1
|
Joishy TK, Bhattacharya A, Singh CT, Mukherjee AK, Khan MR. Probiotic and anti-inflammatory properties of Lactiplantibacillus plantarum MKTJ24 isolated from an artisanal fermented fish of North-east India. N Biotechnol 2024; 83:121-132. [PMID: 39111568 DOI: 10.1016/j.nbt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The study aimed to isolate and characterize lactic acid bacteria from various traditional fermented fish products from North East India, including Xindol, Hentak, and Ngari, which hold significant dietary importance for the indigenous tribes. Additionally, the study sought to examine their untargeted metabolomic profiles. A total of 43 strains of Bacillus, Priestia, Staphylococcus, Pediococcus, and Lactiplantibacillus were isolated, characterized by 16 S rRNA gene and tested for probiotic properties. Five strains passed pH and bile salt tests with strain dependent antimicrobial activity, which exhibited moderate autoaggregation and hydrophobicity properties. Lactiplantibacillus plantarum MKTJ24 exhibited the highest hydrophobicity (42 %), which was further confirmed by adhesion assay in HT-29 cell lines (100 %). Lactiplantibacillus plantarum MKTJ24 treatment in LPS-stimulated HT-29 cells up-regulated expression of mucin genes compared to LPS-treated cells. Treatment of RAW 264.7 cells with Lactiplantibacillus plantarum MKTJ24 decreased LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) productions. Further, genome analysis of Lactiplantibacillus plantarum MKTJ24 revealed the presence of several probiotic markers and immunomodulatory genes. The genome was found to harbor plantaricin operon involved in bacteriocin production. A pangenome analysis using all the publicly available L. plantarum genomes specifically isolated from fermented fish products identified 120 unique genes in Lactiplantibacillus plantarum MKTJ24. Metabolomic analysis indicated dominance of ascorbic acids, pentafluropropionate, cyclopropaneacetic acid, florobenzylamine, and furanone in Xindol. This study suggests that Lactiplantibacillus plantarum MKTJ24 has potential probiotic and immunomodulatory properties that could be used in processing traditional fermented fish products on an industrial scale to improve their quality and enhance functional properties.
Collapse
Affiliation(s)
- Tulsi K Joishy
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Chingtham Thanil Singh
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-202002, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
2
|
Lee M, Bang WY, Lee HB, Yang SY, Lee KS, Kang HJ, Hong SM, Yang J. Safety Assessment and Evaluation of Probiotic Potential of Lactobacillus bulgaricus IDCC 3601 for Human Use. Microorganisms 2024; 12:2063. [PMID: 39458372 PMCID: PMC11510087 DOI: 10.3390/microorganisms12102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Lactic acid bacteria (LAB) are probiotic microorganisms widely used for their health benefits in the food industry. However, recent concerns regarding their safety have highlighted the need for comprehensive safety assessments. In this study, we aimed to evaluate the safety of L. bulgaricus IDCC 3601, isolated from homemade plain yogurt, via genomic, phenotypic, and toxicity-based analyses. L. bulgaricus IDCC 3601 possessed a single circular chromosome of 1,865,001 bp, with a GC content of 49.72%, and 1910 predicted coding sequences. No virulence or antibiotic resistance genes were detected. Although L. bulgaricus IDCC 3601 exhibited antibiotic resistance to gentamicin and kanamycin, this resistance is an intrinsic feature of this species. L. bulgaricus IDCC 3601 did not produce biogenic amines and did not exhibit hemolytic activity. Phenotypic analysis of enzyme activity and carbohydrate fermentation profiles revealed the metabolic features of L. bulgaricus IDCC 3601. Moreover, no deaths or abnormalities were observed in single-dose oral toxicity tests, suggesting that L. bulgaricus IDCC 3601 has no adverse effect on human health. Finally, L. bulgaricus IDCC 3601 inhibited the growth of potential carbapenem-resistant Enterobacteriaceae. Therefore, our results suggest that L. bulgaricus IDCC 3601 is a safe probiotic strain for human consumption.
Collapse
Affiliation(s)
- Minjee Lee
- Ildong Bioscience, Pyeongtaek 17957, Republic of Korea; (M.L.); (W.-Y.B.); (H.-B.L.); (S.-Y.Y.)
| | - Won-Yeong Bang
- Ildong Bioscience, Pyeongtaek 17957, Republic of Korea; (M.L.); (W.-Y.B.); (H.-B.L.); (S.-Y.Y.)
| | - Han-Bin Lee
- Ildong Bioscience, Pyeongtaek 17957, Republic of Korea; (M.L.); (W.-Y.B.); (H.-B.L.); (S.-Y.Y.)
| | - Soo-Yeon Yang
- Ildong Bioscience, Pyeongtaek 17957, Republic of Korea; (M.L.); (W.-Y.B.); (H.-B.L.); (S.-Y.Y.)
