1
|
Beshiru A, Igbinosa IH, Salami JO, Uwhuba KE, Ogofure AG, Azazi GM, Igere BE, Anegbe B, Evuen UF, Igbinosa EO. Curcuma longa rhizome extract: a potential antibiofilm agent against antibiotic-resistant foodborne pathogens. BIOFOULING 2024; 40:932-947. [PMID: 39624852 DOI: 10.1080/08927014.2024.2432963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
The traditional medicinal value of Curcuma longa (turmeric) and its potential relevance in modern healthcare suggests that traditional remedies and natural products can provide valuable solutions to contemporary challenges, such as combating biofilms and antibiotic-resistant pathogens, potentially offering new strategies for addressing health and safety issues in the fields of food and medicine. This study assessed the antibiofilm and antibacterial characterization of Curcuma longa rhizome extract against antibiotic-resistant foodborne pathogens. Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier-transform infrared (FTIR) analysis were determined to check for the compounds, functional groups, and constituents of the plant extract. In-vitro antibiofilm and antibacterial bioassay of the extract were determined using standard bacteriological procedures. Potential mechanisms of the plant extract were also studied using standard biological methods. The important chemical constituents from the GC-MS extract of C. longa are arturmerone, cinnamyl angelate, tumerone, γ-atlantone, atlantone, α-atlantone, γ-atlantone and curlone. The FTIR analysis of the extract comprises alkyl halides, bromoalkanes, alkanes, ethylene molecules, arenes, amines, alcohols, sulfones, carboxylic acids and their derivatives, aromatic compounds, and phenols. The MIC of C. longa crude extract ranges from ethanol extract (0.03125 - 0.5 mg/mL) and acetone extract (0.0625 - 0.5 mg/mL). The MBC range is as follows: ethanol extract (0.125 - 1 mg/mL), acetone extract (0.125 - 1 mg/mL). The time-kill kinetics showed significant cell reduction with time. The bacterial isolates' nucleic acids and protein leakage were consistent with increased extract concentration and time. There was a reduction in the biofilm cell on the shrimp surface and EPS with increased concentration and time. C. longa exerted significant anti-biofilm activity by removing existing biofilms, disrupting cell connections, and decreasing cells in biofilms. These findings can aid food protection from microbial contamination and prevent biofilms-related infections.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Isoken H Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
- Department of Environmental Management and Toxicology, University of Benin, Benin City, Nigeria
| | - Joshua O Salami
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
| | - Kate E Uwhuba
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Abraham G Ogofure
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
| | - Gift M Azazi
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Bright E Igere
- Department of Microbiology, Biotechnology Unit, Delta State University, Abraka, Nigeria
| | - Bala Anegbe
- Department of Basic and Industrial Chemistry, College of Natural and Applied Science, Western Delta University, Oghara, Nigeria
| | - Uduenevwo F Evuen
- Department of Biochemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Etinosa O Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Bennett C, Russel W, Upton R, Frey F, Taye B. Social and ecological determinants of antimicrobial resistance in Africa: a systematic review of epidemiological evidence. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e119. [PMID: 39257424 PMCID: PMC11384158 DOI: 10.1017/ash.2024.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 09/12/2024]
Abstract
Background Antimicrobial resistance (AMR) is one of the greatest global health problems for humans, animals, and the environment. Although the association between various factors and AMR is being increasingly researched, the need to understand the contribution of social and ecological determinants, especially in developing nations, remains. This review fills these knowledge gaps by synthesizing existing evidence on the social and ecological determinants of AMR in Africa. Results Twenty-four studies were selected based on predefined criteria from PubMed. 58.33% (n = 14) and 29.17% (n = 7) of the studies reported on ecological and social determinants of AMR, respectively, and 3 (12.5%) studies documented both social and environmental determinants of AMR. Sociodemographic factors include increased household size, poor knowledge, attitudes toward AMR, low educational levels, and rural residences. Indicators of poor water sanitation and hygiene, framing practices, and consumption of farm products were among the common ecological determinants of AMR and AM misuse in Africa. Conclusion Our review demonstrates the importance of social and ecological determinants of AMR among African populations. The findings may be valuable to researchers, policymakers, clinicians, and those working in lower-income countries to implement AMR prevention programs utilizing a holistic approach.
Collapse
Affiliation(s)
- Catherine Bennett
- Department of Neuroscience, Colgate University, Hamilton, NY, USA
- Global Public Environmental Health, Colgate University, Hamilton, NY, USA
| | - Will Russel
- Global Public Environmental Health, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Rebecca Upton
- Global Public Environmental Health, Colgate University, Hamilton, NY, USA
| | - Frank Frey
- Global Public Environmental Health, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Bineyam Taye
- Global Public Environmental Health, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| |
Collapse
|
3
|
Moffo F, Ndebé MMF, Tangu MN, Noumedem RNG, Awah-Ndukum J, Mouiche MMM. Antimicrobial use, residues and resistance in fish production in Africa: systematic review and meta-analysis. BMC Vet Res 2024; 20:307. [PMID: 38987775 PMCID: PMC11234786 DOI: 10.1186/s12917-024-04158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
In low- and middle-income countries, data on antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture are scarce. Therefore, summarizing documented data on AMU, antimicrobial residue (AR), and AMR in aquaculture in Africa is key to understanding the risk to public health. Google Scholar, PubMed, African Journals online, and Medline were searched for articles published in English and French following the PRISMA guidelines. A structured search string was used with strict inclusion and exclusion criteria to retrieve and screen the articles. The pooled prevalence and 95% confidence intervals were calculated for each pathogen-antimicrobial pair using random effects models. Among the 113 full-text articles reviewed, 41 met the eligibility criteria. The majority of the articles reported AMR (35; 85.4%), while a few were on AMU (3; 7.3%) and AR (3; 7.3%) in fish. The articles originated from West Africa (23; 56.1%), North Africa (8; 19.7%), and East Africa (7; 17.1%). Concerning the antimicrobial agents used in fish farming, tetracycline was the most common antimicrobial class used, which justified the high prevalence of residues (up to 56.7%) observed in fish. For AMR, a total of 69 antimicrobial agents were tested against 24 types of bacteria isolated. Bacteria were resistant to all classes of antimicrobial agents and exhibited high levels of multidrug resistance. Escherichia coli, Salmonella spp., and Staphylococcus spp. were reported in 16, 10, and 8 studies, respectively, with multidrug resistance rates of 43.1% [95% CI (32.0-55.0)], 40.3% [95% CI (24.1-58.1)] and 31.3% [95% CI (17.5-49.4)], respectively. This review highlights the high multidrug resistance rate of bacteria from aquaculture to commonly used antimicrobial agents, such as tetracycline, ampicillin, cotrimoxazole, gentamicin, and amoxicillin, in Africa. These findings also highlighted the lack of data on AMU and residue in the aquaculture sector, and additional efforts should be made to fill these gaps and mitigate the burden of AMR on public health in Africa.
