N, Chuakrut S, Sirimanapong W, Tanasupawat S, Phongsopitanun W, Meksiriporn B, Boonnorat J, Sarin S, Kucharoenphaibul S, Jutakanoke R. Lactiplantibacillus argentoratensis and Candida tropicalis Isolated from the Gastrointestinal Tract of Fish Exhibited Inhibitory Effects against Pathogenic Bacteria of Nile Tilapia. Vet Sci 2023; 10:vetsci10020129. [PMID: 36851433 PMCID: PMC9958883 DOI: 10.3390/vetsci10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Nile tilapia is one of the most consumed farmed fish in the world. The outbreak of pathogenic bacterial diseases causes high mortality rates and economic losses in Nile tilapia farming. Antibiotic administrations are commonly utilized to inhibit and prevent bacterial infections. However, antibiotics are expensive and cause serious concerns for antibiotic resistance in fish that can be potentially transferred to humans. As an alternative solution, probiotics can be used to prevent infection of pathogenic bacteria in fish. In this work, both bacteria and yeast were isolated from fish gastrointestinal tracts and their inhibitory activity against Nile tilapia pathogenic bacteria was evaluated, as well as other probiotic properties. In this study, 66 bacteria and 176 acid tolerant yeasts were isolated from fish gastrointestinal tracts. Of all isolated microorganisms, 39 bacterial and 15 yeast isolates with inhibitory effect against pathogens were then examined for their probiotic properties (acidic and bile salt resistance, adhesion potential, and biofilm formation), formation of antibacterial factor survival rate under simulated gastrointestinal fluid, and safety evaluation. AT8/5 bacterial isolate demonstrated probiotic properties and the highest inhibition against all 54 tested pathogens while YON3/2 yeast isolate outperformed the inhibitory effect among all yeast isolates. These two probiotic isolates were further identified by 16S rDNA and the D1/D2 domain of 26S rDNA sequence analysis for bacterial and yeast identification, respectively. AT8/5 and YON3/2 showed the highest similarity to Lactiplantibacillus argentoratensis and Candida tropicalis, respectively. This is the first report on isolated L. argentoratensis and C. tropicalis with antipathogenic bacteria of Nile tilapia properties. Collectively, AT8/5 and YON3/2 could be potentially used as promising alternatives to existing antibiotic methods to prevent pathogenic bacteria infection in Nile tilapia farming.
Collapse
Affiliation(s)
- Noppadon Siangpro
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Songkran Chuakrut
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wanna Sirimanapong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73110, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunyarit Meksiriporn
- Department of Biology, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Siripun Sarin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Siriwat Kucharoenphaibul
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Fungal Research, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-964614
| |
Collapse
|
4
|
Niu GJ, Yan M, Li C, Lu PY, Yu Z, Wang JX. Infection with white spot syndrome virus affects the microbiota in the stomachs and intestines of kuruma shrimp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156233. [PMID: 35636540 DOI: 10.1016/j.scitotenv.2022.156233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Maintaining eubiosis of the gastrointestinal (GI) microbiota is essential for animal health. White spot syndrome virus (WSSV) is the most lethal viral pathogen because it causes extremely high mortality in shrimp farming. However, it remains poorly understood how WSSV infection affects the microbiota in different regions of the GI tract of shrimp. In the present study, we established an experimental model of kuruma shrimp (Marsupenaeus japonicus) infection with WSSV and then investigated the effects of WSSV infection on the microbiota in the cardiac stomach, pyloric stomach, and intestines using metataxonomics. We identified 34 phyla and 576 genera of bacteria collectively. At the phylum level, Proteobacteria and Firmicutes were the most abundant in all the three GI segments. The WSSV infection decreased microbial diversity to a different extent in the stomachs and in a time-dependent manner. The infection with WSSV affected the microbiota composition in the two stomachs, but not the intestines. Firmicutes increased significantly, while Actinobacteria, Bacteroidetes, and Cyanobacteria decreased in the two stomachs of the WSSV-infected shrimp. At the genus level, Trichococcus and Vibrio increased, but Bradyrhizobium and Roseburia decreased in the cardiac stomach of the WSSV-infected shrimp. Trichococcus and Photobacterium increased in the pyloric stomach. Although Vibrio showed a slight downward trend, Aliivibrio (formerly Vibrio) increased in the pyloric stomach. Thiothrix, Fusibacter, and Shewanella decreased in the pyloric stomach, but no significant differences in these genera were detected in the cardiac stomach. Analysis of the predicted functions of the GI microbiota indicated that the WSSV infection resulted in losses of some microbiota functions. The new information from this study may help better understand the bacteria-virus interaction in the GI tract of shrimp and other crustacean species, and inform pathogen prevention/control and sustainable aquaculture production.