| | - Kyu-Shik Lee
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Hae-Ji Kang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Sun-Mee Hong
- Department of Technology Development, Marine Industry Research Institute for East Sea Rim, Uljin 36315, Republic of Korea
| | - Jungwoo Yang
- Department of Microbiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| |
Collapse
|
3
|
Chen X, Zhu Z, Zhang X, Chen L, Gu Q, Li P. Lactobacillus paracasei ZFM54 alters the metabolomic profiles of yogurt and the co-fermented yogurt improves the gut microecology of human adults. J Dairy Sci 2024; 107:5280-5300. [PMID: 38460876 DOI: 10.3168/jds.2023-24332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024]
Abstract
Gut microbiota imbalance could lead to various diseases, making it important to optimize the structure of the gut flora in adults. Lactobacillus paracasei ZFM54 is a bacteriocin- and folic acid-producing Lactobacillus strain. Herein, L. paracasei ZFM54 was used as the potentially probiotic bacterium to ferment milk together with a yogurt starter. We optimized the fermentation conditions, and the obtained yogurts were then subjected to volatile and nonvolatile metabolome analysis, showing that L. paracasei ZFM54 can not only improve the acidity, water holding capacity and live lactic acid bacteria counts, but also improve many volatile acid contents and increase some beneficial nonvolatile metabolites, such as N-ethyl glycine and l-lysine, endowing the yogurt with more flavor and better function. The regulatory effects of the co-fermented yogurt on the intestinal microecology of volunteers were investigated by 16S rRNA sequencing and short-chain fatty acid (SCFA) analysis after consuming the yogurt for a 2-wk period, showing a better effect to increase the relative abundance of beneficial bacteria such as Ruminococcus and Alistipes, decrease harmful bacteria (Escherichia-Shigella and Enterobacter), and enhance the production of SCFA (acetate, propionate, and butyric acid) compared with the control yogurt. We found that L. paracasei ZFM54 can significantly improve the health benefits of yogurt, laying the foundation for its commercial application in improving gut microbiota.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zichun Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xin Zhang
- College of Forest and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Lin Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
4
|
Colautti A, Ginaldi F, Camprini L, Comi G, Reale A, Iacumin L. Investigating Safety and Technological Traits of a Leading Probiotic Species: Lacticaseibacillus paracasei. Nutrients 2024; 16:2212. [PMID: 39064654 PMCID: PMC11280365 DOI: 10.3390/nu16142212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Lacticaseibacillus spp. are genetically close lactic acid bacteria species widely used in fermented products for their technological properties as well as their proven beneficial effects on human and animal health. This study, the first to include such a large collection of heterogeneous isolates (121) obtained from international collections belonging to Lacticaseibacillus paracasei, aimed to characterize the safety traits and technological properties of this important probiotic species, also making comparisons with other genetically related species, such as Lacticaseibacillus casei and Lacticaseibacillus zeae. These strains were isolated from a variety of heterogeneous sources, including dairy products, sourdoughs, wine, must, and human body excreta. After a preliminary molecular characterization using repetitive element palindromic PCR (Rep-PCR), Random Amplification of Polymorphic DNA (RAPD), and Sau-PCR, particular attention was paid to safety traits, evaluating antibiotic resistance profiles, biogenic amine (BA) production, the presence of genes related to the production of ethyl carbamate and diaminobenzidine (DAB), and multicopper oxidase activity (MCO). The technological characteristics of the strains, such as the capability to grow at different NaCl and ethanol concentrations and different pH values, were also investigated, as well as the production of bacteriocins. From the obtained results, it was observed that strains isolated from the same type of matrix often shared similar genetic characteristics. However, phenotypic traits were strain-specific. This underscored the vast potential of the different strains to be used for various purposes, from probiotics to bioprotective and starter cultures for food and feed production, highlighting the importance of conducting comprehensive evaluations to identify the most suitable strain for each purpose with the final aim of promoting human health.
Collapse
Affiliation(s)
- Andrea Colautti
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Federica Ginaldi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Lucia Camprini
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Giuseppe Comi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Anna Reale
- Institute of Food Science (ISA), National Research Council, Via Roma, 64, 83100 Avellino, Italy;
| | - Lucilla Iacumin
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| |
Collapse
|
5
|
Yu J, Chen Z, Zhou Q, Li P, Wu S, Zhou T, Gu Q. Exopolysaccharide from Lacticaseibacillus paracasei alleviates gastritis in Helicobacter pylori-infected mice by regulating gastric microbiota. Front Nutr 2024; 11:1426358. [PMID: 38978704 PMCID: PMC11228268 DOI: 10.3389/fnut.2024.1426358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Many probiotics have the ability to produce extracellular polysaccharides (EPS). EPS derived from these probiotics has been confirmed to regulate the host intestinal microecological balance and alleviate the symptoms of diseases caused by gastrointestinal microecological imbalance. Results Lactic acid bacteria (LAB) strain with good exopolysaccharide (EPS) producing ability, namely, Lacticaseibacillus paracasei ZFM54 (L. paracasei ZFM54) was screened. The fermentation conditions of L. paracasei ZFM54 for EPS production were optimized. The EPS54 was characterized by chemical component and monosaccharide composition determination, UV, FT-IR and NMR spectra analysis. Cango red, SEM, AFM and XRD analysis were conducted to characterize the structure of EPS54. The EPS54 effectively reduced the colonization of Helicobacter pylori to AGS cells and recovered the cell morphology. EPS54 could also effectively alleviate the gastritis in the H. pylori-infected mice by down-regulating the mRNA expression levels of pro-inflammatory cytokines IL-6, IL-8, IL-1β and TNF-α and up-regulating the mRNA expression of inflammatory cytokine IL-10 in gastric cells. EPS54 was also found to be able to positively regulate the structure of gastric microbiota. Conclusion The EPS 54 from L. paracasei ZFM54 can alleviate gastritis in H. pylori-infected mice by modulating the gastric microbiota.