Collapse
Affiliation(s)
- Frédéric Moffo
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
- One Health Innovative Solutions (OHIS) Research Unit, Ngaoundéré, Cameroon
| | - Mohamed Moustapha Fokom Ndebé
- Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, Laboratory of Animal Physiology and Health, University of Dschang, Dschang, Cameroon
- Institute of Agricultural Research for Development, Bangangté Polyvalent Station, Bangangté, Cameroon
| | - Mildred Naku Tangu
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Julius Awah-Ndukum
- Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, Laboratory of Animal Physiology and Health, University of Dschang, Dschang, Cameroon
- Department of Animal Production Technology, College of Technology, University of Bamenda, Bambili, Cameroon
| | - Mohamed Moctar Mouliom Mouiche
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon.
| |
Collapse
|
4
|
Thaotumpitak V, Odoi JO, Anuntawirun S, Jeamsripong S. Meta-Analysis and Systematic Review of Phenotypic and Genotypic Antimicrobial Resistance and Virulence Factors in Vibrio parahaemolyticus Isolated from Shrimp. Antibiotics (Basel) 2024; 13:370. [PMID: 38667046 PMCID: PMC11047358 DOI: 10.3390/antibiotics13040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
This systematic review and meta-analysis investigates the prevalence of Vibrio parahaemolyticus, its virulence factors, antimicrobial resistance (AMR), and its resistance determinants in shrimp. This study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, to identify and select relevant peer-reviewed articles published between January 2020 and December 2022. The search strategy involved multiple online databases, including Google Scholar, PubMed, ScienceDirect, and Scopus. The inclusion criteria focused on studies that examined V. parahaemolyticus prevalence, virulence factors, and AMR in shrimp from farms to retail outlets. A total of 32 studies were analyzed, revealing a pooled estimate prevalence of V. parahaemolyticus in shrimp at 46.0%, with significant heterogeneity observed. Subgroup analysis highlighted varying prevalence rates across continents, emphasizing the need for further investigation. Virulence factor analysis identified thermostable direct hemolysin (tdh) and tdh-related hemolysin (trh) as the most common. Phenotypic AMR analysis indicated notable resistance to glycopeptides, nitrofurans, and beta-lactams. However, the correlation between antimicrobial usage in shrimp farming and observed resistance patterns was inconclusive. Funnel plots suggested potential publication bias, indicating a need for cautious interpretation of findings. This study underscores the urgency of coordinated efforts to address AMR in V. parahaemolyticus to safeguard public health and to ensure sustainable aquaculture practices.
Collapse
Affiliation(s)
- Varangkana Thaotumpitak
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand;
| | - Justice Opare Odoi
- Animal Health Division, Animal Research Institute, Council for Scientific and Industrial Research, Accra P.O. Box AH20, Ghana;
| | - Saran Anuntawirun
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
5
|
Qin Z, Peng K, Feng Y, Wang Y, Huang B, Tian Z, Ouyang P, Huang X, Chen D, Lai W, Geng Y. Transcriptome reveals the role of the htpG gene in mediating antibiotic resistance through cell envelope modulation in Vibrio mimicus SCCF01. Front Microbiol 2024; 14:1295065. [PMID: 38239724 PMCID: PMC10794384 DOI: 10.3389/fmicb.2023.1295065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
HtpG, a bacterial homolog of the eukaryotic 90 kDa heat-shock protein (Hsp90), represents the simplest member of the heat shock protein family. While the significance of Hsp90 in fungal and cancer drug resistance has been confirmed, the role of HtpG in bacterial antibiotic resistance remains largely unexplored. This research aims to investigate the impact of the htpG gene on antibiotic resistance in Vibrio mimicus. Through the creation of htpG gene deletion and complementation strains, we have uncovered the essential role of htpG in regulating the structural integrity of the bacterial cell envelope. Our transcriptomics analysis demonstrates that the deletion of htpG increases the sensitivity of V. mimicus to antimicrobial peptides, primarily due to upregulated lipopolysaccharide synthesis, reduced glycerophospholipid content, and weakened efflux pumps activity. Conversely, reduced sensitivity to β-lactam antibiotics in the ΔhtpG strain results from decreased peptidoglycan synthesis and dysregulated peptidoglycan recycling and regulation. Further exploration of specific pathway components is essential for a comprehensive understanding of htpG-mediated resistance mechanisms, aiding in the development of antimicrobial agents. To our knowledge, this is the first effort to explore the relationship between htpG and drug resistance in bacteria.
