1
|
Kawser AQMR, Hoque MN, Rahman MS, Sakif TI, Coffey TJ, Islam T. Unveiling the gut bacteriome diversity and distribution in the national fish hilsa (Tenualosa ilisha) of Bangladesh. PLoS One 2024; 19:e0303047. [PMID: 38691556 PMCID: PMC11062526 DOI: 10.1371/journal.pone.0303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
The field of fish microbiome research has rapidly been advancing, primarily focusing on farmed or laboratory fish species rather than natural or marine fish populations. This study sought to reveal the distinctive gut bacteriome composition and diversity within the anadromous fish species Tenualosa ilisha (hilsa), which holds the status of being the national fish of Bangladesh. We conducted an analysis on 15 gut samples obtained from 15 individual hilsa fishes collected from three primary habitats (e.g., freshwater = 5, brackish water = 5 and marine water = 5) in Bangladesh. The analysis utilized metagenomics based on 16S rRNA gene sequencing targeting the V3-V4 regions. Our comprehensive identification revealed a total of 258 operational taxonomic units (OTUs). The observed OTUs were represented by six phyla, nine classes, 19 orders, 26 families and 40 genera of bacteria. Our analysis unveiled considerable taxonomic differences among the habitats (freshwater, brackish water, and marine water) of hilsa fishes, as denoted by a higher level of shared microbiota (p = 0.007, Kruskal-Wallis test). Among the identified genera in the gut of hilsa fishes, including Vagococcus, Morganella, Enterobacter, Plesiomonas, Shigella, Clostridium, Klebsiella, Serratia, Aeromonas, Macrococcus, Staphylococcus, Proteus, and Hafnia, several are recognized as fish probiotics. Importantly, some bacterial genera such as Sinobaca, Synechococcus, Gemmata, Serinicoccus, Saccharopolyspora, and Paulinella identified in the gut of hilsa identified in this study have not been reported in any aquatic or marine fish species. Significantly, we observed that 67.50% (27/40) of bacterial genera were found to be common among hilsa fishes across all three habitats. Our findings offer compelling evidence for the presence of both exclusive and communal bacteriomes within the gut of hilsa fishes, exhibiting potential probiotic properties. These observations could be crucial for guiding future microbiome investigations in this economically significant fish species.
Collapse
Affiliation(s)
- A. Q. M. Robiul Kawser
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia, United States of America
| | - Tracey J. Coffey
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
2
|
Biswas S, Foysal MJ, Mannan A, Sharifuzzaman SM, Tanzina AY, Tanni AA, Sharmen F, Hossain MM, Chowdhury MSN, Tay ACY, Islam SMR. Microbiome pattern and diversity of an anadromous fish, hilsa shad (Tenualosa ilisha). Mol Biol Rep 2023; 51:38. [PMID: 38158480 DOI: 10.1007/s11033-023-08965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The host-microbe interactions are complex, dynamic and context-dependent. In this regard, migratory fish species like hilsa shad (Tenualosa ilisha), which migrates from seawater to freshwater for spawning, provides a unique system for investigating the microbiome under an additional change in fish's habitat. This work was undertaken to detect taxonomic variation of microbiome and their function in the migration of hilsa. METHODS AND RESULTS The study employed 16S rRNA amplicon-based metagenomic analysis to scrutinize bacterial diversity in hilsa gut, skin mucus and water. Thus, a total of 284 operational taxonomic units (OTUs), 9 phyla, 35 orders and 121 genera were identified in all samples. More than 60% of the identified bacteria were Proteobacteria with modest abundance (> 5%) of Firmicutes, Bacteroidetes and Actinobacteria. Leucobacter in gut and Serratia in skin mucus were the core bacterial genera, while Acinetobacter, Pseudomonas and Psychrobacter exhibited differential compositions in gut, skin mucus and water. CONCLUSIONS Representative fresh-, brackish- and seawater samples of hilsa habitats were primarily composed of Vibrio, Serratia and Psychrobacter, and their diversity in seawater was significantly higher (P < 0.05) than freshwater. Overall, salinity and water microbiota had an influence on the microbial composition of hilsa shad, contributing to host metabolism and adaptation processes. This pioneer exploration of hilsa gut and skin mucus bacteria across habitats will advance our insights into microbiome assembly in migratory fish populations.