Collapse
Affiliation(s)
- Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Ming Yan
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Peng-Yuan Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States.
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
5
|
Competitive Exclusion Bacterial Culture Derived from the Gut Microbiome of Nile Tilapia ( Oreochromis niloticus) as a Resource to Efficiently Recover Probiotic Strains: Taxonomic, Genomic, and Functional Proof of Concept. Microorganisms 2022; 10:microorganisms10071376. [PMID: 35889095 PMCID: PMC9321352 DOI: 10.3390/microorganisms10071376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
This study aims to mine a previously developed continuous-flow competitive exclusion culture (CFCEC) originating from the Tilapia gut microbiome as a rational and efficient autochthonous probiotic strain recovery source. Three isolated strains were tested on their adaptability to host gastrointestinal conditions, their antibacterial activities against aquaculture bacterial pathogens, and their antibiotic susceptibility patterns. Their genomes were fully sequenced, assembled, annotated, and relevant functions inferred, such as those related to pinpointed probiotic activities and phylogenomic comparative analyses to the closer reported strains/species relatives. The strains are possible candidates of novel genus/species taxa inside Lactococcus spp. and Priestia spp. (previously known as Bacillus spp.) These results were consistent with reports on strains inside these phyla exhibiting probiotic features, and the strains we found are expanding their known diversity. Furthermore, their pangenomes showed that these bacteria have indeed a set of so far uncharacterized genes that may play a role in the antagonism to competing strains or specific symbiotic adaptations to the fish host. In conclusion, CFCEC proved to effectively allow the enrichment and further pure culture isolation of strains with probiotic potential.
Collapse
|
6
|
Aalipanah S, Fazeli MR, Akhavan Sepahi A, Shariatmadari F. Synergistic Effects of Probiotic Bifidobacterium Isolated from Chicken's Intestine in Combination with Polyvinylpyrrolidone on Reduction of Aflatoxin B 1. Lett Appl Microbiol 2022; 75:1160-1170. [PMID: 35778982 DOI: 10.1111/lam.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Food contamination with aflatoxin is one of the most critical concerns of health professionals. One of the best ways to reduce aflatoxin content in food is probiotics. Therefore, this study was performed to isolate Bifidobacterium from the chick's intestine; evaluate its probiotic activities and its application with Polyvinylpyrrolidone (PVP) to reduce aflatoxin B1 (AFB1 ) in the medium were investigated. Samples were isolated from the chick's intestine, and Bifidobacterium was isolated and identified by biochemical and molecular methods. Next, the potential probiotic characterization was assessed. Afterward, the effect of selected isolate and PVP on reducing AFB1 in the medium was studied using ELISA and HPLC. Biochemical and molecular evaluations indicated isolation of Bifidobacterium bifidum strain from chick's intestine. One of the B. bifidum strains was selected for the next steps, which showed potential probiotic characterization and the ability to reduce the concentration of AFB1 in the medium (50% reduction). When used in combination with PVP showed synergistic effects in reducing the concentration of AFB1 from the medium (up to 90%). In conclusion, it was found that selected B. bifidum strains and PVP could have synergistic effects in reducing AFB1 toxin in a medium up to 90%.