Collapse
Affiliation(s)
- Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yilin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Liu S, Wang W, Jia T, Xin L, Xu TT, Wang C, Xie G, Luo K, Li J, Kong J, Zhang Q. Vibrio parahaemolyticus becomes lethal to post-larvae shrimp via acquiring novel virulence factors. Microbiol Spectr 2023; 11:e0049223. [PMID: 37850796 PMCID: PMC10714935 DOI: 10.1128/spectrum.00492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE As a severe emerging shrimp disease, TPD has heavily impacted the shrimp aquaculture industry and resulted in serious economic losses in China since spring 2020. This study aimed to identify the key virulent factors and related genes of the Vp TPD, for a better understanding of its pathogenicity of the novel highly lethal infectious pathogen, as well as its molecular epidemiological characteristics in China. The present study revealed that a novel protein, Vibrio high virulent protein-2 (MW >100 kDa), is responsible to the lethal virulence of V. parahaemolyticus to shrimp post-larvae. The results are essential for effectively diagnosing and monitoring novel pathogenic bacteria, like Vp TPD, in aquaculture shrimps and would be beneficial to the fisheries department in early warning of Vp TPD emergence and developing prevention strategies to reduce economic losses due to severe outbreaks of TPD. Elucidation of the key virulence genes and genomics of Vp TPD could also provide valuable information on the evolution and ecology of this emerging pathogen in aquaculture environments.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Tianchang Jia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Lusheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Ting-ting Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Chong Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Guosi Xie
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Jun Li
- School of Sciences and Medicine, Lake Superior State University, Sault Ste. Marie, Michigan, USA
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Qingli Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| |
Collapse
|
7
|
Soltan Dallal MM, Zeynali Kelishomi F, Nikkhahi F, Zahraei Salehi T, Fardsanei F, Peymani A. Biofilm formation, antimicrobial resistance genes, and genetic diversity of Salmonella enterica subspecies enterica serotype Enteritidis isolated from food and animal sources in Iran. J Glob Antimicrob Resist 2023; 34:240-246. [PMID: 37567468 DOI: 10.1016/j.jgar.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVES Salmonella enterica serovar Entritidis is an important pathogen in foodborne diseases and causes gastroenteritis. Several studies have investigated the genetic diversity of the strains of this bacterium. However, our knowledge of the discriminatory power of the molecular methods is limited. METHODS In total, 34 strains of S. enteritidis were isolated from food related to animals. Antibiotic resistance of the strains, antibiotic resistance genes, and biofilm formation capacity of the strains were evaluated. For the genetic analysis of the strains, PFGE was performed using AvrII restriction enzyme. RESULTS Among the tested antibiotics, cefuroxime, nalidixic acid, and ciprofloxacin showed the highest resistance rates (79.4%, 47%, and 44.2%, respectively). Only three antibiotic-resistance genes were identified in these strains (blaTEM: 67.6%, tetA: 9%, and sul2: 3%). In total, 91% of the strains were biofilm producers. Clustering of strains using AvrII for 26 samples with the same XbaI PFGE profile showed that these strains were in one clone and had high homogeneity. CONCLUSIONS In conclusion, it is better to use a combination of several typing methods for typing strains that are genetically very close so that the results are reliable.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Division of Food Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Fardsanei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
8
|
Pearce R, Conrady B, Guardabassi L. Prevalence and Types of Extended-Spectrum β-Lactamase-Producing Bacteria in Retail Seafood. Foods 2023; 12:3033. [PMID: 37628032 PMCID: PMC10453871 DOI: 10.3390/foods12163033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Objectives: To assess prevalence and types of extended-spectrum β-lactamase (ESBL)-producing bacteria in retail seafood. Methods: A literature review was completed according to international guidelines for systematic reviews, except for being performed by a single reviewer. Kruskal-Wallis and Dunn tests were used to determine statistical differences between continents or seafood types. Results: Among 12,277 hits, 42 publications from 2011 to 2023 were deemed relevant to the review's objectives. The median prevalence of ESBL-contaminated products was 19.4%. A significantly lower prevalence was observed in Europe (p = 0.006) and Africa (p = 0.004) compared to Asia. Amongst the 2053 isolates analyzed in the selected studies, 44.8% were ESBL-positive. The predominant type was CTX-M (93.6%), followed by TEM (6.7%) and SHV (5.0%). Only 32.6% and 18.5% of the CTX-M-positive isolates were typed to group and gene level, respectively. While group 1 (60.2%) was prevalent over group 9 (39.8%) among Enterobacterales, the opposite trend was observed in Vibrio spp. (60.0% vs. 40.0%). Information at gene level was limited to Enterobacterales, where CTX-M-15 was the most prevalent (79.2%). Conclusions: On average, one in five seafood products sold at retail globally is contaminated with ESBL-producing Enterobacterales of clinical relevance. Our findings highlight a potential risk for consumers of raw seafood, especially in Asia.
Collapse
Affiliation(s)
- Ryan Pearce
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Beate Conrady
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Luca Guardabassi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| |
Collapse
|
9
|
Beshiru A, Igbinosa EO. Surveillance of Vibrio parahaemolyticus pathogens recovered from ready-to-eat foods. Sci Rep 2023; 13:4186. [PMID: 36918655 PMCID: PMC10011769 DOI: 10.1038/s41598-023-31359-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
This study examined the occurrence of V. parahaemolyticus from ready-to-eat (RTE) food in Delta State, Nigeria. It also characterized antibiotic resistance and virulence gene profile patterns to determine the associated health risk hazard. Food samples total of 380 were collected randomly and assessed for V. parahaemolyticus. V. parahaemolyticus isolates were characterized for their virulence and antibiogram potentials using a phenotypic and polymerase chain reaction (PCR) approach. A total of 42 (11.1%) samples were contaminated with V. parahaemolyticus. In 17/42 (40.5%) of the V. parahaemolyticus-positive samples, the densities were < 10 MPN/g. However, 19/42 (45.2%) and 6/42 (14.3%) of the samples had densities of 10 - 102 and > 102 MPN/g, respectively. A total of 67 V. parahaemolyticus isolates were identified using PCR; 54(80.6%) isolates were multidrug resistant. A total of 22 (32.8%), 39 (58.2%), and 67 (100%) of the V. parahaemolyticus harbored the tdh, trh, and tlh toxin genes, respectively. The T3SS1 gene (vcrD1) was detected in 67 (100%) of the isolates. The T3SS2α genes which were vcrD2, vopB2, and vopT were detected in 21 (31.3%), 11 (16.4%) and 30 (44.8%) of the isolates respectively. Some of the V. parahaemolytics strains harbored the orf8 gene 20 (29.9%), and a combination of orf8 + tdh genes 12 (17.9%), categorized as pandemic strains. The antibiotic resistance genes detected in this study include blaTEM 33 (49.3), tetM 19 (28.4), cmlA 32(47.8) and sul1 14 (20.9). The concentration levels and prevalence of V. parahaemolyticus in RTE foods indicate contamination of ready-to-eat foods, particularly street foods consumed in the Delta State of Nigeria, threatening public health and consumer safety.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin City, 300283, Edo State, Nigeria
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Delta State, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Etinosa O Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin City, 300283, Edo State, Nigeria.