Collapse
Affiliation(s)
- Sabuj Biswas
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Afsana Yeasmin Tanzina
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Afroza Akter Tanni
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Farjana Sharmen
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Md Mobarok Hossain
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | | | - Alfred Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - S M Rafiqul Islam
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh.
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Disease Biology and Molecular Epidemiology (dBme) Research Group, Biotechnology Research and Innovation Centre (BRIC), Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh.
| |
Collapse
|
3
|
Salgueiro V, Manageiro V, Rosado T, Bandarra NM, Botelho MJ, Dias E, Caniça M. Snapshot of resistome, virulome and mobilome in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166351. [PMID: 37604365 DOI: 10.1016/j.scitotenv.2023.166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including blaTEM-1B, blaFOX-18, aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal
| | - Maria João Botelho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal; Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Elsa Dias
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
4
|
Islam T, Hoque MN. Gut and flesh microbiome sequencing of the Bangladesh national fish hilsa ( Tenualosa ilisha). Microbiol Resour Announc 2023; 12:e0044823. [PMID: 37747192 PMCID: PMC10586148 DOI: 10.1128/mra.00448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
The gut and flesh microbiome of the national fish of Bangladesh, Tenualosa ilisha, were analyzed using 16S rRNA gene sequencing. Our findings revealed a significant microbial disparity between sample categories and the habitat of hilsa fish, which will serve as a valuable foundation for further comprehensive studies on the hilsa microbiome.
Collapse
Affiliation(s)
- Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, BSMRAU, Gazipur, Bangladesh
| |
Collapse
|
5
|
Chakraborty M, Acharya D, Dutta TK. Diversity analysis of hilsa (Tenualosa ilisha) gut microbiota using culture-dependent and culture-independent approaches. J Appl Microbiol 2023; 134:lxad208. [PMID: 37699793 DOI: 10.1093/jambio/lxad208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
AIMS The bacterial communities associated with the gastrointestinal (GI) tract are primarily involved in digestion, physiology, and the immune response against pathogenic bacteria for the overall development and health of the host. Hilsa shad (Tenualosa ilisha), a tropical anadromous fish, found predominantly in Bangladesh and India, has so far been poorly investigated for its gut bacterial communities. In this study, both culture-based and metagenomic approaches were used to detect intestinal isolates of hilsa, captured from both freshwater and seawater to investigate the community structure of intestinal microbiota. METHODS AND RESULTS Culture-dependent approach allowed to isolate a total of 23 distinct bacterial species comprising 16 Gram-negative, and 7 Gram-positive isolates, where Proteobacteria and Firmicutes were identified as the two most dominant phyla. While metagenomic approach explored a wide range of important GI bacteria, primarily dominated by Proteobacteria, Firmicutes, and Bacteroidetes, with Proteobacteria and Firmicutes, being the most abundant in freshwater and seawater samples, respectively. CONCLUSIONS A combination of these approaches provided the differential GI-associated bacterial diversity in freshwater and seawater hilsa with the prediction of overall functional potential. IMPACT STATEMENT The study explored the diversity of gut microbiota in hilsa, one of the most preferred nutritious dietary fish, captured from freshwater and seawater habitats, which may encourage to comprehend the composition of the gut microbiome in relation to the migratory behavior and polyunsaturated fatty acid profile of anadromous fish in general.
