1
|
Kim YB, Lee SH, Kim DH, Lee KW. Effects of dietary methyl sulfonyl methane and selenium on laying performance, egg quality, gut health indicators, and antioxidant capacity of laying hens. Anim Biosci 2022; 35:1566-1574. [PMID: 35507865 PMCID: PMC9449386 DOI: 10.5713/ab.21.0564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Objective This study investigated the effects of dietary methyl sulfonyl methane (MSM) and selenium (Se) on the laying performance, egg quality, gut health indicators, egg yolk Se content, and antioxidant markers in laying hens. Methods One hundred ninety-two 73-wk-old laying hens were randomly divided into four groups with eight replicates of six hens each. Four diets were prepared in a 2×2 factorial arrangement with or without MSM and Se. The trial lasted for 12 wk. Results There were no interaction effects or main effects (p>0.05) on laying performance and egg quality. However, feed intake increased in Se-fed hens (p = 0.051) and decreased in MSM-fed hens (p = 0.067) compared with that of hens in the control group. Dietary MSM increased (p<0.05) the ileal villus height and villus height:crypt ratio in hens compared with those receiving the non-supplemented control diet. Dietary MSM and Se did not affect the percentage of short-chain fatty acids in the ileal contents. Dietary Se enriched the Se content in egg yolk compared with that of the non-supplemented control diet (p<0.05). Dietary Se increased (p<0.05) glutathione peroxidase levels in the liver and serum samples compared to the control diet. The total antioxidant capacity in the liver increased (p<0.05) in laying hens that were fed MSM-supplemented diets than in hens fed the control diet. Dietary MSM significantly increased the relative superoxide dismutase levels in serum samples (p<0.05). Conclusion Supplementation with either MSM or Se independently improved the antioxidant capacity of laying hens. Furthermore, dietary Se produced Se-enriched eggs, but this effect was neither additive nor synergistic with dietary MSM.
Collapse
|
2
|
Guo D, Zhang L, Zhang L, Han S, Yang K, Lin X, Wen C, Tong A, Zhang M, Yin Y, Deng B. Effect of Dietary Methylsulfonylmethane Supplementation on Growth Performance, Hair Quality, Fecal Microbiota, and Metabolome in Ragdoll Kittens. Front Microbiol 2022; 13:838164. [PMID: 35859746 PMCID: PMC9292726 DOI: 10.3389/fmicb.2022.838164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Methylsulfonylmethane (MSM) is a natural sulfur-containing organic substance that has many biological functions, such as antioxidant, anti-inflammatory, skin nourishing, and hair growth-promoting effects. This study was conducted to determine the effect of MSM supplementation on growth performance, antioxidant capacity, and hair quality in kittens. A total of 21 Ragdoll kittens were assigned to three diets by initial body weight and gender: basal diet supplemented with 0%, 0.2%, and 0.4% MSM (CON, LMSM, and HMSM groups) for 65 days. During the whole period, the food intake of kittens in the MSM-treated groups tended to be higher (P < 0.10) compared with the CON group, and the average daily gain (ADG) had no significant difference when compared to the kittens in the CON group (P > 0.05). Antioxidant capacity had no significant difference (P > 0.05) among the groups. The scale thickness of hair tended to be smaller in the LMSM group compared to the CON group (P < 0.10) and decreased significantly (P < 0.05) over time from d 0 to d 65 in the LMSM group, indicating the improvement of hair quality. Besides, supplementation with LMSM increased bacterial diversity. Kittens fed MSM had no significant differences in fecal genus at the end of the study. No significant differences in fecal short-chain fatty acids were observed among groups. Fecal metabolomics analysis further revealed that MSM hardly affected the metabolites. Overall, dietary supplementation with 0.2% MSM can improve the hair quality of kittens. Furthermore, 0.2∼0.4% of MSM had no detrimental effects on serum biochemistry, growth performance, gut microbiota, and metabolome, which supports the safety inclusion of MSM to a certain degree in feline diets. To the best of our knowledge, this is the first study to investigate the effects of MSM supplementation in cats.