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
10
|
Incidence of antibiotic resistance genotypes of Vibrio species recovered from selected freshwaters in Southwest Nigeria. Sci Rep 2022; 12:18912. [PMID: 36344620 PMCID: PMC9640555 DOI: 10.1038/s41598-022-23479-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio species are classified as potent hazards because of their tendency to effect serious diseases like cholera and other gastrointestinal ailments in humans, as well as vibriosis in fish. A total of 144 freshwater samples were aseptically collected monthly across four rivers (Asejire, Ona, Dandaru and Erinle rivers) over a 12-month period from which Vibrio spp. were isolated using culture procedures, confirmed by means of biochemical test as well as Polymerase Chain Reaction (PCR) assay and further characterized for their phenotypic antibiotic susceptibilities and relevant antimicrobial resistant determinants by PCR. Three hundred and fifteen (58%) isolates confirmed across the sampled sites (Asejire = 75, Dandaru = 87, Eleyele = 72, Erinle = 81) showed high resistance against erythromycin-95%, Sulphamethoxazole-94%, rifampicin-92%, doxycycline-82%, tetracycline-75%, amoxicillin-45%, cephalothin-43% and varied susceptibilities to other antibiotics. The multiple antibiotic resistance indices of 97% of the Vibrio isolates were above the 0.2 threshold limit with MAR phenotype pattern E-SUL-RF-TET-DOX (0.38) found to be the most prevalent pattern among the isolates. The distributions of resistance determinant of the tested antibiotics were revealed as follows: sulII 33%, sulI 19% (sulfonamides); blaOXA 27%, ampC 39%, blapse 11% (beta-lactams); tetA 28%, tetE 20%, tet39 8%, (tetracyclines) and strA 39%. aacC2 24%, aphA1 14% (aminoglycosides). Strong positive associations were observed among tetA, sulI, tetE and sulII. This study raises concerns as these selected rivers may contribute to the environmental spread of waterborne diseases and antibiotic resistance genes. Therefore, we recommend environmental context-tailored strategies for monitoring and surveillance of resistance genes so as to safeguard the environment from becoming reservoirs of virulent and infectious Vibrio species.
Collapse
|
11
|
Igbinosa EO, Beshiru A, Igbinosa IH, Okoh AI. Antimicrobial resistance and genetic characterisation of Salmonella enterica from retail poultry meats in Benin City, Nigeria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Ajuzieogu CA, Dyboh IC, Nwobodo DC. Culture-dependent examination of the bacteriological quality of ready-to-eat African salads in Enugu metropolis, Nigeria and antibiotic resistance profile of associated bacteria. Heliyon 2022; 8:e10782. [PMID: 36212018 PMCID: PMC9535295 DOI: 10.1016/j.heliyon.2022.e10782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/20/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
This study investigated the bacteriological quality of ready-to-eat (RTE) African salads in Enugu metropolis, Enugu, Nigeria. A total of 10 samples of African salad were purchased from 10 different vendors in Enugu metropolis. The samples were purchased from Agbani Road, Ogbete, Mayor, Uwani, Kenyatta, Achara Layout, Obiagu and Timber. Isolation and enumeration of bacterial isolates were done using Nutrient agar, Eosin Methylene Blue (EMB) agar, Thiosulphate-citrate-bile salts-sucrose (TCBS) agar, Salmonella-Shigella Agar (SSA) and MacConkey agar, following standard methods. Identification of the bacterial isolates were done through biochemical tests and the Analytical Profile Index (API 20E) test kit. The antibiotic sensitivity of the bacterial isolates was also done using the Kirby Bauer disc diffusion method. Total culturable heterotrophic count was above 300 colonies across the samples. The highest bacterial counts recorded on EMB, SSA and TCBS across the samples were 6.3 × 106 CFU/g, 7.4 × 106 CFU/g and 1.21 × 107 CFU/g respectively. The identities of the organisms were; Salmonella spp., Staphylococcus aureus, Escherichia coli, Vibrio mimicus, Vibrio fluvialis, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio hollisae. The prevalent organism across the samples was Vibrio spp. The antibiotic sensitivity test suggested that Vibrio spp. was resistant to Ampiclox and Amoxycillin but sensitive to Erythromycin, Pefloxacin and Septrin. From this study, it was discovered that consumers of RTE African salad from majority of the vendors across Enugu metropolis are at risk of severe food poisoning.