Collapse
Affiliation(s)
- Megha Chakraborty
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| | - Debarun Acharya
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata 700091, West Bengal, India
| |
Collapse
|
6
|
Williams M, Shamsi S, Williams T, Hernandez-Jover M. Bacteria of Zoonotic Interest Identified on Edible Freshwater Fish Imported to Australia. Foods 2023; 12:foods12061288. [PMID: 36981215 PMCID: PMC10048124 DOI: 10.3390/foods12061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
Previous research has shown that freshwater edible fish imported into Australia are not compliant with Australian importation guidelines and as a result may be high risk for bacterial contamination. In the present study, the outer surface of imported freshwater fish were swabbed, cultured, confirmatory tests performed and antimicrobial patterns investigated. Channidae fish (Sp. A/n = 66) were contaminated with zoonotic Salmonella sp./Staphylococcus aureus (n = 1/66) and other bacteria implicated in cases of opportunistic human infection, these being Pseudomonas sp. (including P. mendocina and P. pseudoalcaligenes (n = 34/66)); Micrococcus sp. (n = 32/66); Comamonas testosteroni (n = 27/66) and Rhizobium radiobacter (n = 3/66). Pangasiidae fish (Species B/n = 47) were contaminated with zoonotic Vibrio fluvialis (n = 10/47); Salmonella sp. (n = 6/47) and environmental bacteria Micrococcus sp. (n = 3/47). One sample was resistant to all antimicrobials tested and is considered to be Methicillin Resistant S. aureus. Mud, natural diet, or vegetation identified in Sp. A fish/or packaging were significantly associated with the presence of Pseudomonas spp. The study also showed that visibly clean fish (Sp. B) may harbour zoonotic bacteria and that certain types of bacteria are common to fish groups, preparations, and contaminants. Further investigations are required to support the development of appropriate food safety recommendations in Australia.
Collapse
Affiliation(s)
- Michelle Williams
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: or
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Thomas Williams
- Institute for Future Farming Systems, CQUniversity, Rockhampton, QLD 4701, Australia
| | - Marta Hernandez-Jover
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
7
|
Chouayekh H, Farhat-Khemakhem A, Karray F, Boubaker I, Mhiri N, Abdallah MB, Alghamdi OA, Guerbej H. Effects of Dietary Supplementation with Bacillus amyloliquefaciens US573 on Intestinal Morphology and Gut Microbiota of European Sea Bass. Probiotics Antimicrob Proteins 2023; 15:30-43. [PMID: 35933471 DOI: 10.1007/s12602-022-09974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 01/18/2023]
Abstract
Probiotics or direct-fed microbials (DFM) have proven strong potential for improving aquaculture sustainability. This study aims to evaluate the effects of dietary supplementation with the DFM Bacillus amyloliquefaciens US573 on growth performance, intestinal morphology, and gut microbiota (GM) of European sea bass. For this purpose, healthy fish were divided into two feeding trials in triplicate of 25 fish in each tank. The fish were fed with a control basal diet or a DFM-supplemented diet for 42 days. Results showed that, while no significant effects on growth performance were observed, the length and abundance of villi were higher in the DFM-fed group. The benefic effects of DFM supplementation included also the absence of cysts formation and the increase in number of goblet cells playing essential role in immune response. Through DNA metabarcoding analysis of GM, 5 phyla and 14 major genera were identified. At day 42, the main microbiome changes in response to B. amyloliquefaciens US573 addition included the significant decrease in abundance of Actinobacteria phylum that perfectly correlates with a decrease in Nocardia genus representatives which represent serious threat in marine and freshwater fish. On the contrary, an obvious dominance of Betaproteobacteria associated with the abundance in Variovorax genus members, known for their ability to metabolize numerous substrates, was recorded. Interestingly, Firmicutes, particularly species affiliated to the genus Sporosarcina with recent promising probiotic potential, were identified as the most abundant. These results suggest that B. amyloliquefaciens US573 can be effectively recommended as health-promoting DFM in European sea bass farming.