Collapse
Affiliation(s)
- Sorour Aalipanah
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of drug and food control, Pharmaceutical quality assurance research center, Faculty of Pharmacy, Tehran University, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Farid Shariatmadari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Yang Y, Qiu J, Wang X. Exploring the Dynamic of Bacterial Communities in Manila Clam ( Ruditapes philippinarum) During Refrigerated Storage. Front Microbiol 2022; 13:882629. [PMID: 35663902 PMCID: PMC9158497 DOI: 10.3389/fmicb.2022.882629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022] Open
Abstract
Microorganism contamination is one of the most important factors affecting the spoilage and food safety of Manila clams. This study aimed to gain insights into bacterial composition and the dynamic change of bacterial communities on retailed Manila clam during refrigerated storage within the edible period. High-throughput sequencing was conducted to monitor the bacterial population with the prolongation of storage time of Day 0, Day 1, and Day 3. Result demonstrated that phyla of Proteobacteria, Actinobacteriota, Acidobacteriota, and Chloroflexi composed the majority of bacterial communities during the whole observation process. Furthermore, the increase of Proteobacteria showed a positive correlation with the storage time, whereas Acidobacteriota and Chloroflexi continued to decline in storage. For genus annotation, none of genus obtained dominant population in storage. From Day 0 to Day 1, the genera of Streptomyces, Bradyrhizobium, and Mycobacterium significantly increased; meanwhile, 12 genera significantly decreased. Compared with samples at Day 0, a total of 15 genera significantly decreased with the reduced proportion ranging from 0.50 to 4.40% at Day 3. At the end of the storage, the genus Crossiella became the most redundant population. Both the richness and diversity decreased at the start of storage at Day 1, and then slightly increased at Day 3 was observed. Based on the result in this study, strategy targeting the increased bacteria could be tested to improve the consumption quality and safety of refrigerated clam.
Collapse
Affiliation(s)
| | | | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Yang S, Xu W, Tan C, Li M, Li D, Zhang C, Feng L, Chen Q, Jiang J, Li Y, Du Z, Luo W, Li C, Gong Q, Huang X, Du X, Du J, Liu G, Wu J. Heat Stress Weakens the Skin Barrier Function in Sturgeon by Decreasing Mucus Secretion and Disrupting the Mucosal Microbiota. Front Microbiol 2022; 13:860079. [PMID: 35558118 PMCID: PMC9087187 DOI: 10.3389/fmicb.2022.860079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress induced by global warming has damaged the well-being of aquatic animals. The skin tissue plays a crucial role as a defense barrier to protect organism, however, little is known about the effect of heat stress on fish skin, particularly in cold-water fish species. Here, we investigated the effects of mild heat stress (24°C, MS) and high heat stress (28°C, HS) on Siberian sturgeon skin using RNA-seq, histological observation, and microbial diversity analysis. In RNA-seq, 8,819 differentially expressed genes (DEGs) in MS vs. C group and 12,814 DEGs in HS vs. C group were acquired, of which the MS vs. C and HS vs. C groups shared 3,903 DEGs, but only 1,652 DEGs were successfully annotated. The shared DEGs were significantly enriched in pathways associating with mucins synthesis. Histological observation showed that the heat stresses significantly reduced the number of skin mucous cells and induced the damages of epidermis. The microbial diversity analysis elicited that heat stress markedly disrupted the diversity and abundance of skin microbiota by increasing of potential pathogens (Vibrionimonas, Mesorhizobium, and Phyllobacterium) and decreasing of probiotics (Bradyrhizobium and Methylovirgula). In conclusion, this study reveals that heat stress causes adverse effects on sturgeon skin, reflecting in decreasing the mucus secretion and disordering the mucosal microbiota, which may contribute to develop the preventive strategy for heat stress caused by global warming.