Collapse
Affiliation(s)
- Jianxing Yu
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Ziqi Chen
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shiying Wu
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Tao Zhou
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
6
|
Dishan A, Gönülalan Z. Lacticaseibacillus paracasei AD22 Stress Response in Brined White Cheese Matrix: In Vitro Probiotic Profiles and Molecular Characterization. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10216-4. [PMID: 38421575 DOI: 10.1007/s12602-024-10216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
Functionalizing foods involve discovering and integrating new candidate health-promoting bacteria into the food matrix. This study aimed (i) to reveal the probiotic potential of autochthonous Lacticaseibacillus paracasei AD22 by a series of in vitro tests and molecular characterization and (ii) to evaluate its application to the matrix of brined white cheese, which is the most common cheese in Türkiye, in terms of survival and stress response. To evaluate in vitro probiotic characteristics, L. paracasei AD22 was exposed to functional, technological, and safety tests. Pilot scale production was conducted to integrate L. paracasei AD22 into the brined white cheese matrix. The expression levels of stress-related genes (dnaK, groES, ftsH, argH, and hsp20) were detected by reverse-transcriptase polymerase chain reaction to determine the transcriptional stress response during ripening. The presence of genes encoding stress-related proteins was determined by whole-genome sequence analysis using a subsystem approach; the presence of antibiotic resistance and virulence genes was determined by ResFinder4.1 and VirulenceFinder 2.0 databases. The BAGEL4 database determined the presence of bacteriocin clusters. L. paracasei AD22 was found to survive in pH 2 and medium with 12% NaCl and did not cause hemolysis. Adhesion of the strain to Caco2 cells was 76.26 ± 4.81% and it had coaggregation/autoaggregation properties. It was determined that L. paracasei AD22 exceeded 7 log cfu/g in the cheese matrix at the end of the ripening period. Total mesophilic aerobes decreased in the cheese inoculated with L. paracasei AD22 after the 45th day of ripening. While hsp20 and groES genes were downregulated during ripening, argH was upregulated. Both downregulation and upregulation were observed in dnaK and ftsH. Fold changes indicating the expression levels of dnaK, groES, ftsH, argH, and hsp20 genes were not statistically significant during ripening (p > 0.05). Whole-genome sequence profiles revealed that the strain did not contain antibiotic and virulence genes but bacteriocin clusters encoding Enterolysin A (Class III bacteriocin), Carnosine CP52 (class II bacteriocin), Enterocin X beta chain (Class IIc bacteriocin), and the LanT region. Subsystems approach manifested that the most functional part of the genomic distribution belonged to metabolism, protein processing, and stress response functions. The study findings highlight that L. paracasei AD22 will provide biotechnological innovation as a probiotic adjunct because it contains tolerance factors and probiotic characteristics to produce new functional foods.
Collapse
Affiliation(s)
- Adalet Dishan
- Faculty of Veterinary Medicine, Dept. of Food Hygiene and Technology, Yozgat Bozok University, Yozgat, Türkiye.
| | - Zafer Gönülalan
- Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
7
|
Lee HB, Bang WY, Shin GR, Jeon HJ, Jung YH, Yang J. Isolation, Characterization, and Safety Evaluation of the Novel Probiotic Strain Lacticaseibacillus paracasei IDCC 3401 via Genomic and Phenotypic Approaches. Microorganisms 2023; 12:85. [PMID: 38257912 PMCID: PMC10821444 DOI: 10.3390/microorganisms12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
This study aimed to explore the safety and properties of Lacticaseibacillus paracasei IDCC 3401 as a novel probiotic strain via genomic and phenotypic analyses. In whole-genome sequencing, the genes associated with antibiotic resistance and virulence were not detected in this strain. The minimum inhibitory concentration test revealed that L. paracasei IDCC 3401 was susceptible to all the antibiotics tested, except for kanamycin. Furthermore, the strain did not produce toxigenic compounds, such as biogenic amines and D-lactate, nor did it exhibit significant toxicity in a single-dose acute oral toxicity test in rats. Phenotypic characterization of carbohydrate utilization and enzymatic activities indicated that L. paracasei IDCC 3401 can utilize various nutrients, allowing it to grow in deficient conditions and produce health-promoting metabolites. The presence of L. paracasei IDCC 3401 supernatants significantly inhibited the growth of enteric pathogens (p < 0.05). In addition, the adhesion ability of L. paracasei IDCC 3401 to intestinal epithelial cells was found to be as superior as that of Lacticaseibacillus rhamnosus GG. These results suggest that L. paracasei IDCC 3401 is safe for consumption and provides health benefits to the host.
Collapse
Affiliation(s)
- Han Bin Lee
- Ildong Bioscience, Pyeongtaek-si 17957, Republic of Korea; (H.B.L.); (W.Y.B.)
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si 17957, Republic of Korea; (H.B.L.); (W.Y.B.)
| | - Gyu Ri Shin
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; (G.R.S.); (H.J.J.)
| | - Hyeon Ji Jeon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; (G.R.S.); (H.J.J.)
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; (G.R.S.); (H.J.J.)
