1
|
Reis FYT, Rocha VP, Janampa-Sarmiento PC, Santos ÁF, Leibowitz MP, Luz RK, Pierezan F, Gallani SU, Tavares GC, Figueiredo HCP. Susceptibility of Tambaqui ( Colossoma macropomum) to Nile Tilapia-Derived Streptococcus agalactiae and Francisella orientalis. Microorganisms 2024; 12:2440. [PMID: 39770643 PMCID: PMC11676801 DOI: 10.3390/microorganisms12122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Nile tilapia (Oreochromis niloticus) and tambaqui (Colossoma macropomum) are the two most produced freshwater fishes in Brazil. This study investigated the potential pathogenicity of Streptococcus agalactiae and Francisella orientalis, previously isolated from diseased Nile tilapia, to tambaqui. Experimental infection trials were conducted in juvenile tambaqui at a dose of approximately 107 CFU fish-1, assessing clinical signs, mortality, bacterial recovery, and histopathological changes. Results demonstrated that S. agalactiae exhibited high pathogenicity to tambaqui, causing rapid disease progression, high mortality (83.33%) within 48 h post-infection, and severe lesions in multiple organs, under the experimental conditions. In contrast, F. orientalis infection did not result in mortality or clinical signs, despite bacterial recovery and granulomatous inflammation observed in the tissues. This study highlights the need to consider the potential impact of these pathogens in tambaqui farming.
Collapse
Affiliation(s)
- Francisco Yan Tavares Reis
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Victória Pontes Rocha
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Peter Charrie Janampa-Sarmiento
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Ágna Ferreira Santos
- Department of Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Á.F.S.); (F.P.)
| | - Márcia Pimenta Leibowitz
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Ronald Kennedy Luz
- Aquaculture Laboratory, Department of Animal Science, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Felipe Pierezan
- Department of Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Á.F.S.); (F.P.)
| | - Sílvia Umeda Gallani
- Postgraduate Program in Aquaculture, Nilton Lins University, Manaus 69058-030, Amazonas, Brazil;
| | - Guilherme Campos Tavares
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Henrique César Pereira Figueiredo
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| |
Collapse
|
2
|
Asif A, Chen JS, Hussain B, Hsu GJ, Rathod J, Huang SW, Wu CC, Hsu BM. The escalating threat of human-associated infectious bacteria in surface aquatic resources: Insights into prevalence, antibiotic resistance, survival mechanisms, detection, and prevention strategies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104371. [PMID: 38851127 DOI: 10.1016/j.jconhyd.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Anthropogenic activities and climate change profoundly impact water quality, leading to a concerning increase in the prevalence and abundance of bacterial pathogens across diverse aquatic environments. This rise has resulted in a growing challenge concerning the safety of water sources, particularly surface waters and marine environments. This comprehensive review delves into the multifaceted challenges presented by bacterial pathogens, emphasizing threads to human health within ground and surface waters, including marine ecosystems. The exploration encompasses the intricate survival mechanisms employed by bacterial pathogens and the proliferation of antimicrobial resistance, largely driven by human-generated antibiotic contamination in aquatic systems. The review further addresses prevalent pathogenic bacteria, elucidating associated risk factors, exploring their eco-physiology, and discussing the production of potent toxins. The spectrum of detection techniques, ranging from conventional to cutting-edge molecular approaches, is thoroughly examined to underscore their significance in identifying and understanding waterborne bacterial pathogens. A critical aspect highlighted in this review is the imperative for real-time monitoring of biomarkers associated with waterborne bacterial pathogens. This monitoring serves as an early warning system, facilitating the swift implementation of action plans to preserve and protect global water resources. In conclusion, this comprehensive review provides fresh insights and perspectives, emphasizing the paramount importance of preserving the quality of aquatic resources to safeguard human health on a global scale.