Collapse
|
13
|
Beshiru A, Okoh AI, Igbinosa EO. Processed ready-to-eat (RTE) foods sold in Yenagoa Nigeria were colonized by diarrheagenic Escherichia coli which constitute a probable hazard to human health. PLoS One 2022; 17:e0266059. [PMID: 35381048 PMCID: PMC8982850 DOI: 10.1371/journal.pone.0266059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The study aimed to recover diarrheagenic Escherichia coli strains from processed ready-to-eat (RTE) foods in Yenagoa, Nigeria and characterize them using culture-based and molecular methods. Three hundred RTE food samples were collected randomly from different food outlets between February 2021 and August 2021 and assessed for the occurrence of E. coli using standard bacteriological procedures. The virulence factor formation and antibiotic susceptibility profile of the isolates was carried out using standard microbiological procedures. Polymerase chain reaction (PCR) was used to confirm the identity of the isolates via specific primers and further used to assay the diarrheagenic determinants of the E. coli isolates. The prevalence of E. coli positive samples based on the proliferation of E. coli on Chromocult coliform agar forming purple to violet colonies was 80(26.7%). The population density of E. coli from the RTE foods ranged from 0–4.3 × 104 ± 1.47 CFU/g. The recovered E. coli isolates (n = 62) were resistant to antibiotics in different proportions such as ampicillin 62(100%), aztreonam 47(75.81%) and chloramphenicol 43(69.35%). All the recovered E. coli isolates were resistant to ≥ 2 antibiotics. The multiple antibiotic-resistant index (MARI) ranged from 0.13–0.94 with 47(75.8%) of isolates having MARI >2. A total of 48(77.4%) of the isolates were multidrug-resistant (MDR). The proportion of extracellular virulence factor formation is as follows: protease 12(19.35%), curli 39(62.9%), cellulose 21(33.89%), ornithine decarboxylase 19(30.65%) and aesculin hydrolysis 14(22.58%). The overall proportion of diarrheagenic E. coli was 33/62(53.2%). The distributions of typical diarrheagenic E. coli includes: tETEC 9(14.5%), tEPEC 13(20.9%), tEAEC 6(9.7%), tEIEC 2(3.2%) and tEHEC 3(4.8%). The proportions of atypical strains include aETEC 10(16.1%), aEAEC 5(8.1%), aEPEC 1(1.6%) and aEIEC 3(4.8%). This study demonstrated that some RTE foods sold in Yenagoa, Nigeria, are contaminated and constitute a probable human health hazard. Thus, there is a need for intensive surveillance of this isolate in RTE foods variety to spot evolving AMR phenotypes and avert food-borne infections.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Anthony I. Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
| | - Etinosa O. Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
- * E-mail:
| |
Collapse
|
14
|
Onohuean H, Igere BE. Occurrence, Antibiotic Susceptibility and Genes Encoding Antibacterial Resistance of Salmonella spp. and Escherichia coli From Milk and Meat Sold in Markets of Bushenyi District, Uganda. Microbiol Insights 2022; 15:11786361221088992. [PMID: 35431556 PMCID: PMC9008818 DOI: 10.1177/11786361221088992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
The bacteriological safety of food/food products and the menace of antimicrobial
resistance amongst enteropathogenic bacteria raise therapeutic management
concerns within the public health system. Recently consumers of food/food
products purchased from the public market of Bushenyi District presents with
Enterobacteriaceae infection-associated symptoms and clinical conditions. We
determine the molecular characterization and antibiotic signatures of some
enteric bacterial recovered from foods/food products in markets of Bushenyi
District, Uganda. Standard molecular biology techniques (Polymerase chain
reaction PCR) and microbiological procedures were applied. Meat (MT) and milk
(MK) samples were collected from 4 communities/town markets (Kizinda, Ishaka,
Bushenyi, kashenyi) between April and September 2020 and analyzed. Our result
reveals high differential counts of Salmonella species
(175.33 ± 59.71 Log 10 CFU/100 ml) and Escherichia coli
(53.33 ± 26.03 Log 10 CFU/100 ml) within the 4 markets with the count of
Salmonella species higher than that of E.
coli in each sampled market. The PCR further confirmed the detected
strains (22.72% of E. coli and 54.29% of
Salmonella species) and diverse multiple
antibiotic-resistant determinants {TEM: (12 (23.1%) blaTEM-2
gene, 3 (5.8%) blaTEM gene}, 5 (9.6%) blaSHV
gene, 3 (5.8%) bla-CTX-M-2, 1 (1.9%)
bla-CTX-M-9 }. Other resistance genes detected were {10 (21.7%)
strA gene} and 8 (17.4%) aadA gene}
indicating a potential antibiotic failure. The need for alternative medicine and
therapeutic measure is suggestive. Astute and routine surveillance/monitoring of
potential pathogens and food products in the public market remains a core for
maintaining future consumer safety.
Collapse
Affiliation(s)
- Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University Uganda, Ishaka, Uganda
| | - Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University Oghara, Delta State, Nigeria
| |
Collapse
|
15
|
Onohuean H, Okoh AI, Nwodo UU. Epidemiologic potentials and correlational analysis of Vibrio species and virulence toxins from water sources in greater Bushenyi districts, Uganda. Sci Rep 2021; 11:22429. [PMID: 34789791 PMCID: PMC8599681 DOI: 10.1038/s41598-021-01375-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Adequate water supply is one of the public health issues among the population living in low-income settings. Vibriosis remain a significant health challenge drawing the attention of both healthcare planners and researchers in South West districts of Uganda. Intending to clamp down the disease cases in the safest water deprive locality, we investigated the virulent toxins as contaminants and epidemiologic potentials of Vibrio species recovered from surface waters in greater Bushenyi districts, Uganda. Surface water sources within 46 villages located in the study districts were obtained between June and October 2018. Standard microbiological and molecular methods were used to analyse samples. Our results showed that 981 presumptive isolates retrieved cell counts of 10-100 CFU/g, with, with (640) 65% confirmed as Vibrio genus using polymerase chain reaction, which is distributed as follows; V. vulnificus 46/640 (7.2%), V. fluvialis 30/594 (5.1), V. parahaemolyticus 21/564 (3.7), V. cholera 5/543 (0.9), V. alginolyticus 62/538 (11.5) and V. mimicus 20/476 (4.2). The virulence toxins observed were heat-stable enterotoxin (stn) 46 (82.10%), V. vulnificus virulence gene (vcgCPI) 40 (87.00%), extracellular haemolysin gene {vfh 21 (70.00)} and Heme utilization protein gene {hupO 5 (16.70)}. The cluster analysis depicts hupO (4.46% n = 112); vfh (18.75%, n = 112); vcgCPI and stn (35.71%, & 41.07%, n = 112). The principal component analysis revealed the toxins (hupO, vfh) were correlated with the isolate recovered from Bohole water (BW) source, while (vcgCPI, stn) toxins are correlated with natural raw water (NRW) and open springs (OS) water sources isolates. Such observation indicates that surface waters sources are highly contaminated with an odds ratio of 1.00, 95% CI (70.48-90.5), attributed risk of (aR = 64.29) and relative risk of (RR = 73.91). In addition, it also implies that the surface waters sources have > 1 risk of contamination with vfh and > six times of contamination with hupO (aR = 40, - 66). This is a call of utmost importance to the population, which depends on these water sources to undertake appropriate sanitation, personal hygienic practices and potential measures that ensure water quality.
Collapse
Affiliation(s)
- Hope Onohuean
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa.