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si 17957, Republic of Korea; (H.B.L.); (W.Y.B.)
| |
Collapse
|
8
|
Özdemir N. Gene Expression, Structural Characterization, and Functional Properties of Exopolysaccharide Produced from Potential Probiotic Enterococcus faecalis NOC219 Strain. Appl Biochem Biotechnol 2023; 195:6183-6202. [PMID: 36847981 DOI: 10.1007/s12010-023-04393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
This study aimed to reveal the structural characterization and functional properties of microbial EPS-NOC219 material produced by the Enterococcus faecalis NOC219 strain with high EPS yield isolated from yogurt, with simultaneously, demonstrating the potential of this EPS for future industrial applications. According to the results of the analyses made for this aim, it was determined that the NOC219 strain contains the epsB, p-gtf-epsEFG, and p-gtf-P1 genes. In addition, it was also revealed that the EPS-NOC219 structure is expressed by the epsB, p-gtf-epsEFG, and p-gtf-P1 genes and has a heteropolymeric feature consisting of glucose, galactose, and fructose units. According to the results of the analyses made for this aim, it was determined that the EPS-NOC219 structure, which was produced from the NOC219 strain containing the epsB, p-gtf-epsEFG, and p-gtf-P1 genes, had a heteropolymeric structure consisting of glucose, galactose, and fructose units. On the other hand, it was shown that this structure had a thickener property, high heat stability exhibited a pseudoplastic flow behavior, and had a high melting point. This showed that the EPS-NOC219 had high heat stability and could be used as a thickener in heat treatment processes. In addition, it was revealed that it is suitable for plasticized biofilm production. On the other hand, the bioavailability of this structure was demonstrated with its high antioxidant activity (55.84%) against DPPH radicals and high antibiofilm activity against Escherichia coli (77.83%) and Listeria monocytogenes (72.14%) pathogens. These results suggest that the EPS-NOC219 structure may be an alternative natural resource for many industries as it has strong physicochemical properties and a healthy food-grade adjunct.
Collapse
Affiliation(s)
- Nilgün Özdemir
- Department of Food Engineering, Ondokuz Mayıs University, Engineering Faculty, 55139, Samsun, Turkey.
| |
Collapse
|
9
|
ElHadedy DE, Kim C, Yousuf AB, Wang Z, Ndegwa EN. Understanding Age-Related Longitudinal Dynamics in Abundance and Diversity of Dominant Culturable Gut Lactic Acid Bacteria in Pastured Goats. Animals (Basel) 2023; 13:2669. [PMID: 37627460 PMCID: PMC10451344 DOI: 10.3390/ani13162669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Understanding gut lactic acid bacteria (LAB) in healthy hosts is an important first step in selecting potential probiotic species. To understand the dynamics of LAB in healthy goats, a cohort of thirty-seven healthy new-born goat kids was studied over a ten-month period. Total LAB was quantified using SYBR green qPCR. Seven hundred LAB isolates were characterized using microscopy, M13 RAPD genotyping and 16S rDNA sequencing. The highest and lowest LAB counts were detected at one week and ten months of age, respectively. Diverse LAB species were detected, whose identity and prevalence varied with age. The main isolates belonged to Limosilactobacillus reuteri, Limosilactibacillus fermentum, Lactobacillus johnsonni, Ligilactobacillus murinus, Ligilactobacillus salivarius, Limosilactobacillus mucosae, Lactiplantibacillus plantarum, Ligilactobacillus agilis, Lactobacillus acidophilus/amyolovolus, Pediococcus spp. and Enterococcus spp. Uniquely, L. reuteri and Pediococcus spp. were most common in pre- and peri-weaned goats, while Lactobacillus mucosae and Enterococcus spp. were predominant in goats one month and older. Based on RAPD genotyping, L. reuteri had the highest genotypic diversity, with age being a factor on the genotypes detected. This data may be relevant in the selection of age-specific probiotics for goats. The findings may also have broader implications by highlighting age as a factor for consideration in probiotic bacteria selection in other animal hosts.
Collapse
Affiliation(s)
- Doaa E. ElHadedy
- Agricultural Research Station, Virginia State University, Petersburg, VA 23806, USA; (D.E.E.); (C.K.); (A.B.Y.); (Z.W.)
- National Centre for Radiation Research and Technology NCRRT, Radiation Microbiology Department, Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Chyer Kim
- Agricultural Research Station, Virginia State University, Petersburg, VA 23806, USA; (D.E.E.); (C.K.); (A.B.Y.); (Z.W.)
| | - Adnan B. Yousuf
- Agricultural Research Station, Virginia State University, Petersburg, VA 23806, USA; (D.E.E.); (C.K.); (A.B.Y.); (Z.W.)
| | - Zhenping Wang
- Agricultural Research Station, Virginia State University, Petersburg, VA 23806, USA; (D.E.E.); (C.K.); (A.B.Y.); (Z.W.)
| | - Eunice N. Ndegwa
- Agricultural Research Station, Virginia State University, Petersburg, VA 23806, USA; (D.E.E.); (C.K.); (A.B.Y.); (Z.W.)
