1
|
Han M, Li X, Wang X, Liu D, Fu S, Xu W, Li W, Zhang H. Preparation of polyhydroxyalkanoate-based magnetic microspheres for carbonyl reductase purification and immobilization. Int J Biol Macromol 2023; 253:126814. [PMID: 37690644 DOI: 10.1016/j.ijbiomac.2023.126814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
A polyhydroxyalkanoate (PHA) magnetic microsphere was designed for one-step purification and immobilization of a novel carbonyl reductase (RLSR5) from recombinant Escherichia coli lysate. The hydrophobic core of this microsphere was composed of a highly biocompatible polymer, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), in which magnetic Fe3O4 particles were embedded during solvent evaporation. The hydrophilic shell of the fusion protein formed by PHA particle-binding protein (PhaP) and RLSR5 (PR) was expressed in recombinant E. coli. The magnetic core of Fe3O4@PHBHHx directly purified the hydrophilic shell from the E. coli lysate, and the two self-assembled to form Fe3O4@PHBHHx-PR through hydrophobic and hydrophilic interactions, eliminating the separation of the fusion protein. The microstructure, magnetic properties, morphology, size, and dispersion of Fe3O4@PHBHHx-PR were investigated by XRD, VSM, SEM, TEM, elemental mapping and DLS. It was found that Fe3O4@PHBHHx-PR correctly assembled, with a well dispersed spherical structure at the nanoscale and superparamagnetism properties. The amount of RLSR5 immobilized on PHA microspheres reached 121.9 mg/g. The Fe3O4@PHBHHx-PR was employed to synthesize (R)-tolvaptan with 99 % enantiomeric excess and 97 % bioconversion efficiency, and the catalyst maintained 78.6 % activity after 10 recovery cycles. These PHA magnetic microspheres are versatile carriers for enzyme immobilization and demonstrate improved stability and reusability of the free enzyme.
Collapse
Affiliation(s)
- Mengnan Han
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Xiaozheng Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Xuming Wang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Dexu Liu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Shuangqing Fu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Wenzhi Xu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| | - Honglei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Li X, Jiang J, Li X, Liu D, Han M, Li W, Zhang H. Characterization and Application of a Novel Glucose Dehydrogenase with Excellent Organic Solvent Tolerance for Cofactor Regeneration in Carbonyl Reduction. Appl Biochem Biotechnol 2023; 195:7553-7567. [PMID: 37014512 DOI: 10.1007/s12010-023-04432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
An efficient cofactor regeneration system has been developed to provide a hydride source for the preparation of optically pure alcohols by carbonyl reductase-catalyzed asymmetric reduction. This system employed a novel glucose dehydrogenase (BcGDH90) from Bacillus cereus HBL-AI. The gene encoding BcGDH90 was found through the genome-wide functional annotation. Homology-built model study revealed that BcGDH90 was a homo-tetramer, and each subunit was composed of βD-αE-αF-αG-βG motif, which was responsible for substrate binding and tetramer formation. The gene of BcGDH90 was cloned and expressed in Escherichia coli. The recombinant BcGDH90 exhibited maximum activity of 45.3 U/mg at pH 9.0 and 40 °C. BcGDH90 showed high stability in a wide pH range of 4.0-10.0 and was stable after the incubation at 55 °C for 5 h. BcGDH90 was not a metal ion-dependent enzyme, but Zn2+ could seriously inhibit its activity. BcGDH90 displayed excellent tolerance to 90% of acetone, methanol, ethanol, n-propanol, and isopropanol. Furthermore, BcGDH90 was applied to regenerate NADPH for the asymmetric biosynthesis of (S)-(+)-1-phenyl-1,2-ethanediol ((S)-PED) from hydroxyacetophenone (2-HAP) with high concentration, which increased the final efficiency by 59.4%. These results suggest that BcGDH90 is potentially useful for coenzyme regeneration in the biological reduction.