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western-Campus, Ishaka-Bushenyi, Uganda.
| | - Anthony I Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa
| | - Uchechukwu U Nwodo
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
16
|
Smith DS, Houck C, Lee A, Simmons TB, Chester ON, Esdaile A, Symes SJK, Giles DK. Polyunsaturated fatty acids cause physiological and behavioral changes in Vibrio alginolyticus and Vibrio fischeri. Microbiologyopen 2021; 10:e1237. [PMID: 34713610 PMCID: PMC8494716 DOI: 10.1002/mbo3.1237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/08/2021] [Indexed: 11/06/2022] Open
Abstract
Vibrio alginolyticus and Vibrio (Aliivibrio) fischeri are Gram-negative bacteria found globally in marine environments. During the past decade, studies have shown that certain Gram-negative bacteria, including Vibrio species (cholerae, parahaemolyticus, and vulnificus) are capable of using exogenous polyunsaturated fatty acids (PUFAs) to modify the phospholipids of their membrane. Moreover, exposure to exogenous PUFAs has been shown to affect certain phenotypes that are important factors of virulence. The purpose of this study was to investigate whether V. alginolyticus and V. fischeri are capable of responding to exogenous PUFAs by remodeling their membrane phospholipids and/or altering behaviors associated with virulence. Thin-layer chromatography (TLC) analyses and ultra-performance liquid chromatography-electrospray ionization mass spectrometry (UPLC/ESI-MS) confirmed incorporation of all PUFAs into membrane phosphatidylglycerol and phosphatidylethanolamine. Several growth phenotypes were identified when individual fatty acids were supplied in minimal media and as sole carbon sources. Interestingly, several PUFAs acids inhibited growth of V. fischeri. Significant alterations to membrane permeability were observed depending on fatty acid supplemented. Strikingly, arachidonic acid (20:4) reduced membrane permeability by approximately 35% in both V. alginolyticus and V. fischeri. Biofilm assays indicated that fatty acid influence was dependent on media composition and temperature. All fatty acids caused decreased swimming motility in V. alginolyticus, while only linoleic acid (18:2) significantly increased swimming motility in V. fischeri. In summary, exogenous fatty acids cause a variety of changes in V. alginolyticus and V. fischeri, thus adding these bacteria to a growing list of Gram-negatives that exhibit versatility in fatty acid utilization and highlighting the potential for environmental PUFAs to influence phenotypes associated with planktonic, beneficial, and pathogenic associations.
Collapse
Affiliation(s)
- David S. Smith
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Carina Houck
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Allycia Lee
- Department of Chemistry and PhysicsThe University of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - Timothy B. Simmons
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Olivia N. Chester
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Ayanna Esdaile
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| | - Steven J. K. Symes
- Department of Chemistry and PhysicsThe University of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - David K. Giles
- Department of Biology, Geology, and Environmental ScienceChattanoogaTennesseeUSA
| |
Collapse
|
17
|
Gxalo O, Digban TO, Igere BE, Olapade OA, Okoh AI, Nwodo UU. Virulence and Antibiotic Resistance Characteristics of Vibrio Isolates From Rustic Environmental Freshwaters. Front Cell Infect Microbiol 2021; 11:732001. [PMID: 34490150 PMCID: PMC8416912 DOI: 10.3389/fcimb.2021.732001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/31/2021] [Indexed: 01/22/2023] Open
Abstract
The study investigated the occurrence of antimicrobial resistance genes and virulence determinants in Vibrio species recovered from different freshwater sheds in rustic milieu. A total of 118 Vibrio isolates comprising Vibrio fluvialis (n=41), Vibrio mimicus (n=40) and V. vulnificus (n=37) was identified by amplification of ToxR, vmh and hsp60 genes. The amplification of virulence genes indicated that V. mimicus (toxR, zot, ctx, VPI, and ompU) genes were detected in 12.5%, 32.5%, 45%, 37.5% and 10% respectively. V. fluvialis genes (stn, hupO and vfh) were harboured in 48.8%, 14.6% and 19.5% isolates congruently. The other virulence genes that include vcgC and vcgE were observed in 63.1% and 29% of isolates belonging to V. vulnificus. With the exceptions of imipenem, meropenem and ciprofloxacin, most isolates exhibited more than 50% resistance to antibiotics. The antimicrobial resistance was more prevalent for polymyxin B (100%), azithromycin (100%) and least in ciprofloxacin (16.1%). Multiple antibiotic resistance index range was 0.3 and 0.8 with most isolates showing MARI of 0.8. The blaTEM, AmpC, blaGES, blaIMP, blaOXA-48 and blaKPC genes were detected in 53.3%, 42%, 29.6%, 16.6%, 15%, 11.3% and 5.6% of the isolates. Non-beta lactamases such as streptomycin resistance (aadA and strA), gentamicin resistance (aphA1) and quinolone resistance gene (qnrVC) were found in 5.2%, 44.3%, 26% and 2.8%. Chloramphenicol resistance genes (cmlA1 and catII) were found in 5.2% and 44.3% among the isolates. Our findings reveal the presence of antimicrobial resistance genes and virulent Vibrio species in aquatic environment which can have potential risk to human and animal's health.
Collapse
Affiliation(s)
- Oyama Gxalo
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Tennison O Digban
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Bright E Igere
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Ola A Olapade
- Biology Department, Albion College, Albion, MI, United States
| | - Anthony I Okoh
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
18
|
Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Occurrence and antibiogram signatures of some Vibrio species recovered from selected rivers in South West Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42458-42476. [PMID: 33813704 DOI: 10.1007/s11356-021-13603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrio species, widely distributed in water environments, has emerged as a prominent cause of water and food-related disease outbreaks posing significant risk to human and animal health worldwide. About 40% of presumptive isolates recovered from four selected rivers in Southwest Nigeria and, established as Vibrio species genus through polymerase chain reaction techniques., were subjected to antibiotic susceptibility testing against a panel of 18 commonly used antibiotics. The relative prevalence of key Vibrio species (V. parahaemolyticus, V. vulnificus, V. mimicus, V. harveyi, and V. cholerae) was in the order 17%, 13.3%, 4.4%, 2.2%, and 2.2% respectively. Antibiotic resistance by all Vibrio species was mostly observed against doxycycline (71-89%), erythromycin (86-100%), tetracycline (71-89%), rifampicin (86-100%), and sulfamethoxazole (87-100%), though susceptibility to meropenem (86-100%), cephalothin (60-100%), norfloxacin (93-100%), ciprofloxacin (88-100%), amikacin (64-100%), gentamicin (57-74%), and trimethoprim/sulfamethoxazole (57-81%) was equally observed in all species. Vibrio mimicus expressed highest resistance against streptomycin and chloramphenicol (64%), while V. vulnificus (52%) and V. cholerae (57%) had the highest resistance against cephalothin. High resistance against ampicillin (57%) and amoxicillin (50%) was exhibited by V. cholerae and V. mimicus respectively. Indexes of multiple antibiotic resistances (MARI) among Vibrio species ranged between 0.11 and 0.72 with the highest MAR index of 0.72 observed in one isolate of V. vulnificus. This study reveals high prevalence of Vibrio species in the selected rivers as well as elevated resistance against some first-line antibiotics, which suggests possible inappropriate antimicrobial usage around study communities. We conclude that the freshwater resources investigated are unfit for domestic, industrial, and recreational uses without treatment prior to use and are potential reservoirs of antibiotic-resistant Vibrio species in this environment.