| |
Collapse
|
10
|
Dhanya Raj CT, Suryavanshi MV, Kandaswamy S, Ramasamy KP, James RA. Whole genome sequence analysis and in-vitro probiotic characterization of Bacillus velezensis FCW2 MCC4686 from spontaneously fermented coconut water. Genomics 2023; 115:110637. [PMID: 37150228 DOI: 10.1016/j.ygeno.2023.110637] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
In this study, the probiotic potential of B. velezensis FCW2, isolated from naturally fermented coconut water, was investigated by in vitro and genomic characterization. Our findings highlight key features of the bacterium which includes, antibacterial activity, high adhesive potential, aggregation capacity, production of nutrient secondary metabolites. In vivo safety assessment revealed no adverse effects on zebrafish. WGS data of B. velezensis FCW2 revealed a complete circular genome of 4,147,426 nucleotides and a GC content of 45.87%. We have identified 4059 coding sequence (CDS) genes that encode proteins involved in stress resistance, adhesion and micronutrient production. The genes responsible for producing secondary metabolites, exopolysaccharides, and other beneficial nutrients were identified. The KEGG and COG databases revealed that genes mainly involved amino acid metabolism, carbohydrate utilization, vitamin and cofactor metabolism, and biological adhesion. These findings suggest that B. velezensis FCW2 could be a putative probiotic in the development of fermented foods.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Mangesh V Suryavanshi
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Surabhi Kandaswamy
- Manchester Centre for Genomic Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, 6th Floor, St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK..
| | | | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India.
| |
Collapse
|
11
|
Sylvere N, Mustopa AZ, Budiarti S, Meilina L, Hertati A, Handayani I. Whole-genome sequence analysis and probiotic characteristics of Lactococcus lactis Subsp. lactis strain Lac3 isolated from traditional fermented buffalo milk (Dadih). J Genet Eng Biotechnol 2023; 21:49. [PMID: 37127774 PMCID: PMC10151293 DOI: 10.1186/s43141-023-00503-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Probiotics are live microorganisms that provide beneficial effects on the host's health when exploited in adequate amounts. This study aimed at carrying out whole-genome sequence analysis and in vitro potential probiotic characteristics of Lactococcus lactis subsp. lactis strain Lac3 isolated from the spontaneously fermented buffalo milk named Dadih. RESULTS The results from de novo assembly indicated that the assembled genome consisted of 55 contigs with a genome size of 2,441,808 bp ~ (2.44 Mb), and GC % content of 34.85%. The evolution history result showed that the strain Lac3 was closely related to Lactococcus lactis species deposited in NCBI with a sequence similarity ≥ 99.93%. L. lactis subsp. lactis Lac3 was non-pathogenic with a probability of 0.21 out of 1 and had a pathogenicity score of zero (0), and neither harbored virulence factors nor acquired antibiotic resistance phenotypes. L. lactis subsp. lactis Lac3 exhibited the potential probiotic characteristics to tolerate acid at pH (2.0 and 5.0), salinity (1-5% NaCl), bile salt of (0.3-1.0%) and had auto-aggregation capacity increased from 6.0 to 13.1%. CONCLUSION This study described a novel strain of Lactococcus lactis subsp. lactis called Lac3, which exhibits probiotic properties that could be beneficial in the development of probiotics.
Collapse
Affiliation(s)
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia.
| | - Sri Budiarti
- School of Biotechnology, IPB University, Bogor, Indonesia
- Indonesia Research Center for Bioresources and Biotechnology, IPB University, Bogor, Indonesia
| | - Lita Meilina
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Ai Hertati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Ira Handayani
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| |
Collapse
|
12
|
Haranahalli Nataraj B, Behare PV, Yadav H, Srivastava AK. Emerging pre-clinical safety assessments for potential probiotic strains: a review. Crit Rev Food Sci Nutr 2023; 64:8155-8183. [PMID: 37039078 DOI: 10.1080/10408398.2023.2197066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Probiotics are amply studied and applied dietary supplements of greater consumer acceptance. Nevertheless, the emerging evidence on probiotics-mediated potential risks, especially among immunocompromised individuals, necessitates careful and in-depth safety studies. The traditional probiotic safety evaluation methods investigate targeted phenotypic traits, such as virulence factors and antibiotic resistance. However, the rapid innovation in omics technologies has offered an impactful means to ultimately sequence and unknot safety-related genes or their gene products at preliminary levels. Further validating the genome features using an array of phenotypic tests would provide an absolute realization of gene expression dynamics. For safety studies in animal models, the in vivo toxicity evaluation guidelines of chemicals proposed by the Organization for Economic Co-operation and Development (OECD) have been meticulously adopted in probiotic research. Future research should also focus on coupling genome-scale safety analysis and establishing a link to its transcriptome, proteome, or metabolome for a fine selection of safe probiotic strains. Considering the studies published over the years, it can be inferred that the safety of probiotics is strain-host-dose-specific. Taken together, an amalgamation of in silico, in vitro, and in vivo approaches are necessary for a fine scale selection of risk-free probiotic strain for use in human applications.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anil Kumar Srivastava
- U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University, Mathura, India
- Probiotic Association of India, Karnal, India
| |
Collapse
|
13
|
Jiang YH, Yang RS, Lin YC, Xin WG, Zhou HY, Wang F, Zhang QL, Lin LB. Assessment of the safety and probiotic characteristics of Lactobacillus salivarius CGMCC20700 based on whole-genome sequencing and phenotypic analysis. Front Microbiol 2023; 14:1120263. [PMID: 37007532 PMCID: PMC10062426 DOI: 10.3389/fmicb.2023.1120263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Lactic acid bacteria are generally regarded as alternatives to antibiotics in livestock and poultry farming, especially Lactobacillus strains, which are safe and have probiotic potential. Although Lactobacillus salivarius has long been proposed to be a probiotic, the understanding of the roles of this species is still in its infancy. Here, a strain of L. salivarius CGMCC20700 isolated from the intestinal mucosa of Yunnan black-bone chicken broilers was investigated in the context of its safety and probiotic characteristics by whole-genome sequencing in parallel with phenotypic analysis. Whole-genome sequencing results showed that L. salivarius CGMCC20700 has a single scaffold of 1,737,577 bp with an average guanine-to-cytosine (GC) ratio of 33.51% and 1,757 protein-coding genes. The annotation of Clusters of Orthologous Groups (COG) classified the predicted proteins from the assembled genome as possessing cellular, metabolic, and information-related functions. Sequences related to risk assessment, such as antibiotic resistance and virulence genes, were identified, and the strain was further confirmed as safe according to the results of antibiotic resistance, hemolytic, and acute oral toxicology tests. Two gene clusters of antibacterial compounds and broad-spectrum antimicrobial activity were identified using genome mining tools and antibacterial spectrum tests. Stress resistance genes, active stressor removal genes, and adhesion related genes that were identified and examined with various phenotypic assays (such as stress tolerance tests in acids and bile salts and auto aggregation and hydrophobicity assays). The strain showed a high survival rate in the presence of bile salts and under acidic conditions and exhibited significant auto aggregation capacity and hydrophobicity. Overall, L. salivarius CGMCC20700 demonstrated excellent safety and probiotic potential at both the genomic and physiological levels and can be considered an appropriate candidate probiotic for livestock and poultry farming.