Collapse
Affiliation(s)
- Dan Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sufang Han
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinye Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Aorigeile Tong
- Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Yulong Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- *Correspondence: Yulong Yin,
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Baichuan Deng,
| |
Collapse
|
3
|
Ma W, Ao S, Zhou J, Li J, Liang X, Yang X, Zhang H, Liu B, Tang W, Liu H, Xiao H, Liang H, Yang X. Methylsulfonylmethane protects against lethal dose MRSA-induced sepsis through promoting M2 macrophage polarization. Mol Immunol 2022; 146:69-77. [PMID: 35461144 DOI: 10.1016/j.molimm.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Multi-drug-resistant bacterial infections, which have become a global threat, lack effective treatments. The discoveries of non-antibiotics with different modes of antibacterial action, such as methylsulfonylmethane (MSM), are a promising new treatment for multi-drug-resistant pathogens. METHODS We constructed a mouse peritonitis infection model to evaluate the effects of MSM against methicillin-resistant Staphylococcus aureus (MRSA) infection. The time-kill kinetics of MSM against MRSA and the effect of MSM on the integrity of bacterial cell membrane were measured. Viability effects of MSM on THP1 cells were performed by CCK-8 cytotoxicity assay. Systematic inflammatory factor levels of mice were detected using ELISA. The immune response of peritoneal macrophages during MRSA-infection was evaluated using RNA sequencing. Gene Ontology function, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, and correlation analyses were applied to analysis RNA sequencing data. RT-qPCR, western blotting and flow cytometry were performed to analysis the gene and protein expression levels of macrophages. RESULTS In in vitro experiments, MSM did not show significant killing effects on the growth of MRSA directly and did not destroy bacterial membrane integrity. MSM also displayed no significant effects on the proliferative capacity of THP1 cells. However, MSM treatment protected mice against a lethal dose MRSA-infection and decreased systemic inflammation. MSM upregulated metabolic pathway in peritoneal macrophages, especial glycolysis, during MRSA infection. MSM increased the expression of M2 markers (such as Arg1), promoted phosphorylation of STAT3 (which regulates M2 polarization), and decreased the expression of M1 markers in peritoneal macrophages. Additionally, MSM treatment increased the expression of H3K18 lactylation specific target genes, including Arg1. GNE-140, the LDHA-specific inhibitor of glycolysis, blocked the MSM-induced Arg1 expression in this disease model. CONCLUSIONS MSM protects against MRSA infection through immunomodulation. MSM promotes the expression of Arg1 by lactate-H3K18la pathway to control macrophage to M2 polarization; it firstly provides therapeutic potential for drug-resistant infections and sepsis.
Collapse
Affiliation(s)
- Wei Ma
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Shengxiang Ao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Jianping Zhou
- College of Basic Medical Sciences, Panzihua University, Panzihua 617000, PR China
| | - Jiaxin Li
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Xin Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Xue Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Hao Zhang
- Deparment of Critical Care Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Boyang Liu
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Wanqi Tang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Haoru Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Hongyan Xiao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China.
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, PR China.
| |
Collapse
|
4
|
Kim YB, Lee SH, Kim DH, Lee HG, Jeon YS, Lee SD, Lee KW. Incorporation of Dietary Methyl Sulfonyl Methane into the Egg Albumens of Laying Hens. Antioxidants (Basel) 2022; 11:antiox11030517. [PMID: 35326167 PMCID: PMC8944815 DOI: 10.3390/antiox11030517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
This study evaluated the effects of graded levels of dietary methyl sulfonyl methane (MSM) on the laying performance, egg quality, antioxidant capacity, and the incorporation of MSM into the egg albumen of laying hens. A total of 240 73-week-old laying hens (Lohmann Brown Lite) were randomly allotted to 1 of 5 dietary treatments, with 8 replicates of 6 birds per replicate. The experimental diets were formulated by mixing corn and soybean meal-based diets with MSM to reach 0.0, 1.0, 2.0, 3.0, and 4.0 g per kg of diet, and were fed to the birds for 12 weeks. Increasing dietary MSM led to a significant quadratic effect on the feed intake and feed conversion ratio at 4 weeks (p < 0.05). However, none of the egg qualities and egg components were altered by dietary MSM. The deposition of MSM in egg albumens increased in a linear manner (p < 0.05) in response to the increasing dietary MSM levels. The concentration of malondialdehyde in the egg yolk decreased at 12 weeks (linear and quadratic effect; p < 0.05), as the dietary MSM levels increased. Increasing dietary MSM affected the indicators of antioxidant/oxidative stress in the serum samples, such as superoxide dismutase at 12 weeks (linear and quadratic effect; p < 0.05), total antioxidant capacity at 8 and 12 weeks (linear effect; p < 0.05), and malondialdehyde at 8 weeks (linear effect; p < 0.05). Taken together, our study shows that dietary MSM has potential to be used as an antioxidant feed additive for laying hens, and can be used to produce functional eggs with health benefits for humans.