Collapse
Affiliation(s)
- Ibukun M Adesiyan
- Department of Biological Sciences, Achievers University, Owo, Ondo State, Nigeria.
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Osun-State, 220005, Nigeria.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
| | | | - Aderemi O Ogunfowokan
- Department of Industrial Chemistry, The Technical University, Ibadan,, Oyo State, Nigeria
- Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental Health Sciences College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
19
|
Prevalence, detection of virulence genes and antimicrobial susceptibility of pathogen Vibrio species isolated from different types of seafood samples at "La Nueva Viga" market in Mexico City. Antonie van Leeuwenhoek 2021; 114:1417-1429. [PMID: 34255280 DOI: 10.1007/s10482-021-01591-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Some Vibrio species are important human pathogens owing to they cause infectious diseases such as gastroenteritis, wound infections, septicemia or even death. Many of these illnesses are associated with consumption of contaminated seafood. In the present study, we evaluated the presence of pathogenic Vibrio species, their virulence and antimicrobial susceptibility from 285 different kind of seafood samples from "La Nueva Viga" market in Mexico City. The PCR assay was used for amplification the vppC (collagenase), vmh (hemolysin), tlh (thermolabile hemolysin), and vvhA (hemolytic cytolysin) genes that are specific to Vibrio alginolyticus (detected in 27%), Vibrio mimicus (23.2%), Vibrio parahaemolyticus (28.8%) and Vibrio vulnificus (21.1%), respectively. Several genes encoding virulence factors were amplified. These included V. alginolyticus: pvuA (17.9%), pvsA (50%), wza and lafA (100%); V. mimicus: iut A (60%), toxR (100%); V. parahaemolyticus: pvuA (58.7%), pvsA (26.1%), wza (2.2%), and lafA (100%); and V. vulnificus: wcrA (77.5%), gmhD (57.5%), lafA (100%) and motA (30%). The antibiotic susceptibility of the Vibrio species isolates revealed that most of them were resistant to ampicillin, cephalothin and carbenicillin but susceptible to pefloxacin and trimethoprim-sulfamethoxazole. Our results indicated a high prevalence of pathogenic Vibrio species in seafood, a high presence of virulence genes and that Vibrio species continuously exposed to antibiotics, therefore, consumption of these kind of seafood carries a potential risk for foodborne illness.
Collapse
|
20
|
Dutta D, Kaushik A, Kumar D, Bag S. Foodborne Pathogenic Vibrios: Antimicrobial Resistance. Front Microbiol 2021; 12:638331. [PMID: 34276582 PMCID: PMC8278402 DOI: 10.3389/fmicb.2021.638331] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Foodborne illness caused by pathogenic Vibrios is generally associated with the consumption of raw or undercooked seafood. Fish and other seafood can be contaminated with Vibrio species, natural inhabitants of the marine, estuarine, and freshwater environment. Pathogenic Vibrios of major public health concerns are Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Common symptoms of foodborne Vibrio infection include watery diarrhea, stomach cramping, nausea, vomiting, fever, and chills. Administration of oral or intravenous rehydration salts solution is the mainstay for the management of cholera, and antibiotics are also used to shorten the duration of diarrhea and to limit further transmission of the disease. Currently, doxycycline, azithromycin, or ciprofloxacin are commonly used for V. cholerae, and doxycycline or quinolone are administered for V. parahaemolyticus, whereas doxycycline and a third-generation cephalosporin are recommended for V. vulnificus as initial treatment regimen. The emergence of antimicrobial resistance (AMR) in Vibrios is increasingly common across the globe and a decrease in the effectiveness of commonly available antibiotics poses a global threat to public health. Recent progress in comparative genomic studies suggests that the genomes of the drug-resistant Vibrios harbor mobile genetic elements like plasmids, integrating conjugative elements, superintegron, transposable elements, and insertion sequences, which are the major carriers of genetic determinants encoding antimicrobial resistance. These mobile genetic elements are highly dynamic and could potentially propagate to other bacteria through horizontal gene transfer (HGT). To combat the serious threat of rising AMR, it is crucial to develop strategies for robust surveillance, use of new/novel pharmaceuticals, and prevention of antibiotic misuse.