Collapse
Affiliation(s)
- Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- College of Food Science, Southwest University, Chongqing, China
| | - Rui-Si Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Huan-Yu Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- *Correspondence: Lian-Bing Lin,
| |
Collapse
|
14
|
Whole-Genome Sequence of Lactiplantibacillus plantarum Mut-3, Isolated from Indonesian Fermented Soybean (Tempeh). Microbiol Resour Announc 2023; 12:e0051322. [PMID: 36840600 PMCID: PMC10019267 DOI: 10.1128/mra.00513-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Lactiplantibacillus plantarum Mut-3 was isolated from tempeh. After whole-genome sequencing, analysis of its possibility as a probiotic candidate was performed using subsystem analysis with RAST with the SEED viewer.
Collapse
|
15
|
Dhanya Raj CT, Kandaswamy S, Suryavanshi MV, Ramasamy KP, Rajasabapathy R, Arthur James R. Genomic and metabolic properties of Staphylococcus gallinarum FCW1 MCC4687 isolated from naturally fermented coconut water towards GRAS assessment. Gene 2023; 867:147356. [PMID: 36907276 DOI: 10.1016/j.gene.2023.147356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Staphylococcus gallinarum FCW1 was isolated from naturally fermented coconut-water and identified by biochemical and molecular methods. Probiotic characterization and safety assessment were conducted through a series of in vitro tests. A high survival rate was observed when the strain was tested for resistance to bile, lysozyme, simulated gastric and intestinal fluid, phenol, and different temperature and salt concentrations. The strain showed antagonism against some pathogens, was susceptible to all antibiotics tested except penicillin, and showed no hemolytic and DNase activity. Hydrophobicity, autoaggregation, biofilm formation, and antioxidation tests indicated that the strain possessed a high adhesive and antioxidant ability. Enzymatic activity was used to evaluate the metabolic capacities of the strain. In-vivo experiment on zebrafish was performed to check its safety status. The whole-genome sequencing indicated that the genome contained 2,880,305 bp with a GC content of 33.23%. The genome annotation confirmed the presence of probiotic-associated genes and genes for oxalate degradation, sulfate reduction, acetate metabolism, and ammonium transport in the FCW1 strain, adding to the theory that this strain may be helpful in treating kidney stones. This study revealed that the strain FCW1 might be an excellent potential probiotic in developing fermented coconut beverages and treating and preventing kidney stone disease.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Surabhi Kandaswamy
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom; Manchester Centre for Genomic Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, 6(th) Floor, St Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom
| | - Mangesh V Suryavanshi
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, OH 44195, United States.
| | | | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
16
|
Zhao X, Liang Q, Song X, Zhang Y. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front Microbiol 2023; 14:1146566. [PMID: 37200914 PMCID: PMC10185785 DOI: 10.3389/fmicb.2023.1146566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Probiotic Lactiplantibacillus plantarum MC5 produces large amounts of exopolysaccharides (EPS), and its use as a compound fermentor can greatly improve the quality of fermented milk. Methods To gain insight into the genomic characteristics of probiotic MC5 and reveal the relationship between its EPS biosynthetic phenotype and genotype, we analyzed the carbohydrate metabolic capacity, nucleotide sugar formation pathways, and EPS biosynthesis-related gene clusters of strain MC5 based on its whole genome sequence. Finally, we performed validation tests on the monosaccharides and disaccharides that strain MC5 may metabolize. Results Genomic analysis showed that MC5 has seven nucleotide sugar biosynthesis pathways and 11 sugar-specific phosphate transport systems, suggesting that the strain can metabolize mannose, fructose, sucrose, cellobiose, glucose, lactose, and galactose. Validation results showed that strain MC5 can metabolize these seven sugars and produce significant amounts of EPS (> 250 mg/L). In addition, strain MC5 possesses two typical eps biosynthesis gene clusters, which include the conserved genes epsABCDE, wzx, and wzy, six key genes for polysaccharide biosynthesis, and one MC5-specific epsG gene. Discussion These insights into the mechanism of EPS-MC5 biosynthesis can be used to promote the production of EPS through genetic engineering.