Collapse
Affiliation(s)
- Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Disease and Department of Internal Medicine, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Jagat Rathod
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance and Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India
| | - Shih-Wei Huang
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
3
|
Ayoub HF, Khafagy AR, Esawy AM, El-Moaty NA, Alwutayd KM, Mansour AT, Ibrahim RA, Abdel-Moneam DA, El-Tarabili RM. Phenotypic, molecular detection, and Antibiotic Resistance Profile (MDR and XDR) of Aeromonas hydrophila isolated from Farmed Tilapia zillii and Mugil cephalus. BMC Vet Res 2024; 20:84. [PMID: 38459543 PMCID: PMC10921648 DOI: 10.1186/s12917-024-03942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
In the present study, Aeromonas hydrophila was isolated from Tilapia zillii and Mugil cephalus samples collected during different seasons from various Suez Canal areas in Egypt. The prevalence of A. hydrophila, virulence genes, and antibiotic resistance profile of the isolates to the commonly used antibiotics in aquaculture were investigated to identify multiple drug resistance (MDR) and extensive drug-resistant (XDR) strains. In addition, a pathogenicity test was conducted using A. hydrophila, which was isolated and selected based on the prevalence of virulence and resistance genes, and morbidity of natural infected fish. The results revealed that A. hydrophila was isolated from 38 of the 120 collected fish samples (31.6%) and confirmed phenotypically and biochemically. Several virulence genes were detected in retrieved A. hydrophila isolates, including aerolysin aerA (57.9%), ser (28.9%), alt (26.3%), ast (13.1%), act (7.9%), hlyA (7.9%), and nuc (18.4%). Detection of antibiotic-resistant genes revealed that all isolates were positive for blapse1 (100%), blaSHV (42.1%), tetA (60.5%), and sul1 (42.1%). 63.1% of recovered isolates were considered MDR, while 28.9% of recovered isolates were considered XDR. Some isolates harbor both virulence and MDR genes; the highest percentage carried 11, followed by isolates harboring 9 virulence and resistance genes. It could be concluded that the high prevalence of A. hydrophila in aquaculture species and their diverse antibiotic resistance and virulence genes suggest the high risk of Aeromonas infection and could have important implications for aquaculture and public health.
Collapse
Affiliation(s)
- Hala F Ayoub
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research (CLAR), Agricultural Research Center, Abo-Hammad, Sharqia, Abbassa, 44662, Egypt.
| | - Ahmed R Khafagy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Ain Shams University, Cairo, Egypt
| | - Aboelkair M Esawy
- Department of Microbiology, Animal Health Research Institute, Mansoura branch, Mansoura, Egypt
| | - Noura Abo El-Moaty
- Department of Microbiology, Animal Health Research Institute, Mansoura branch, Mansoura, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Fish and Animal Production and Aquaculture Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia.
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Reham A Ibrahim
- Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Dalia A Abdel-Moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
4
|
Neil B, Cheney GL, Rosenzweig JA, Sha J, Chopra AK. Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing. Appl Microbiol Biotechnol 2024; 108:205. [PMID: 38349402 PMCID: PMC10864486 DOI: 10.1007/s00253-024-13055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.
Collapse
Affiliation(s)
- Blake Neil
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Gabrielle L Cheney
- John Sealy School of Medicine, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA
| | - Jian Sha
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Eid HM, El-Mahallawy HS, Shalaby AM, Elsheshtawy HM, Shetewy MM, Eidaroos NH. Emergence of extensively drug-resistant Aeromonas hydrophila complex isolated from wild Mugil cephalus (striped mullet) and Mediterranean seawater. Vet World 2022; 15:55-64. [PMID: 35369605 PMCID: PMC8924385 DOI: 10.14202/vetworld.2022.55-64] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background and Aim: Antibiotic resistance has been a progressively documented problem, resulting in treatment failure in humans and animals. This study aimed to investigate the antimicrobial susceptibility and virulence of extensively drug-resistant (XDR) Aeromonas spp. in wild Mugil cephalus and its surrounding seawater along the coastal road of Port Said, Egypt. Materials and Methods: Specimens were examined bacteriologically, confirmed biochemically, and tested for their sensitivity against 11 antimicrobial agents. Molecular confirmation of the obtained isolates by 16S rRNA was performed, followed by the detection of antimicrobial resistance and virulence genes. Results: Aeromonas spp. was recovered from fish (44%) and water samples (36%). A. hydrophila was the most prevalent identified strain, followed by Aeromonas sobria, Aeromonas caviae, and Aeromonas schubertii. Moreover, 90% of the tested isolates were multidrug-resistant (MDR), while 26.67% were XDR. Tested isolates were resistant to b-lactams and sulfonamides (100%), oxytetracycline (90%), and streptomycin (62.22%) but completely susceptible to cefotaxime. XDR isolates successfully amplified resistance genes (blaTEM , sul1, and tetA(A)) but not the (aadA1) gene, although there was phenotypic resistance to streptomycin on plates. All XDR isolates carry the cytotoxic enterotoxin gene (act), but alt gene was detected in only one isolate (12.5%). Conclusion: Data in this study provide a recent update and highlight the role of wild mullet and seawater as reservoirs for MDR and XDR Aeromonas spp. that may pose a risk to humans as food-borne infection or following direct contact.