Collapse
Affiliation(s)
- Hichem Chouayekh
- Department of Biological Sciences, College of Science, University of Jeddah, Asfan Road, 21959, P.O. Box 34, Jeddah, Kingdom of Saudi Arabia. .,Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia.
| | - Ameny Farhat-Khemakhem
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Insaf Boubaker
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Othman A Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Asfan Road, 21959, P.O. Box 34, Jeddah, Kingdom of Saudi Arabia
| | - Hamadi Guerbej
- National Institute of Sea Sciences and Technologies, Monastir, Tunisia
| |
Collapse
|
8
|
Kawser AR, Foysal MJ, Chua EG, Ali MH, Mannan A, Siddik MA, Paul SI, Rahman MM, Tay A. Microbiome data reveal significant differences in the bacterial diversity in freshwater rohu (Labeo rohita) across the supply chain in Dhaka, Bangladesh. Lett Appl Microbiol 2022; 75:813-823. [PMID: 35575585 PMCID: PMC9796611 DOI: 10.1111/lam.13739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 01/01/2023]
Abstract
The present study aimed to characterize and compare the skin and gut microbial communities of rohu at various post-harvest stages of consumption using quantitative real-time polymerase chain reaction and 16S rRNA-based amplicon sequencing. Real-time PCR amplification detected higher copy numbers for coliform bacteria-Escherichia coli, Salmonella enterica and Shigella spp. in the marketed fish-compared to fresh and frozen samples. The 16S rRNA data revealed higher alpha diversity measurements in the skin of fish from different retail markets of Dhaka city. Beta ordination revealed distinct clustering of bacterial OTUs for the skin and gut samples from three different groups. At the phylum level, Proteobacteria was most abundant in all groups except the Fusobacteria in the control fish gut. Although Aeromonas was found ubiquitous in all types of samples, diverse bacterial genera were identified in the marketed fish samples. Nonetheless, low species richness was observed for the frozen fish. Most of the differentially abundant bacteria in the skin samples of marketed fish are opportunistic human pathogens enriched at different stages of postharvest handling and processing. Therefore, considering the microbial contamination in the aquatic environment in Bangladesh, post-harvest handling should be performed with proper methods and care to minimize bacterial transmission into fish.
Collapse
Affiliation(s)
- A.Q.M. Robiul Kawser
- Department of AquacultureBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh,School of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Md Javed Foysal
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh,School of Molecular and Life SciencesCurtin UniversityPerthWAAustralia
| | - Eng Guan Chua
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Md Hazrat Ali
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Adnan Mannan
- Department of Genetic Engineering and BiotechnologyFaculty of Biological SciencesUniversity of ChittagongChattogramBangladesh
| | - Muhammad A.B. Siddik
- Department of Fisheries Biology and GeneticsPatuakhali Science and Technology UniversityPatuakhaliBangladesh
| | - Sulav Indra Paul
- Institute of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Md Mahbubur Rahman
- Institute of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Alfred Tay
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
9
|
Chai Z, Bi H. Capture and identification of bacteria from fish muscle based on immunomagnetic beads and MALDI-TOF MS. Food Chem X 2022; 13:100225. [PMID: 35498980 PMCID: PMC9039919 DOI: 10.1016/j.fochx.2022.100225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
A protocol for the bacterial analysis in fish muscle was developed. Anti-bacterial antibodies modified magnetic beads (MBs) were used to capture bacteria. The bacterial identification accuracy from different complex food matrices was good. The presence of 10 CFU/mL E. coli is still detectable. It is promising to be applied in bacterial analysis to ensure muscle food safety.