Collapse
Affiliation(s)
- Shiyong Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenqiang Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chaolun Tan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Minghao Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Datian Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chaoyang Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Langkun Feng
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianyu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yunkun Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zongjun Du
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Caiyi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangxun Liu
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
9
|
Amillano-Cisneros JM, Hernández-Rosas PT, Gomez-Gil B, Navarrete-Ramírez P, Ríos-Durán MG, Martínez-Chávez CC, Johnston-Monje D, Martínez-Palacios CA, Raggi L. Loss of gut microbial diversity in the cultured, agastric fish, Mexican pike silverside ( Chirostoma estor: Atherinopsidae). PeerJ 2022; 10:e13052. [PMID: 35282279 PMCID: PMC8908885 DOI: 10.7717/peerj.13052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/12/2022] [Indexed: 01/11/2023] Open
Abstract
Teleost fish are the most diverse group of extant vertebrates and have varied digestive anatomical structures and strategies, suggesting they also possess an array of different host-microbiota interactions. Differences in fish gut microbiota have been shown to affect host development, the process of gut colonization, and the outcomes of gene-environment or immune system-microbiota interactions. There is generally a lack of studies on the digestive mechanisms and microbiota of agastric short-intestine fish however, meaning that we do not understand how changes in gut microbial diversity might influence the health of these types of fish. To help fill these gaps in knowledge, we decided to study the Mexican pike silverside (Chirostoma estor) which has a simplified alimentary canal (agastric, short-intestine, 0.7 gut relative length) to observe the diversity and metabolic potential of its intestinal microbiota. We characterized gut microbial populations using high-throughput sequencing of the V3 region in bacterial 16S rRNA genes while searching for population shifts resulting associated with fish development in different environments and cultivation methods. Microbiota samples were taken from the digesta, anterior and posterior intestine (the three different intestinal components) of fish that grew wild in a lake, that were cultivated in indoor tanks, or that were raised in outdoor ponds. Gut microbial diversity was significantly higher in wild fish than in cultivated fish, suggesting a loss of diversity when fish are raised in controlled environments. The most abundant phyla observed in these experiments were Firmicutes and Proteobacteria, particularly of the genera Mycoplasma, Staphylococcus, Spiroplasma, and Aeromonas. Of the 14,161 OTUs observed in this experiment, 133 were found in all groups, and 17 of these, belonging to Acinetobacter, Aeromonas, Pseudomonas, and Spiroplasma genera, were found in all samples suggesting the existence of a core C. estor microbiome. Functional metagenomic prediction of bacterial ecological functions using PICRUSt2 suggested that different intestinal components select for functionally distinct microbial populations with variation in pathways related to the metabolism of amino acids, vitamins, cofactors, and energy. Our results provide, for the first time, information on the bacterial populations present in an agastric, short-gut teleost with commercial potential and show that controlled cultivation of this fish reduces the diversity of its intestinal microbiota.
Collapse
Affiliation(s)
- Jesús Mateo Amillano-Cisneros
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Perla T. Hernández-Rosas
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Bruno Gomez-Gil
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Mazatlán, Sinaloa, Mexico
| | - Pamela Navarrete-Ramírez
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico,Cátedras-CONACYT, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - María Gisela Ríos-Durán
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Carlos Cristian Martínez-Chávez
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Carlos Antonio Martínez-Palacios
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Luciana Raggi
- Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico,Cátedras-CONACYT, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| |
Collapse
|
10
|
Noroozi N, Momtaz H, Tajbakhsh E. Molecular characterization and antimicrobial resistance of
Enterococcus faecalis
isolated from seafood samples. Vet Med Sci 2022; 8:1104-1112. [PMID: 35152566 PMCID: PMC9122428 DOI: 10.1002/vms3.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Enterococcus faecalis is considered an opportunistic foodborne pathogen. The present study aimed to assess the prevalence, antimicrobial resistance, virulence characters, and molecular typing of E. faecalis strains isolated from seafood samples. Methods Two hundred and seventy‐six seafood samples were collected. E. faecalis was isolated from samples using bacterial culture. Furthermore, the disk diffusion assessed their antimicrobial resistance. Also, the distribution of virulence factors was determined using polymerase chain reaction (PCR) assay. Random amplified polymorphic DNA (RAPD) method was used for their molecular typing. Results Fifty‐six of 276 (20.2%) seafood samples were contaminated with E. faecalis. Fish harboured the highest contamination rate (30.0%). Isolates harboured the highest resistance rate towards oxacillin (100%), tetracycline (100%), erythromycin (100%), cefoxitin (89.2%), cefazolin (87.5%), trimethoprim‐sulfamethoxazole (85.7%), rifampin (69.6%), clindamycin (69.6%), and gentamicin (64.2%) antimicrobials. Efa (100%), ebpA (89.2%), ebpB (58.9%), ebpC (53.5%), and esp (51.7%) were the most commonly detected virulence factors among E. faecalis isolates. RAPD–PCR analysis showed 11 different molecular clusters considering the closeness of more than 80%. Conclusion Seafood samples were considered reservoirs of virulence and resistant E. faecalis strains. Different molecular clusters of isolates may reflect their diverse sources of contamination.