Collapse
Affiliation(s)
- Hamza Mohamed Eid
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Heba Sayed El-Mahallawy
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amany Mahmoud Shalaby
- Department of Food Hygiene, Animal Health Research Institute, Port Said Branch, Port Said, Egypt
| | - Hassnaa Mahmoud Elsheshtawy
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Nada Hussein Eidaroos
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Aizpurua O, Nyholm L, Morris E, Chaverri G, Herrera Montalvo LG, Flores-Martinez JJ, Lin A, Razgour O, Gilbert MTP, Alberdi A. The role of the gut microbiota in the dietary niche expansion of fishing bats. Anim Microbiome 2021; 3:76. [PMID: 34711286 PMCID: PMC8555116 DOI: 10.1186/s42523-021-00137-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background Due to its central role in animal nutrition, the gut microbiota is likely a relevant factor shaping dietary niche shifts. We analysed both the impact and contribution of the gut microbiota to the dietary niche expansion of the only four bat species that have incorporated fish into their primarily arthropodophage diet. Results We first compared the taxonomic and functional features of the gut microbiota of the four piscivorous bats to that of 11 strictly arthropodophagous species using 16S rRNA targeted amplicon sequencing. Second, we increased the resolution of our analyses for one of the piscivorous bat species, namely Myotis capaccinii, and analysed multiple populations combining targeted approaches with shotgun sequencing. To better understand the origin of gut microorganisms, we also analysed the gut microbiota of their fish prey (Gambusia holbrooki). Our analyses showed that piscivorous bats carry a characteristic gut microbiota that differs from that of their strict arthropodophagous counterparts, in which the most relevant bacteria have been directly acquired from their fish prey. This characteristic microbiota exhibits enrichment of genes involved in vitamin biosynthesis, as well as complex carbohydrate and lipid metabolism, likely providing their hosts with an enhanced capacity to metabolise the glycosphingolipids and long-chain fatty acids that are particularly abundant in fish. Conclusions Our results depict the gut microbiota as a relevant element in facilitating the dietary transition from arthropodophagy to piscivory. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00137-w.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.
| | - Lasse Nyholm
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| | - Evie Morris
- University of Exeter, Streatham Campus, Biosciences, Exeter, EX4 4PS, UK
| | - Gloriana Chaverri
- Sede del Sur, Universidad de Costa Rica, #4000 Alamedas, Golfito, 60701, Costa Rica.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, República de Panamá
| | - L Gerardo Herrera Montalvo
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, 48980, Jalisco, Mexico
| | - José Juan Flores-Martinez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Orly Razgour
- University of Exeter, Streatham Campus, Biosciences, Exeter, EX4 4PS, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| |
Collapse
|
7
|
Saleh A, Elkenany R, Younis G. Virulent and Multiple Antimicrobial Resistance Aeromonas hydrophila Isolated from Diseased Nile Tilapia Fish (Oreochromis niloticus) in Egypt with Sequencing of Some Virulence-Associated Genes. Biocontrol Sci 2021; 26:167-176. [PMID: 34556619 DOI: 10.4265/bio.26.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Aeromonas hydrophila is a major waterborne pathogen, which induces various diseases in freshwater fish with the capability for zoonotic potential. This study was applied to investigate the prevalence of A. hydrophila in diseased Nile tilapia fish, genetic characterization of the virulence encoding genes (act, aerA, alt, and ast genes), and antibiotic susceptibility. Out of the 500 diseased Nile tilapia fish samples, 70% (350/500) Aeromonas species were isolated. From which 53.4% (187/350) of Aeromonas hydrophila strains were identified. A. hydrophila was detected in kidneys, followed by liver, spleen, intestine, and gills. The results of virulotyping displayed the presence of act, and aerA genes in a high percentage of 40%, followed by alt gene (30%), but ast gene was not detected (0%) in A. hydrophila strains. Based on DNA sequence analysis of three virulence associated-genes (act, aerA, and alt genes), the phylogenetic tree showed the genetic relationship with related species. Finally, the antibiotic susceptibility tests revealed high resistance toward chloramphenicol (67.4%), followed by amikacin (51.9%) and gentamicin (47.1%), whereas a high sensitivity was exhibited toward meropenem (90.9%), followed by ciprofloxacin (84.2%), amoxicillin-clavulanic acid (73.3%) and trimethoprim-sulfamethoxazole (64.2%). The multidrug-resistant A. hydrophila strains were observed in 69.0% of strains with six resistance patterns.