Collapse
Affiliation(s)
- Xiaozheng Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Junpo Jiang
- College of Life Science, Microbial Technology Innovation Center for Feed of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Xinyue Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Dexu Liu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Mengnan Han
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Honglei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Tang Y, Xiao D, Liu C. Two-Step Epimerization of Deoxynivalenol by Quinone-Dependent Dehydrogenase and Candida parapsilosis ACCC 20221. Toxins (Basel) 2023; 15:toxins15040286. [PMID: 37104224 PMCID: PMC10146952 DOI: 10.3390/toxins15040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Deoxynivalenol (DON), one of the main mycotoxins with enteric toxicity, genetic toxicity, and immunotoxicity, and is widely found in corn, barley, wheat, and rye. In order to achieve effective detoxification of DON, the least toxic 3-epi-DON (1/357th of the toxicity of DON) was chosen as the target for degradation. Quinone-dependent dehydrogenase (QDDH) reported from Devosia train D6-9 detoxifies DON by converting C3-OH to a ketone group with toxicity of less than 1/10 that of DON. In this study, the recombinant plasmid pPIC9K-QDDH was constructed and successfully expressed in Pichia pastoris GS115. Within 12 h, recombinant QDDH converted 78.46% of the 20 μg/mL DON to 3-keto-DON. Candida parapsilosis ACCC 20221 was screened for its activity in reducing 86.59% of 3-keto-DON within 48 h; its main products were identified as 3-epi-DON and DON. In addition, a two-step method was performed for epimerizing DON: 12 h catalysis by recombinant QDDH and 6 h transformation of the C. parapsilosis ACCC 20221 cell catalyst. The production rates of 3-keto-DON and 3-epi-DON were 51.59% and 32.57%, respectively, after manipulation. Through this study, effective detoxification of 84.16% of DON was achieved, with the products being mainly 3-keto-DON and 3-epi-DON.
Collapse
Affiliation(s)
- Yuqian Tang
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou 510640, China
| | - Dingna Xiao
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou 510640, China
| | - Chendi Liu
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou 510640, China
| |
Collapse
|
4
|
Characterization of four diol dehydrogenases for enantioselective synthesis of chiral vicinal diols. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Lu Y, Dai H, Cheng P, Shi H, Tang L, Sun X, Ou Z. Regenerated coenzyme-based preparation of bienzyme-polymer nanoconjugates and their applications for the synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Wang L, Song W, Wang B, Zhang Y, Xu X, Wu J, Gao C, Liu J, Chen X, Chen J, Liu L. One-Pot Enzymatic–Chemical Cascade Route for Synthesizing Aromatic α-Hydroxy Ketones. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Wei Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 360015, P. R. China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
7
|
Wei P, Chao P, Wang YY, Li DL, Zou QJ, Zong MH, Lou WY. Marked improvement in the asymmetric reduction of 2-hydroxyacetophenone with mut-AcCR in a biphasic system. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Han MN, Wang XM, Pei CH, Zhang C, Xu Z, Zhang HL, Li W. Green and scalable synthesis of chiral aromatic alcohols through an efficient biocatalytic system. Microb Biotechnol 2020; 14:444-452. [PMID: 32476251 PMCID: PMC7936284 DOI: 10.1111/1751-7915.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Chiral aromatic alcohols have received much attention due to their widespread use in pharmaceutical industries. In the asymmetric synthesis processes, the excellent performance of alcohol dehydrogenase makes it a good choice for biocatalysts. In this study, a novel and robust medium‐chain alcohol dehydrogenase RhADH from Rhodococcus R6 was discovered and used to catalyse the asymmetric reduction of aromatic ketones to chiral aromatic alcohols. The reduction of 2‐hydroxyacetophenone (2‐HAP) to (R)‐(‐)‐1‐phenyl‐1,2‐ethanediol ((R)‐PED) was chosen as a template to evaluate its catalytic activity. A specific activity of 110 U mg−1 and a 99% purity of e.e. was achieved in the presence of NADH. An efficient bienzyme‐coupled catalytic system (RhADH and formate dehydrogenase, CpFDH) was established using a two‐phase strategy (dibutyl phthalate and buffer), which highly raised the tolerated substrate concentration (60 g l−1). Besides, a broad range of aromatic ketones were enantioselectively reduced to the corresponding chiral alcohols by this enzyme system with highly enantioselectivity. This system is of the potential to be applied at a commercial scale.
Collapse
Affiliation(s)
- Meng-Nan Han
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Xu-Ming Wang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Chao-Hong Pei
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Chao Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Zhidong Xu
- Shijiazhuang Vince Pharma Tech Co Ltd Fangda Science and Technology Park, 266 Tianshan Street, Shijiazhuang City, China
| | - Hong-Lei Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| | - Wei Li
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, 180 Wusi East Road, Baoding, 071002, China
| |
Collapse
|