Collapse
Affiliation(s)
- Neda Noroozi
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Hassan Momtaz
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Elahe Tajbakhsh
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| |
Collapse
|
11
|
Composition and diversity of gut microbiota in Pomacea canaliculata in sexes and between developmental stages. BMC Microbiol 2021; 21:200. [PMID: 34210255 PMCID: PMC8252327 DOI: 10.1186/s12866-021-02259-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/10/2021] [Indexed: 01/16/2023] Open
Abstract
Background The apple snail, Pomacea canaliculata, is one of the world’s 100 worst invasive alien species and vector of some pathogens relevant to human health. Methods On account of the importance of gut microbiota to the host animals, we compared the communities of the intestinal microbiota from P. canaliculata collected at different developmental stages (juvenile and adult) and different sexes by using high-throughput sequencing. Results The core bacteria phyla of P. canaliculata gut microbiota included Tenericutes (at an average relative abundance of 45.7 %), Firmicutes (27.85 %), Proteobacteria (11.86 %), Actinobacteria (4.45 %), and Cyanobacteria (3.61 %). The female group possessed the highest richness values, whereas the male group possessed the lowest bacterial richness and diversity compared with the female and juvenile group. Both the developmental stages and sexes had important effects on the composition of the intestinal microbiota of P. canaliculata. By LEfSe analysis, microbes from the phyla Proteobacteria and Actinobacteria were enriched in the female group, phylum Bacteroidetes was enriched in the male group, family Mycoplasmataceae and genus Leuconostoc were enriched in the juvenile group. PICRUSt analysis predicted twenty-four metabolic functions in all samples, including general function prediction, amino acid transport and metabolism, transcription, replication, recombination and repair, carbohydrate transport and metabolism, etc. Conclusions This study provided a general understanding of the diversity characteristics of intestinal microbial communities of P. canaliculata, and indicated that developmental stage and gender could both influence the intestinal microbes of P. canaliculata. Further study may focus on the interaction between the gut microbiota and their host. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02259-2.
Collapse
|
12
|
Banasiewicz J, Granada CE, Lisboa BB, Grzesiuk M, Matuśkiewicz W, Bałka M, Schlindwein G, Vargas LK, Passaglia LMP, Stępkowski T. Diversity and phylogenetic affinities of Bradyrhizobium isolates from Pampa and Atlantic Forest Biomes. Syst Appl Microbiol 2021; 44:126203. [PMID: 33857759 DOI: 10.1016/j.syapm.2021.126203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.