Collapse
Affiliation(s)
- Amany Saleh
- Veterinarian, Department of Public Health and Meat Inspection, Talkha Veterinary Administration
| | - Rasha Elkenany
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University
| | - Gamal Younis
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University
| |
Collapse
|
8
|
Maclura tinctoria Extracts: In Vitro Antibacterial Activity against Aeromonas hydrophila and Sedative Effect in Rhamdia quelen. FISHES 2021. [DOI: 10.3390/fishes6030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maclura tinctoria is a tree species native from Brazil and rich in phenolic compounds. Since plant antibacterial activity is highly associated with phenolic compound concentration, we aim to evaluate the in vitro antimicrobial activity of different extracts against fish pathogenic bacteria. In addition, some phenolic compounds have central depressant effects and can be useful in aquaculture due to possible sedative and/or anesthetic effects. Four M. tinctoria extracts were extracted separately with ethanol; leaves (LE), bark (BE), heartwood (HE), and the sapwood (SE). In vitro antimicrobial activity was tested against Aeromonas strains at concentrations of 6400 to 3.125 μg/mL. The sedative effect was evaluated for 24 h with 30 and 100 mg/L concentrations. Chemical composition was analyzed by HPLC-DAD-MS. The HE extract had the best MIC (400 µg/mL) and MBC (800 µg/mL) compared to the LE, BE, and SE extracts. LE extract induced deep sedation and the BE, SE, and HE extracts induced light sedation. Additionally, BE, SE, and HE induced a normal behavior without side effects. Polyphenolic compounds with antimicrobial activity and sedative effects were identified mainly in HE. Thus, HE extract is safe and can be used as a sedative for silver catfish.
Collapse
|
9
|
Grilo ML, Isidoro S, Chambel L, Marques CS, Marques TA, Sousa-Santos C, Robalo JI, Oliveira M. Molecular Epidemiology, Virulence Traits and Antimicrobial Resistance Signatures of Aeromonas spp. in the Critically Endangered Iberochondrostoma lusitanicum Follow Geographical and Seasonal Patterns. Antibiotics (Basel) 2021; 10:759. [PMID: 34206643 PMCID: PMC8300795 DOI: 10.3390/antibiotics10070759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the fact that freshwater fish populations are experiencing severe declines worldwide, our knowledge on the interaction between endangered populations and pathogenic agents remains scarce. In this study, we investigated the prevalence and structure of Aeromonas communities isolated from the critically endangered Iberochondrostoma lusitanicum, a model species for threatened Iberian leuciscids, as well as health parameters in this species. Additionally, we evaluated the virulence profiles, antimicrobial resistance signatures and genomic relationships of the Aeromonas isolates. Lesion prevalence, extension and body condition were deeply affected by location and seasonality, with poorer performances in the dry season. Aeromonas composition shifted among seasons and was also different across river streams. The pathogenic potential of the isolates significantly increased during the dry season. Additionally, isolates displaying clinically relevant antimicrobial resistance phenotypes (carbapenem and fluroquinolone resistance) were detected. As it inhabits intermittent rivers, often reduced to disconnected pools during the summer, the dry season is a critical period for I. lusitanicum, with lower general health status and a higher potential of infection by Aeromonas spp. Habitat quality seems a determining factor on the sustainable development of this fish species. Also, these individuals act as reservoirs of important antimicrobial resistant bacteria with potential implications for public health.
Collapse
Affiliation(s)
- Miguel L. Grilo
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Sara Isidoro
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
| | - Lélia Chambel
- BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Carolina S. Marques
- Departamento de Biologia Animal, Centro de Estatística e Aplicações, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (C.S.M.); (T.A.M.)
| | - Tiago A. Marques
- Departamento de Biologia Animal, Centro de Estatística e Aplicações, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (C.S.M.); (T.A.M.)
- Centre for Research into Ecological & Environmental Modelling, University of St Andrews, St Andrews KY16 9LZ, UK
| | - Carla Sousa-Santos
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Joana I. Robalo
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
| |
Collapse
|
10
|
Prevalence, Virulence Gene Distribution and Alarming the Multidrug Resistance of Aeromonas hydrophila Associated with Disease Outbreaks in Freshwater Aquaculture. Antibiotics (Basel) 2021; 10:antibiotics10050532. [PMID: 34064504 PMCID: PMC8147934 DOI: 10.3390/antibiotics10050532] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 01/15/2023] Open
Abstract
The study aims to evaluate the infection prevalence, virulence gene distribution and antimicrobial resistance of Aeromonas hydrophila associated in diseased outbreaks of cultured freshwater fish in Northern Vietnam. The confirmed A. hydrophila were screened for the presence of the five pitutative-virulence genes including aerolysin (aerA), hemolysin (hlyA), cytotonic enterotoxin (act), heat-labile cytotonic enterotoxin (alt), and heat-stable enterotoxin (ast), and examined the susceptibility to 16 antibiotics. A total of 236 A. hydrophila isolates were recovered and confirmed from 506 diseased fish by phenotypic tests, PCR assays, and gyrB, rpoB sequenced analyses, corresponding to the infection prevalence at 46.4%. A total of 88.9% of A. hydrophila isolates harbored at least one of the tested virulence genes. The genes aerA and act were most frequently found (80.5% and 80.1%, respectively) while the ast gene was absent in all isolates. The resistance to oxacillin, amoxicillin and vancomycin exhibited the highest frequencies (>70%), followed by erythromycin, oxytetracycline, florfenicol, and sulfamethoxazole/trimethoprim (9.3–47.2%). The multiple antibiotic resistance (MAR) index ranged between 0.13–0.88 with 74.7% of the isolates having MAR values higher than 0.2. The results present a warning for aquaculture farmers and managers in preventing the spread of A. hydrophila and minimizing antibiotic resistance of this pathogen in fish farming systems.
