1
|
Noh S, Kim WJ, Cha JM, Choi G, Yang S, Song JH, Moon BC. Rapid Diagnostic PCR Assay Method for Species Identification of Mantidis Ootheca (Sangpiaoxiao) Based on Cytochrom C Oxidase I (COI) Barcode Analysis. Int J Mol Sci 2024; 25:10224. [PMID: 39337711 PMCID: PMC11432583 DOI: 10.3390/ijms251810224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Mantidis Ootheca (sangpiaoxiao), the egg case of the mantis, is a type of insect-derived traditional medicine widely used in East Asia. However, species identification based on egg morphology is challenging, leading to the distribution of counterfeit and adulterated products. The use of inauthentic ingredients can pose serious health risks to consumers. This study aimed to develop PCR markers that can rapidly and accurately differentiate between authentic and counterfeit Mantidis Ootheca. The mitochondrial cytochrome c oxidase I (COI) region was sequenced in thirteen samples from four mantis species: Tenodera angustipennis, Statilia maculata, Hierodula patellifera, and T. sinensis. Four sets of SCAR primers were designed based on species-specific nucleotide polymorphisms, and a multiplex SCAR assay was developed by combining all sets of the primers. The sequence-characterized amplified region (SCAR) primers successfully produced amplicons for each target species, even with low-DNA templates or templates containing DNA from multiple samples. No amplification was observed for nontarget species. This study presents a novel approach for identifying authentic Mantidis Ootheca species using DNA-based diagnostic marker assays, which enable rapid and precise species identification. The SCAR assays developed in this study will aid in maintaining quality control and promoting the standardization of commercial Mantidis Ootheca products.
Collapse
Affiliation(s)
- Sumin Noh
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Wook Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Ji-Min Cha
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Goya Choi
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Jun-Ho Song
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| |
Collapse
|
2
|
Chen Q, Li Z, Liu S, Chi Y, Jia D, Wei T. Infection and distribution of Candidatus Liberibacter asiaticus in citrus plants and psyllid vectors at the cellular level. Microb Biotechnol 2022; 15:1221-1234. [PMID: 34469634 PMCID: PMC8966020 DOI: 10.1111/1751-7915.13914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Huanglongbing (HLB) is currently considered the most destructive disease of citrus worldwide. In the major citrus-growing areas in Asia and the US, the major causal agent of HLB is the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). CLas is vectored by the Asian citrus psyllid, Diaphorina citri, in a persistent propagative manner. CLas cannot be cultured in vitro because of its unclear growth factors, leading to uncertainty in the infection mechanism of CLas at the cellular level in citrus and in D. citri. To characterize the detailed infection of CLas in the host and vector, the incidence of HLB was first investigated in citrus-growing fields in Fujian Province, China. It was found that the positive association of the level of CLas infection in the leaves correlated with the symptoms. Then antibodies against peptides of the outer membrane protein (OMP) of CLas were prepared and tested. The antibodies OMP-225, OMP-333 and OMP724 showed specificity to citrus plants in western blot analyses, whereas the antibodies OMP-47 and OMP-225 displayed specificity to the D. citri vector. The application of OMP-225 in the immunofluorescence assay indicated that CLas was located in and distributed throughout the phloem sieve cells of the leaf midribs and axile placenta of the fruit. CLas also infected the epithelial cells and visceral muscles of the alimentary canal of D. citri. The application of OMP-333 in immunoelectron microscopy indicated the round or oval CLas in the sieve cells of leaf midribs and axile placenta of fruit as well as in the epithelial cells and reticular tissue of D. citri alimentary canal. These results provide a reliable means for HLB detection, and enlighten a strategy via neutralizing OMP to control HLB. These findings also provide insight for the further investigation on CLas infection and pathogenesis, as well as CLas-vector interaction.
Collapse
Affiliation(s)
- Qian Chen
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Zhiqiang Li
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Shulin Liu
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Yunhua Chi
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Dongsheng Jia
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Taiyun Wei
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| |
Collapse
|
3
|
Rodrigues da Silva A, da Costa Silva D, Dos Santos Pinto KN, Santos Filho HP, Coelho Filho MA, Dos Santos Soares Filho W, Ferreira CF, da Silva Gesteira A. Epigenetic responses to Phytophthora citrophthora gummosis in citrus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111082. [PMID: 34763867 DOI: 10.1016/j.plantsci.2021.111082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Studies show that DNA methylation is associated with plant immunity but little is known as to how this epigenetic mechanism assists plants in adjusting their responses to biotic stress, especially when interacting with an hemibiotrophic pathogen such as citrus Phytophthora. The aim of the present study was to assess the effects of scion-rootstock interaction on plant resistance to P. citrophthora infection and DNA methylation patterns in 'Pera' sweet orange and 'Tahiti' acid lime grafted onto 'Rangpur' lime and 'Tropical' sunki rootstocks reinoculated with P. citrophthora. Results showed that reinoculated plants of the 'Pera' sweet orange/'Rangpur' lime and 'Tahiti' acid lime/'Tropical' sunki combinations with more and less sensitive varieties to Phytophthora, presented smaller stem lesions and increased frequency of full methylation and hemimethylation rates, compared to inoculated plants. In contrast, 'Tahiti' acid lime/'Rangpur' lime, two highly sensitive varieties, and 'Pera'/'Tropical' sunki, two much less sensitive varieties, showed high increases in the frequency of hemimethylation and non-methylation levels. Results suggest that in citrus, both the scion-rootstock interaction and DNA methylation affect the response to P. citrophthora infection. Reinoculated plants, depending on the combination, showed changes in intracellular hyphae growth through the formation of sets of fibers and crystal accumulation in the periderm, cortex, and phloem. In addition, starch grain concentration was higher in reinoculated plants in comparison to inoculated plants. These findings support the assumption that DNA methylation is a plant defense mechanism and therefore may be exploited to improve the response of plants to the gummosis of P. citrophthora in citrus.