Collapse
Affiliation(s)
- Joanna Banasiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Camille E Granada
- Universidade do Vale do Taquari - UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil
| | - Bruno B Lisboa
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Małgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Weronika Matuśkiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mateusz Bałka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gilson Schlindwein
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciano K Vargas
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
13
|
Araújo AJG, Grassotti TT, Frazzon APG. Characterization of Enterococcus spp. isolated from a fish farming environment in southern Brazil. BRAZ J BIOL 2020; 81:954-961. [PMID: 33053131 DOI: 10.1590/1519-6984.232503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/27/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of present study is to characterize the resistance and virulence profile of enterococci isolated from aquaculture excavated ponds and masonry tanks (6 samples) in southern Brazil. Samples were cultured in selective medium, 10 colonies were randomly selected from each sample, which were identified by MALDI-TOF and tested against 13 antimicrobials. The presence of resistance (tetL, tetM, tetS, ermB and msrC) and virulence (ace, esp, agg, cylA and gelE) genes were determined by PCR. A total of 79 enterococci were identified, and Entecococcus faecalis (44.3%) and E. casseliflavus (36.7%) were the most prevalent species isolated. Sixty-five strains (82.3%) were resistant to at least one of the antimicrobials tested, whereas 27 (34.2%) strains were multiresistant. The overall percentages of antimicrobial resistant isolates were: 58.2% to rifampicin, 40.5% to fluoroquinolones, 36.7% to erythromycin and 30.4% to tetracycline. The tetL and tetM genes were found in 57.7% of the tetracycline-resistant strains; and msrC in 31.01% of erythromycin-resistant strains. The most frequently detected virulence factors were ace and gelE genes. Although limited to a single farm, these data suggest that aquaculture may be a reservoir of resistant and virulent enterococci. This study is the first step towards enhancing our understandingof distribution, resistance and virulence profile in enterococci isolated from fish farming environments in the south Brazil.
Collapse
Affiliation(s)
- A J G Araújo
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil
| | - T T Grassotti
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil
| | - A P G Frazzon
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil.,Univerisidade Federal do Rio Grande do Sul - UFRGS, Instituto de Ciências Básicas da Saúde - ICBS, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, RS, Brasil
| |
Collapse
|
14
|
Pereira SA, Jesus GFA, Pereira GV, Silva BC, Sá LS, Martins ML, Mouriño JLP. The Chelating Mineral on Organic Acid Salts Modulates the Dynamics and Richness of the Intestinal Microbiota of a Silver Catfish Rhamdia quelen. Curr Microbiol 2020; 77:1483-1495. [PMID: 32236647 DOI: 10.1007/s00284-020-01962-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/21/2020] [Indexed: 02/01/2023]
Abstract
The aim of this study was to evaluate the influence of the chelating mineral on propionic acid, calcium or sodium on the composition, dynamics and richness of the intestinal microbiota of a native silver catfish Rhamdia quelen through high-throughput sequencing (HTS). A total of 225 fish (8.43 ± 0.18 g) were distributed in tanks, 15 fish per tank in five groups with three replicates each: Control, Ca-propionate 0.25% (Ca0.25%) Ca-propionate 1% (Ca1%), Na-propionate 0.25% (Na0.25%) and Na-propionate 1% (Na1%). The feed was provided four times a day for 60 days. After experimental period, the fish were fasted for 24 h and the intestine was aseptically collected, pooled by treatment, and fixed in pure absolute ethanol for subsequent DNA extraction and HTS. The HTS showed that the supplementation of the propionic acid chelated to the mineral calcium or sodium in the different concentrations increased the operational taxonomic units and richness in comparison to control group. The main phyla found were Fusobacteria, Firmicutes, Proteobacteria and Bacteroides. Both the fusobacteria and the genus Cetobacterium, especially C. somerae, were positively modulated with Ca0.25% and Na1% supplementation. It can be emphasized that supplementation with calcium or sodium propionate at different concentrations changed the natural microbiota of R. quelen.
Collapse
Affiliation(s)
- Scheila A Pereira
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianópolis, SC, 88040-900, Brazil.