In the present study, E. coli was taken as a model bacterium, anti-E. coli functionalized magnetic beads were constructed and used to capture E. coli from aqueous extracts of fish sarcoplasmic protein (FSP) and fish muscle protein of sablefish. The excellency of the reproducibility of the present protocol was demonstrated by capturing E. coli from sablefish FSP extracts. The presence of 10 CFU/mL E. coli is still detectable. A microbial safety test on the surface of fish muscle was successfully performed. The bacterial identification accuracy from samples with different matrices was found to be excellent with RSD = 3%. High specific detection of target bacteria in complex biological samples was testified by spiking Staphylococcus aureus and Klebsiella pneumoniae in samples as interference. Ten biomarker ions were discovered for E. coli’s recognition. It is promising to apply the present protocol in bacterial analysis in muscle food samples to ensure their safety.
Collapse
|
10
|
Nguyen TTT, Foysal MJ, Fotedar R, Gupta SK, Siddik MAB, Tay CY. The Effect of Two Dietary Protein Sources on Water Quality and the Aquatic Microbial Communities in Marron (Cherax cainii) Culture. MICROBIAL ECOLOGY 2021; 82:299-308. [PMID: 33432372 DOI: 10.1007/s00248-021-01681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Feeding freshwater crayfish species with different diets not only affects the water quality but also induces the abundance of various microbial communities in their digestive tracts. In this context, very limited research has been undertaken to understand the impacts of various protein incorporated aqua-diets on the characteristics of water and its microbial communities. In this study, we have critically analysed the water quality parameters including pH, dissolved oxygen, nitrate, nitrite, ammonia and phosphorus, as well as bacterial communities under marron (Cherax cainii) aquaculture, fed fishmeal (FM) and poultry by-product meal (PBM)-based diets for 60 days. The results unveiled that over the time, feeding has significant impacts on organic waste accumulation, especially ammonia, nitrate, nitrite and phosphate, while no effects were observed on pH and dissolved oxygen. Analysis of 16S rRNA sequence data of water sample indicated significant (P < 0.05) shift of microbial abundance in post-fed FM and PBM water with the evidence of microbial transmission from the gut of marron. Post-fed marron resulted in a significant correlation of Hafnia, Enterobacter, Candidatus Bacilloplasma and Aquitella with the quality and microbial population of water. The results of this study generated valuable knowledge database of microbes-water relationship for better health management practices and production of marron aquaculture fed with FM and PBM diets in under restricted feeding regime with the feeding ratios provided.
Collapse
Affiliation(s)
- Thi Thu Thuy Nguyen
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Experimental Biology, Research Institute for Aquaculture No.2, Cần Thơ, Vietnam
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India.
| | - Muhammad A B Siddik
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Cerdeira L, Monte DFM, Fuga B, Sellera FP, Neves I, Rodrigues L, Landgraf M, Lincopan N. Genomic insights of Klebsiella pneumoniae isolated from a native Amazonian fish reveal wide resistome against heavy metals, disinfectants, and clinically relevant antibiotics. Genomics 2020; 112:5143-5146. [PMID: 32916256 PMCID: PMC7758709 DOI: 10.1016/j.ygeno.2020.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 12/05/2022]
Abstract
A multidrug-resistant CTX-M-15-producing Klebsiella pneumoniae (KpP1 strain) was isolated from a native Amazonian fish (Brachyplatystoma filamentosum) at the Brazilian Amazon. The strain was identified by MALDI-TOF. The genome was extracted, purified and a Nextera DNA Flex library was prepared and sequenced by Illumina platform. The sequenced genome was de novo assembled using Unicycler and in silico prediction accomplished by curated bioinformatics tools. The size of the genome is 5.6 Mb with 5715 genes. Whole-genome sequencing analysis revealed the presence of wide resistome, with genes conferring resistance to clinically relevant antibiotics, heavy metals and disinfectants. The KpP1 strain was assigned to the sequence type ST3827, KL111 (wzi113) and O3b locus. Native freshwater fish sold in wet markets of the Amazonian region could be an important vehicle for transmission of multidrug-resistant bacteria to humans. This study may give genomic insights on the spread of critical-priority WHO pathogens in a One Health context. A multidrug-resistant Klebsiella pneumoniae was isolated from a native Amazonian fish. Genomic analysis revealed that K. pneumoniae belonged to ST3827, KL111 and O3b locus. A wide resistome against heavy metals, disinfectants, and relevant antibiotics was predicted. ESBL production was associated with the blaCTX-M-15 gene carried on an IncFII(K) plasmid. Native freshwater fishes could be a vehicle for transmission of critical-priority pathogens.