Collapse
|
17
|
Zhang Q, Wang M, Ma X, Li Z, Jiang C, Pan Y, Zeng Q. In vitro investigation on lactic acid bacteria isolatedfrom Yak faeces for potential probiotics. Front Cell Infect Microbiol 2022; 12:984537. [PMID: 36189367 PMCID: PMC9523120 DOI: 10.3389/fcimb.2022.984537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In order to evaluate the potential and safety of lactic acid bacteria (LAB) isolated from faeces samples of Ganan yak as probiotic for prevention and/or treatment of yak diarrhea, four strains of LAB including Latilactobacillus curvatus (FY1), Weissella cibaria (FY2), Limosilactobacillus mucosae (FY3), and Lactiplantibacillus pentosus (FY4) were isolated and identified in this study. Cell surface characteristics (hydrophobicity and cell aggregation), acid resistance and bile tolerance, compatibility, antibacterial activity and in vitro cell adhesion tests were also carried out to evaluate the probiotic potential of LAB. The results showed that the four isolates had certain acid tolerance, bile salt tolerance, hydrophobicity and cell aggregation, all of which contribute to the survival and colonization of LAB in the gastrointestinal tract. There is no compatibility between the four strains, so they can be combined into a mixed probiotic formula. Antimicrobial tests showed that the four strains were antagonistic to Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Moreover, the in vitro safety of the four isolates were determined through hemolytic analysis, gelatinase activity, and antibacterial susceptibility experiments. The results suggest that all the four strains were considered as safe because they had no hemolytic activity, no gelatinase activity and were sensitive to most antibacterial agents. Moreover, the acute oral toxicity test of LAB had no adverse effect on body weight gain, food utilization and organ indices in Kunming mice. In conclusion, the four LAB isolated from yak feces have considerable potential to prevent and/or treat yak bacterial disease-related diarrhea.
Collapse
Affiliation(s)
- Qingli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chenghui Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Zhou Q, Qureshi N, Xue B, Xie Z, Li P, Gu Q. Preventive and therapeutic effect of Lactobacillus paracasei ZFM54 on Helicobacter pylori-induced gastritis by ameliorating inflammation and restoring gastric microbiota in mice model. Front Nutr 2022; 9:972569. [PMID: 36091249 PMCID: PMC9449542 DOI: 10.3389/fnut.2022.972569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori is the most prevalent pathogen causing chronic gastritis, gastroduodenal ulcers, and gastric tumors and is asymptomatically present in 50% of the world's population. This research is focused on investigating the effect of Lactobacillus paracasei ZFM 54 (CCTCC NO:2016667) on attenuating H. pylori-induced gastritis. H. pylori ZJC03 isolated from a patient with gastritis harbored the virulence genes of vacA and cagA and was highly resistant to metronidazole (MIC > 256 μg/mL). In vitro analysis revealed that the potential anti-H. pylori characteristics of L. paracasei ZFM54 in terms of 65.57 ± 1.87% survival rate in simulated gastric juices at a pH of 2.0, 69.00 ± 2.73% auto-aggregation, 30.28 ± 2.24% co-aggregation, 70.27 ± 2.23% urease inhibition, and 57.89 ± 1.27% radical scavenging. In H. pylori infectious mice, L. paracasei ZFM54 pre- and post-treatment reduced the levels of malondialdehyde in liver tissues to 0.71 ± 0.04 nmol/mgprot (p < 0.05) and 0.70 ± 0.06 nmol/mgprot (p < 0.05), respectively. Glutathione levels were increased to 1.78 ± 0.02 μmol/gprot (p < 0.05) and 1.76 ± 0.52 μmol/gprot (p < 0.05), respectively. L. paracasei ZFM54 significantly inhibited H. pylori-mediated inflammation observed in gastric mucosal repair and downregulated the mRNA expression of pro-inflammatory cytokines IFN-γ, IL-1β, and IL-6 (p < 0.01). Importantly, L. paracasei ZFM54 increased Firmicutes and Actinobacteriota and decreased the relative abundance of bacterial taxa belonging to Campilobacterota and Proteobacteria. With the preventive and therapeutic administration of L. paracasei ZFM54, significant reductions in the average relative abundance of genera Helicobacter, Muribaculum, Staphylococcus, Lachnospiraceae_NK4A136_group, Prevotellaceae_UCG-001, Alloprevotella, and Oscillibacter were observed compared to infected mice. These findings suggest that L. paracasei ZFM 54 has the potential to protect against H. pylori infection by ameliorating inflammation and restoring the gastric microbiota.
Collapse
|
19
|
Safety evaluation and anti-inflammatory activity of Lactobacillus johnsonii IDCC 9203 isolated from feces of breast-fed infants. Arch Microbiol 2022; 204:470. [PMID: 35821151 DOI: 10.1007/s00203-022-03097-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
This study evaluated the safety of Lactobacillus johnsonii IDCC 9203 and investigated its anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Genomic analysis revealed that this strain has no virulence and antibiotic resistance gene except tetW, which is a tetracycline resistance gene. Minimum inhibitory concentration data showed that the strain is resistant to tetracycline and aminoglycosides. Further analysis indicated that the transferability of the tetW gene is extremely low, and resistance to aminoglycosides is due to the intrinsic resistance of L. johnsonii IDCC 9203. Phenotypic safety assessment showed that the strain has neither β-hemolytic nor β-glucuronidase activity, and no biogenic amine production. When LPS-induced RAW 264.7 cells were treated with L. johnsonii IDCC 9203, the level of nitric oxide and expression of pro-inflammatory cytokines significantly decreased (p < 0.05). Therefore, L. johnsonii IDCC 9203 strain is considered as safe and beneficial probiotic for human consumption.