Collapse
Affiliation(s)
- Yoo-Bhin Kim
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.-S.J.)
| | - Sang-Hyeok Lee
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.-S.J.)
| | - Da-Hye Kim
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.-S.J.)
| | - Hyun-Gwan Lee
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.-S.J.)
| | - Yong-Sung Jeon
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.-S.J.)
| | - Sung-Dae Lee
- National Institute of Animal Science, Rural Development of Administration (NIAS-RDA), Wanju 55365, Korea;
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.-S.J.)
- Correspondence: ; Tel.: +82-2-450-0495
| |
Collapse
|
5
|
Kim YB, Lee SH, Kim DH, Lee HG, Choi Y, Lee SD, Lee KW. Effects of Dietary Organic and Inorganic Sulfur on Laying Performance, Egg Quality, Ileal Morphology, and Antioxidant Capacity in Laying Hens. Animals (Basel) 2021; 12:ani12010087. [PMID: 35011193 PMCID: PMC8749785 DOI: 10.3390/ani12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Oxidative stress caused by environmental and nutritional factors could be detrimental to poultry production. Dietary natural antioxidants could therefore be beneficial in limiting the deleterious effects of oxidative stress in chickens. Methyl sulfonyl methane is a non-toxic natural organosulfur compound with the chemical formula (CH3)2SO2 and is known as methyl sulfone or dimethyl sulfone. Inorganic sulfate (e.g., sodium sulfate) is involved in the metabolism of many tissues and systems, as well as in important detoxication mechanisms. Dietary sulfur in either organic or inorganic forms exhibits beneficial antioxidant properties in various animals in vivo and in vitro. Therefore, our studies have been conducted to evaluate the role of organic and inorganic sulfur in laying hens. Abstract The present study was conducted to investigate the comparative effects of organic and inorganic forms of sulfur, methyl sulfonyl methane (MSM) and sodium sulfate (SS), on laying performance, egg quality, ileal morphology, ileal volatile fatty acids, and antioxidant and stress markers in various biological samples in aged laying hens. A total of 144, 73-week-old Lohman Brown-Lite laying hens were randomly assigned to one of three experimental diets: basal diet (CONT), CONT + 0.2% MSM (MSM), and CONT + 0.3% SS (SS). The trial lasted for 12 weeks. MSM and SS diets contained 0.07% of sulfur, either organic or inorganic. Dietary MSM did not affect egg production or feed conversion ratio at 12 weeks compared with the CONT group. Dietary sulfur did not affect egg quality except for the Haugh unit at 4 weeks, which was lowered (p < 0.05) in the SS group. Compared with the CONT group, a higher (p < 0.05) villus height to crypt depth ratio was observed in the SS group. Dietary sulfur did not affect the percentages of short-chain fatty acids in the ileum. Total antioxidant capacity of the liver increased (p < 0.05) in laying hens fed MSM- and SS-added diets compared with the CONT group. The MSM and SS groups were found to have lowered (p < 0.05) malondialdehyde (MDA) concentration in serum samples compared with CONT. Finally, dietary MSM had the lowest (p < 0.05) MDA concentrations in yolk samples. Taken together, our study showed that dietary organic and inorganic sulfur have positive effects on ileal morphology and antioxidant capacity in laying hens. However, SS-mediated inhibition in laying performance needs to be clarified.
Collapse
Affiliation(s)
- Yoo-Bhin Kim
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.C.)
| | - Sang-Hyeok Lee
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.C.)
| | - Da-Hye Kim
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.C.)
| | - Hyun-Gwan Lee
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.C.)
| | - Yongjun Choi
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.C.)
| | - Sung-Dae Lee
- National Institute of Animal Science, Rural Development of Administration (NIAS-RDA), Wanju 55365, Korea;
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; (Y.-B.K.); (S.-H.L.); (D.-H.K.); (H.-G.L.); (Y.C.)
- Correspondence: ; Tel.: +82-2-450-0495
| |
Collapse
|