Collapse
Affiliation(s)
- Louise Cerdeira
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Infectious Diseases, Central Clinical School, Monash University, Australia; One Health Brazilian Resistance Project (OneBR), Brazil.
| | - Daniel F M Monte
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ingrith Neves
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Larissa Rodrigues
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Khurana H, Singh DN, Singh A, Singh Y, Lal R, Negi RK. Gut microbiome of endangered Tor putitora (Ham.) as a reservoir of antibiotic resistance genes and pathogens associated with fish health. BMC Microbiol 2020; 20:249. [PMID: 32787773 PMCID: PMC7425606 DOI: 10.1186/s12866-020-01911-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/19/2020] [Indexed: 01/16/2023] Open
Abstract
Background Tor putitora, the largest freshwater fish of the Indian subcontinent, is an endangered species. Several factors have been attributed towards its continuous population decrease, but very little is known about the gut microbiome of this fish. Also, the fish gut microbiome serves as a reservoir of virulence factors and antibiotic resistance determinants. Therefore, the shotgun metagenomic approach was employed to investigate the taxonomic composition and functional potential of microbial communities present in the gut of Tor putitora, as well as the detection of virulence and antibiotic resistance genes in the microbiome. Results The analysis of bacterial diversity showed that Proteobacteria was predominant phylum, followed by Chloroflexi, Bacteroidetes, and Actinobacteria. Within Proteobacteria, Aeromonas and Caulobacter were chiefly present; also, Klebsiella, Escherichia, and plant symbionts were noticeably detected. Functional characterization of gut microbes endowed the virulence determinants, while surveillance of antibiotic resistance genes showed the dominance of β-lactamase variants. The antibiotic-resistant Klebsiella pneumoniae and Escherichia coli pathovars were also detected. Microbial genome reconstruction and comparative genomics confirmed the presence of Aeromonads, the predominant fish pathogens. Conclusions Gut microbiome of endangered Tor putitora consisted of both commensals and opportunistic pathogens, implying that factors adversely affecting the non-pathogenic population would allow colonization and proliferation of pathogens causing diseased state in asymptomatic Tor putitora. The presence of virulence factors and antibiotic resistance genes suggested the potential risk of dissemination to other bacteria due to horizontal gene transfer, thereby posing a threat to fish and human health. The preservation of healthy gut microflora and limited use of antibiotics are some of the prerequisites for the conservation of this imperilled species.