| | - Gabriel F A Jesus
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianópolis, SC, 88040-900, Brazil
| | - Gabriella V Pereira
- Fish Nutrition and Health Research Group, School of Biological Sciences, Faculty of Science and Environment, Plymouth University, Plymouth, UK
| | - Bruno C Silva
- EPAGRI - Company of Agricultural Research and Rural Extension of Santa Catarina, Rua Joaquim Garcia, s/n, Camboriú, SC, 88340-000, Brazil
| | - Lúvia S Sá
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianópolis, SC, 88040-900, Brazil
| | - Maurício L Martins
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianópolis, SC, 88040-900, Brazil
| | - José L P Mouriño
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
15
|
Yamashita MM, Ferrarezi JV, Pereira GDV, Bandeira G, Côrrea da Silva B, Pereira SA, Martins ML, Pedreira Mouriño JL. Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microb Pathog 2019; 139:103897. [PMID: 31786258 DOI: 10.1016/j.micpath.2019.103897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
The aim of this study was to obtain an autochthonous probiotic candidate strain from the silver catfish (Rhamdia quelen) intestinal tract, comparing its in vivo performance with an allochthonous probiotic isolated from another fish, Nile tilapia (Oreochromis niloticus), in a growth performance assay. The study was divided in two parts: in vitro and in vivo assay followed by challenge with A. hydrophila. In the in vitro assay, the species-specific isolated strain Lactococcus lactis presented characteristics such as: absence of hemolysis, antagonism to bacterial pathogens isolated from freshwater fish, and considerable speed of duplication. In the in vivo trial, both fish supplemented with autochthonous or allochthonous strains presented an increase the final concentration of lactic acid bacteria in the intestinal tract of the fish after 60 days of dietary supplementation reaching concentrations of 1 × 107 CFU g-1 and 4 × 107 UFC.g-1, respectively. In addition, the autochthonous strain increased the mean corpuscular hemoglobin (MCH) of the treated animals, but no significant differences were observed in the other hemato-immunological and zootechnical parameters between treatments. After challenge with Aeromonas hydrophila, only animals that received autochthonous probiotic supplementation showed an increase in the serum total immunoglobulin concentration, but not enough to observe a significant difference in the survival rate between the treatments. Dietary supplementation of the probiotic allochthonous strain did not demonstrate any effects superior to those of the isolated autochthonous strain. Although the autochthonous strain did not present significant improvements in the other parameters evaluated in this study, it was able to inhibit bacterial pathogens in vitro, to increase the final concentration of LAB's and the amount of immunoglobulin after experimental challenge, demonstrating probiotic potential. This study demonstrated for the first time the isolation and in vivo use of an autochthonous probiotic strain isolated from silver catfish, as well as its comparative evaluation with the performance of allochthonous probiotic.
Collapse
Affiliation(s)
- Marcela Maia Yamashita
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil.
| | - José Victor Ferrarezi
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil
| | - Gabriella do Vale Pereira
- Aquatic Animal Nutrition and Health Research Group, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK
| | - Guerino Bandeira
- Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bruno Côrrea da Silva
- EPAGRI - Company of Agricultural Research and Rural Extension of Santa Catarina, Rod. Antônio Hell, 6800, 88318-112, Itajaí, SC, Brazil
| | - Scheila Anelise Pereira
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil
| | - Maurício Laterça Martins
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil
| | - José Luiz Pedreira Mouriño
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
16
|
Xiao Joe JT, Chiou PP, Kuo CY, Jia Lin JH, Wu JL, Lu MW. The microbiota profile and transcriptome analysis of immune response during metamorphosis stages in orange spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 90:141-149. [PMID: 31055020 DOI: 10.1016/j.fsi.2019.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Metamorphosis is a transformation process in larval development associated with changes in morphological and physiological features, including the immune system. The gastrointestinal tract harbors a plethora of bacteria, which might affect the digestion and absorption of nutrients, immunity, and gut-brain crosstalk in the host. In this study, we have performed metagenomic and transcriptomic analyses on the intestines of grouper at the pre-, mid- and post-metamorphosis stages. The sequencing data of 16S rRNA gene showed drastic changes in the microbial communities at different developmental stages. The transcriptomic data revealed that the leukocyte transendothelial migration and the phagosome pathways might play important roles in mediating immunity in grouper at the three developmental stages. This information will increase our understanding of the metamorphosis process in grouper larvae, and shed light on the development of antimicrobial strategy during larval development.