Collapse
Affiliation(s)
- Adielle Rodrigues da Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | - Delmira da Costa Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil
| | | | | | | | | | | | - Abelmon da Silva Gesteira
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, 45662-900, Brazil; Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, 44380-000, Brazil.
| |
Collapse
|
4
|
Liu X, Cheng J, Mei Z, Wei C, Khan MA, Peng J, Fu J. SCAR marker for identification and discrimination of specific medicinal Lycium chinense Miller from Lycium species from ramp-PCR RAPD fragments. 3 Biotech 2020; 10:334. [PMID: 32656067 PMCID: PMC7338294 DOI: 10.1007/s13205-020-02325-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
In the current study, ramp-PCR fragments from improved RAPD (random amplified polymorphic DNA) amplification of Lycium (Goji) species or cultivars were cut and cloned into the vector of pGEM-T. A positive clone 10-5 was screened by PCR amplification, enzymatic digestion, and Sanger sequencing. A SCAR (sequence-characterized amplified region) marker, named Goji 10-5, with 949 nucleotides in length, was identified. Goji 10-5 is specific to Goji species Lycium chinense Miller from Jiangxi in China and Texas in the USA. A BLAST search of this nucleotide sequence in the GenBank database indicated that it shows no identity with any other species, including no any other Lycium species. As a new sequence, we have deposited it in the GenBank database with accession No. MN862323. PCR assays were developed and converted the nucleotide sequence to become a novel molecular marker for Lycium chinense Miller, named Goji 10-5. This marker may be used for the genetic identification of other samples. This study has successfully developed Goji 10-5, a specific SCAR marker to identify L. chinense and distinguish it from other species, including other Lycium species from different locations.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Zhiqiang Mei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Md. Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiangzhou Peng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500 Guangdong China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Judicial Authentication Center, The Research Center for Preclinical Medicine, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000 Sichuan China
| |
Collapse
|
5
|
Chaisiri C, Liu XY, Lin Y, Li JB, Xiong B, Luo CX. Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus. PLANTS 2020; 9:plants9030329. [PMID: 32143512 PMCID: PMC7154919 DOI: 10.3390/plants9030329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
Melanose disease caused by Diaporthe citri is considered as one of the most important and destructive diseases of citrus worldwide. In this study, isolates from melanose samples were obtained and analyzed. Firstly, the internal transcribed spacer (ITS) sequences were used to measure Diaporthe-like boundary species. Then, a subset of thirty-eight representatives were selected to perform the phylogenetic analysis with combined sequences of ITS, beta-tubulin gene (TUB), translation elongation factor 1-α gene (TEF), calmodulin gene (CAL), and histone-3 gene (HIS). As a result, these representative isolates were identified belonging to D. citri, D. citriasiana, D. discoidispora, D. eres, D. sojae, and D. unshiuensis. Among these species, the D. citri was the predominant species that could be isolated at highest rate from different melanose diseased tissues. The morphological characteristics of representative isolates of D. citri were investigated on different media. Finally, a molecular tool based on the novel species-specific primer pair TUBDcitri-F1/TUBD-R1, which was designed from TUB gene, was developed to detect D. citri efficiently. A polymerase chain reaction (PCR) amplicon of 217 bp could be specifically amplified with the developed molecular tool. The sensitivity of the novel species-specific detection was upon to 10 pg of D. citri genomic DNA in a reaction. Therefore, the D. citri could be unequivocally identified from closely related Diaporthe species by using this simple PCR approach.
Collapse
Affiliation(s)
- Chingchai Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China (Y.L.)
- Department of Plant Pathology, College of Plant Science & Technology, and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Yu Liu
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China (Y.L.)
- Department of Plant Pathology, College of Plant Science & Technology, and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China (Y.L.)
| | - Jiang-Bo Li
- Nanfeng Citrus Research Institute, Nanfeng 344500, China
| | - Bin Xiong
- Nanfeng Citrus Research Institute, Nanfeng 344500, China
| | - Chao-Xi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China (Y.L.)
- Department of Plant Pathology, College of Plant Science & Technology, and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|