Collapse
Affiliation(s)
- Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.,Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Durgesh Narain Singh
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.,Laboratory of Microbial Pathogenesis, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anoop Singh
- Laboratory of Microbial Pathogenesis, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Yogendra Singh
- Laboratory of Microbial Pathogenesis, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India. .,Present address: The Energy and Resources Institute Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
13
|
Krotman Y, Yergaliyev TM, Alexander Shani R, Avrahami Y, Szitenberg A. Dissecting the factors shaping fish skin microbiomes in a heterogeneous inland water system. MICROBIOME 2020; 8:9. [PMID: 32005134 PMCID: PMC6995075 DOI: 10.1186/s40168-020-0784-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/05/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fish skin microbiomes are rarely studied in inland water systems, in spite of their importance for fish health and ecology. This is mainly because fish species distribution often covaries with other biotic and abiotic factors, complicating the study design. We tackled this issue in the northern part of the Jordan River system, in which a few fish species geographically overlap, across steep gradients of water temperature and salinity. RESULTS Using 16S rRNA metabarcoding, we studied the water properties that shape the skin bacterial communities, and their interaction with fish taxonomy. To better characterise the indigenous skin community, we excluded bacteria that were equally abundant in the skin samples and in the water samples, from our analysis of the skin samples. With this in mind, we found alpha diversity of the skin communities to be stable across sites, but higher in benthic loaches, compared to other fish. Beta diversity was found to be different among sites and to weakly covary with the dissolved oxygen, when treated skin communities were considered. In contrast, water temperature and conductivity were strong factors explaining beta diversity in the untreated skin communities. Beta diversity differences between co-occurring fish species emerged only for the treated skin communities. Metagenomics predictions highlighted the microbiome functional implications of excluding the water community contamination from the fish skin communities. Finally, we found that human-induced eutrophication promotes dysbiosis of the fish skin community, with signatures relating to fish health. CONCLUSIONS Consideration of the background water microbiome when studying fish skin microbiomes, across varying fish species and water properties, exposes patterns otherwise undetected and highlight among-fish-species differences. We suggest that sporadic nutrient pollution events, otherwise undetected, drive fish skin communities to dysbiosis. This finding is in line with a recent study, showing that biofilms capture sporadic pollution events, undetectable by interspersed water monitoring. Video abstract.
Collapse
Affiliation(s)
| | - Timur M Yergaliyev
- Dead Sea and Arava Science Center, Dead Sea Branch, 8693500, Masada, Israel
| | | | - Yosef Avrahami
- Dead Sea and Arava Science Center, Dead Sea Branch, 8693500, Masada, Israel
| | - Amir Szitenberg
- Dead Sea and Arava Science Center, Dead Sea Branch, 8693500, Masada, Israel.
| |
Collapse
|
14
|
Foysal MJ, Momtaz F, Kawsar AQMR, Rahman MM, Gupta SK, Tay ACY. Next-generation sequencing reveals significant variations in bacterial compositions across the gastrointestinal tracts of the Indian major carps, rohu (Labeo rohita), catla (Catla catla) and mrigal (Cirrhinus cirrhosis). Lett Appl Microbiol 2019; 70:173-180. [PMID: 31782823 DOI: 10.1111/lam.13256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
Bacterial communities strongly influence the digestion, health and immune status of fish. This study investigates the microbial distribution of the anterior, middle and distal gut sections of three economically important carp species in Bangladesh, rohu, catla and mrigal (commonly known as Indian major carps), using 16S rRNA-based Illumina sequencing technology. The alpha-diversity measurement with one-way ANOVA indicated high species richness, Shannon and Simpson indices in the middle and distal gut, while the anterior gut of IMCs had the lowest diversity. At the phylum level, there was high abundance of Proteobacteria in the GITs of rohu and mrigal, whereas Fusobacteria was dominant in the anterior and middle guts of catla. At the genus level, diverse microbial communities were identified across the three GIT sections, with six indicator genera found in rohu, catla and mrigal, as revealed by linear discriminant analysis (LDA) at a 0·05 level of significance. Of the 218 genera identified, only 33 were common across the anterior, middle and distal guts of all three species. Bacterial diversity was significantly higher (P < 0·05) in mrigal, followed by catla and rohu, respectively. Alongside the common bacteria Aeromonas, Enterobacter and Serratia, the overwhelming abundance of Cetobacterium, Shewanella and Plesiomonas warrants further investigation. SIGNIFICANCE AND IMPACT OF THE STUDY: This study investigates the microbial communities of the gastrointestinal tracts (GITs) of three Indian major carp (IMC) species-rohu, catla and mrigal, obtained from a polyculture pond under the same feeding regime. Diverse microbial communities were found, with significantly different relative abundances and diversities of phyla and genera. The results provide valuable information on GIT microbial communities that may be useful for nutrition and health management in IMCs.
Collapse
Affiliation(s)
- M J Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - F Momtaz
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - A Q M R Kawsar
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M M Rahman
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S K Gupta
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - A C Y Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|