Collapse
|
11
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
12
|
Šubrtová Salmonová H, Marchi M, Doskočil I, Kodešová T, Vlková E. Pathogenic profile and cytotoxic activity of Aeromonas spp. isolated from Pectinatella magnifica and surrounding water in the South Bohemian aquaculture region. JOURNAL OF FISH DISEASES 2020; 43:1213-1227. [PMID: 32776333 DOI: 10.1111/jfd.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Pectinatella magnifica is an invasive freshwater bryozoan that has expanded in many localities worldwide, including fishing areas. It contains microbial communities, predominantly consisting of Aeromonas bacteria that are frequently associated with fish infections. The objective of this study was to investigate the potential pathogenicity of Aeromonas spp. associated with P. magnifica and evaluate the health risks for fish. Aeromonas strains were isolated from P. magnifica (101 strains) and from surrounding water (29 strains) in the South Bohemian region and investigated for the presence of 14 virulence-associated genes using PCR. We demonstrated high prevalence of phospholipase GCAT, polar flagellin, enolase, DNAse, aerolysin/cytotoxic enterotoxin, serine protease and heat-stable cytotonic enterotoxin-coding genes. Further, all twelve isolates that were analysed for cytotoxicity against intestinal epithelial cells were found to be cytotoxic. Six of the isolates were also tested as co-cultures composed of pairs. Enhanced cytotoxicity was observed when the pair was composed of strains from different species. In conclusion, P. magnifica is colonized by Aeromonas strains that have a relatively high prevalence of virulence-associated genes and the ability to provoke disease. Results also suggest a possibly increased risk arising from mixed infections.
Collapse
Affiliation(s)
- Hana Šubrtová Salmonová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Matilde Marchi
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ivo Doskočil
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tereza Kodešová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
13
|
Virulence-Associated Genes and Antimicrobial Resistance of Aeromonas hydrophila Isolates from Animal, Food, and Human Sources in Brazil. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1052607. [PMID: 32461959 PMCID: PMC7229560 DOI: 10.1155/2020/1052607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022]
Abstract
Aeromonads are natural inhabitants of aquatic environments and may be associated with various human or animal diseases. Its pathogenicity is complex and multifactorial and is associated with many virulence factors. In this study, 110 selected Aeromonas hydrophila isolates isolated from food, animals, and human clinical material from 2010 to 2015 were analyzed. Antimicrobial susceptibility testing was performed by the disk diffusion method, and polymerase chain reaction was conducted to investigate the virulence genes hemolysin (hlyA), cytotoxic enterotoxin (act), heat-labile cytotonic enterotoxin (alt), aerolysin (aerA), and DNase-nuclease (exu). At least 92.7% of the isolates had one of the investigated virulence genes. Twenty different virulence profiles among the isolates were recognized, and the five investigated virulence genes were observed in four isolates. Human source isolates showed greater diversity than food and animal sources. Antimicrobial resistance was observed in 46.4% of the isolates, and multidrug resistance was detected in 3.6% of the isolates. Among the 120 isolates, 45% were resistant to cefoxitin; 23.5% to nalidixic acid; 16.6% to tetracycline; 13.7% to cefotaxime and imipenem; 11.8% to ceftazidime; 5.9% to amikacin, gentamicin, and sulfamethoxazole-trimethoprim; and 3.9% to ciprofloxacin and nitrofurantoin. Overall, the findings of our study indicated the presence of virulence genes and that antimicrobial resistance in A. hydrophila isolates in this study is compatible with potentially pathogenic bacteria. This information will allow us to recognize the potential risk through circulating isolates in animal health and public health and the spread through the food chain offering subsidies for appropriate sanitary actions.
Collapse
|