Collapse
Affiliation(s)
- Joan Tang Xiao Joe
- Doctoral Degree Program in Marine Biotechnology, The College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Pinwen Peter Chiou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chia-Yu Kuo
- Doctoral Degree Program in Marine Biotechnology, The College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | | | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ming-Wei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
17
|
Assessing inhibitory activity of probiotic culture supernatants against Pseudomonas aeruginosa: a comparative methodology between agar diffusion, broth culture and microcalorimetry. World J Microbiol Biotechnol 2019; 35:49. [DOI: 10.1007/s11274-019-2621-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
|
18
|
Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK. Lactic Acid Bacteria in Finfish-An Update. Front Microbiol 2018; 9:1818. [PMID: 30147679 PMCID: PMC6096003 DOI: 10.3389/fmicb.2018.01818] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
A complex and dynamic community of microorganisms, play important roles within the fish gastrointestinal (GI) tract. Of the bacteria colonizing the GI tract, are lactic acid bacteria (LAB) generally considered as favorable microorganism due to their abilities to stimulating host GI development, digestive function, mucosal tolerance, stimulating immune response, and improved disease resistance. In early finfish studies, were culture-dependent methods used to enumerate bacterial population levels within the GI tract. However, due to limitations by using culture methods, culture-independent techniques have been used during the last decade. These investigations have revealed the presence of Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Streptococcus, Carnobacterium, Weissella, and Pediococcus as indigenous species. Numerous strains of LAB isolated from finfish are able to produce antibacterial substances toward different potential fish pathogenic bacteria as well as human pathogens. LAB are revealed be the most promising bacterial genera as probiotic in aquaculture. During the decade numerous investigations are performed on evaluation of probiotic properties of different genus and species of LAB. Except limited contradictory reports, most of administered strains displayed beneficial effects on both, growth-and reproductive performance, immune responses and disease resistance of finfish. This eventually led to industrial scale up and introduction LAB-based commercial probiotics. Pathogenic LAB belonging to the genera Streptococcus, Enterococcus, Lactobacillus, Carnobacterium, and Lactococcus have been detected from ascites, kidney, liver, heart, and spleen of several finfish species. These pathogenic bacteria will be addressed in present review which includes their impacts on finfish aquaculture, possible routes for treatment. Finfish share many common structures and functions of the immune system with warm-blooded animals, although apparent differences exist. This similarity in the immune system may result in many shared LAB effects between finfish and land animals. LAB-fed fish show an increase in innate immune activities leading to disease resistances: neutrophil activity, lysozyme secretion, phagocytosis, and production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α). However, some LAB strains preferentially induces IL-10 instead, a potent anti-inflammatory cytokine. These results indicate that LAB may vary in their immunological effects depending on the species and hosts. So far, the immunological studies using LAB have been focused on their effects on innate immunity. However, these studies need to be further extended by investigating their involvement in the modulation of adaptive immunity. The present review paper focuses on recent findings in the field of isolation and detection of LAB, their administration as probiotic in aquaculture and their interaction with fish immune responses. Furthermore, the mode of action of probiotics on finfish are discussed.
Collapse
Affiliation(s)
- Einar Ringø
- Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Bo Ram Beck
- School of Life Science, Handong University, Pohang, South Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, Pohang, South Korea
| |
Collapse
|
19
|
Stępkowski T, Banasiewicz J, Granada CE, Andrews M, Passaglia LMP. Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae. Genes (Basel) 2018. [PMID: 29538303 PMCID: PMC5867884 DOI: 10.3390/genes9030163] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. This indicates that the capacity for nodulation of Genisteae spp. has evolved independently in various symbiotic gene clades, and that it has not been a long-multi-step process. The exception is Bradyrhizobium Clade II, which unlike other clades comprises strains that are specialized in nodulation of Genisteae, but also Loteae spp. Presumably, Clade II represents an example of long-lasting co-evolution of bradyrhizobial symbionts with their legume hosts.
Collapse
Affiliation(s)
- Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Joanna Banasiewicz
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Camille E Granada
- Universidade do Vale do Taquari-UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil.
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|