Collapse
Affiliation(s)
- Dipanjan Dutta
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anupam Kaushik
- Department of Microbiology, National Centre for Disease Control, New Delhi, India
| | - Dhirendra Kumar
- Department of Microbiology, National Centre for Disease Control, New Delhi, India
| | | |
Collapse
|
21
|
Li F, Tian F, Li J, Li L, Qiao H, Dong Y, Ma F, Zhu S, Tong Y. Isolation and characterization of a podovirus infecting the opportunist pathogen Vibrio alginolyticus and Vibrio parahaemolyticus. Virus Res 2021; 302:198481. [PMID: 34119571 DOI: 10.1016/j.virusres.2021.198481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/22/2023]
Abstract
Bacterial infections have a negative impact on both animal husbandry industry and medicine, and increasing bacterial drug resistance exacerbates this adverse impact. Phages show promise as an alternative to drugs against drug-resistant bacteria. In this study, a novel virulent bacteriophage (phage) vB_ValP_IME234 against Vibrio alginolyticus and Vibrio parahaemolyticus was isolated from freshwater in Beijing, China. Phage vB_ValP_IME234 had an isometric head (59 nm in diameter) and a short tail (10 nm long), belonging to Podoviridae family. Its complete genome is liner double-stranded DNA (dsDNA) with a GC content of 41.6% while encoding 61 putative proteins. Three transfer RNA (tRNA) and no lysogenic gene was detected. vB_ValP_IME234 had a polyvalent infectivity, a burst of 390 PFU/cell, and is stable under different temperatures (4 °C to 50 °C) and pH (6.0 to 10.0) values. Host range test showed that vB_ValP_IME234 has the ability to infect seven strains of Vibrio in total. Phylogenetic analyses based on terminase and capsid suggested that this phage had a close relationship with Vibrio phages. These results indicate that vB_ValP_IME234 could be used as a potential biocontrol agent against V. alginolyticus strains.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, China; Clinical Laboratory center, Taian City Central Hospital, Taian 271000, China
| | - Fengjuan Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, China
| | - Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, China
| | - Lu Li
- Physical and chemical laboratory, Taian centers for diseases prevention control, 271000, China
| | - Huanao Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, China
| | - Yuqi Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, China
| | - Fei Ma
- Pharmacy Intravenous Admixture Services, Taian City Central Hospital, Taian, 271000, Shandong, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, China.
| | - Shaozhou Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, China.
| |
Collapse
|
22
|
Igbinosa EO, Beshiru A, Igbinosa IH, Ogofure AG, Uwhuba KE. Prevalence and Characterization of Food-Borne Vibrio parahaemolyticus From African Salad in Southern Nigeria. Front Microbiol 2021; 12:632266. [PMID: 34168622 PMCID: PMC8217614 DOI: 10.3389/fmicb.2021.632266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
The demand for minimally processed vegetables (African salad) has increased partly due to its inclusion in ready-to-eat foods. Nevertheless, the associated risk of the presence of emergent foodborne pathogens, such as Vibrio parahaemolyticus might be underestimated. The present study was designed to isolate and characterize foodborne V. parahaemolyticus from minimally processed vegetables using culture-based methods and molecular approach. A total of 300 samples were examined from retail outlets between November 2018 and August 2019 from Southern Nigeria. The prevalence of vibrios from the overall samples based on the colonial proliferation of yellow, blue-green and/or green colonies on thiosulfate citrate bile salts sucrose agar was 74/300 (24.6%). An average of two green or blue-green colonies from respective plates was screened for V. parahaemolyticus using analytical profile index (API) 20 NE. Polymerase chain reaction further confirmed the identity of positive V. parahaemolyticus. The counts of V. parahaemolyticus ranged from 1.5 to 1,000 MPN/g. A total of 63 recovered V. parahaemolyticus were characterized further. The resistance profile of the isolates include ampicillin 57/63 (90.5%), cefotaxime 41/63 (65.1%), ceftazidime 30/63 (47.6%), amikacin 32/63 (50.8%), kanamycin 15/63 (23.8%), and oxytetracycline 16/63 (25.4%). The multiple antibiotic index ranged from 0–0.81. The formation of biofilm by the isolates revealed the following: strong formation 15/63 (23.8%), moderate formation 31/63 (49.2%), weak formation 12/63 (19.1%), and no formation 5/63 (7.9%). A total of 63/63 (100%), 9/63 (14.3%), and 20/63 (31.8%) of the isolates harbored the tox R gene, TDH-related hemolysin (trh) and thermostable direct hemolysin (tdh) determinants respectively. The isolates with O2 serogroup were most prevalent via PCR. Isolates that were resistant to tetracycline, kanamycin, and chloramphenicol possessed resistant genes. The presence of multidrug-resistant vibrios in the minimally processed vegetables constitutes a public health risk and thus necessitates continued surveillance.
Collapse
Affiliation(s)
- Etinosa O Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abeni Beshiru
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.,Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Isoken H Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abraham G Ogofure
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Kate E Uwhuba
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.,Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| |
Collapse
|
23
|
Campista-León S, Rivera-Serrano BV, Garcia-Guerrero JT, Peinado-Guevara LI. Phylogenetic characterization and multidrug resistance of bacteria isolated from seafood cocktails. Arch Microbiol 2021; 203:3317-3330. [PMID: 33864113 DOI: 10.1007/s00203-021-02319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The continual increase in resistance to antibacterial drugs has become a major public health problem, and their indiscriminate use in agriculture, aquaculture, and the treatment of human and animal diseases has severely contributed to the occurrence and spread of multidrug resistance genes. This study phylogenetically characterized multidrug-resistant bacteria isolated from seafood cocktails. Seafood cocktail dishes from 20 establishments on public roads were sampled. Samples were grown on TCBS agar and blood agar. Forty colonies with different macro- and microscopic characteristics were isolated. The 16S rRNA gene V4 and V6 hypervariable regions were amplified, sequenced and phylogenetically analyzed. Antibacterial drug resistance was determined by disk diffusion assay. Isolated bacteria were identical to species of the genera Enterococcus, Proteus, Vibrio, Staphylococcus, Lactococcus, Vagococcus, Micrococcus, Acinetobacter, Enterobacter, and Brevibacterium, with 75-100% presenting resistance or intermediate resistance to dicloxacillin, ampicillin, and penicillin; 50-70% to cephalosporins; 30-67.5% to amikacin, netilmicin and gentamicin; 40% to nitrofurantoin and other antibacterial drugs; 25% to chloramphenicol; and 2.5% to trimethoprim with sulfamethoxazole. In general, 80% of the bacteria showed resistance to multiple antibiotics. The high degree of bacterial resistance to antibacterial drugs indicates that their use in producing raw material for marine foods requires established guidelines and the implementation of good practices.
Collapse
Affiliation(s)
- Samuel Campista-León
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Bianca V Rivera-Serrano
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Joel T Garcia-Guerrero
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico
| | - Luz I Peinado-Guevara
- Laboratory of Microbiology and Applied Biology, Faculty of Biology, Autonomous University of Sinaloa, Av. Universitarios, University City, 80013, Culiacan Rosales, Sinaloa, Mexico.
| |
Collapse
|
24
|
Characterization of enterotoxigenic Staphylococcus aureus from ready-to-eat seafood (RTES). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|