Collapse
|
20
|
Zhao X, Hu R, Liu Y, He Y, Li S, Yang J, Zhou J, Zhang J. Genomics analysis of Lactobacillus paracasei SLP16. Lett Appl Microbiol 2022; 75:881-887. [PMID: 35526150 DOI: 10.1111/lam.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Lactobacillus paracasei SLP 16 was obtained from liquor cellar mud, and it was analyzed by genome sequencing on Illumina Hiseqq platfrom. Then the biological information of Lactobacillus paracasei SLP16 was analyzed by ExPasy (wedsite), and the toxin safety of the strian SLP 16 was analyzed by PSI/PHI in the virulence factor database VFDB. Through the second-generation DNA sequencing platform technology, the whole genome information of Lactobacillus paracasei SLP16 was obtained, which showed that the genome size of the strian SLP 16 was 2.65M, and the GC content of the strian SLP 16 was 46.9%. And a total of 3,131 genes were detected, including 3,067 genes encoding protein and 63 genes encoding RNA. Whole genome analysis showed that Lactobacillus paracasei SLP16 had 5 coding genes of F0 F1 -ATPase, 4 coding genes of Na+ /H+ antiporter and 3 coding genes of A-ATPase, which were closely related to the acid tolerance of lactic acid bacteria (LAB). Whole genome analysis of Lactobacillus paracasei SLP16 showed that SLP 16 had only one CFA synthetic coding gene, and no important BSH coding gene, however, it had F0 F1 -ATPase, Na+ /H+ antiporter and several two-component regulatory systems, and which were related to bile salt tolerance of LAB. Safety evaluation in Lactobacillus paracasei SLP16 showed that it did not have the virulence factor coding gene related to toxin. Common antibiotic sensitivity tests showed that Lactobacillus paracasei SLP16 was resistant to compound sulfamethoxazole, ciprofloxacin, gentamicin and lincomycin. In summary, Lactobacillus paracasei SLP16 had coding genes closely related to acid tolerance and bile salt tolerance, and no coding gene of virulence factors related to toxins, and few kinds of resistant antibiotics. Therefore, whole genome analysis showed that Lactobacillus paracasei SLP16 was a safe probiotic strain that can be safely applied.
Collapse
Affiliation(s)
- Xingxiu Zhao
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Rong Hu
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Yuanhao Liu
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Yiguo He
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Shilu Li
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Jiao Yang
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Jing Zhou
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| | - Jing Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, University Town, Number 188, Lingang District, Yibin, Sichuan, People's Republic of China
| |
Collapse
|
21
|
Kim E, Yang SM, Kim D, Kim HY. Complete Genome Sequencing and Comparative Genomics of Three Potential Probiotic Strains, Lacticaseibacillus casei FBL6, Lacticaseibacillus chiayiensis FBL7, and Lacticaseibacillus zeae FBL8. Front Microbiol 2022; 12:794315. [PMID: 35069490 PMCID: PMC8777060 DOI: 10.3389/fmicb.2021.794315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Lacticaseibacillus casei, Lacticaseibacillus chiayiensis, and Lacticaseibacillus zeae are very closely related Lacticaseibacillus species. L. casei has long been proposed as a probiotic, whereas studies on functional characterization for L. chiayiensis and L. zeae are some compared to L. casei. In this study, L. casei FBL6, L. chiayiensis FBL7, and L. zeae FBL8 were isolated from raw milk, and their probiotic properties were investigated. Genomic analysis demonstrated the role of L. chiayiensis and L. zeae as probiotic candidates. The three strains were tolerant to acid and bile salt, with inhibitory action against pathogenic bacterial strains and capacity of antioxidants. Complete genome sequences of the three strains were analyzed to highlight the probiotic properties at the genetic level, which results in the discovery of genes corresponding to phenotypic characterization. Moreover, genes known to confer probiotic characteristics were identified, including genes related to biosynthesis, defense machinery, adhesion, and stress adaptation. The comparative genomic analysis with other available genomes revealed 256, 214, and 32 unique genes for FBL6, FBL7, and FBL8, respectively. These genomes contained individual genes encoding proteins that are putatively involved in carbohydrate transport and metabolism, prokaryotic immune system for antiviral defense, and physiological control processes. In particular, L. casei FBL6 had a bacteriocin gene cluster that was not present in other genomes of L. casei, resulting in this strain may exhibit a wide range of antimicrobial activity compared to other L. casei strains. Our data can help us understand the probiotic functionalities of the three strains and suggest that L. chiayiensis and L. zeae species, which are closely related to L. casei, can also be considered as novel potential probiotic candidate strains.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Dayoung Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
22
|
Tang C, Tao J, Sun J, Lv F, Lu Z, Lu Y. Regulatory mechanisms of energy metabolism and inflammation in oleic acid-treated HepG2 cells from Lactobacillus acidophilus NX2-6 extract. J Food Biochem 2021; 45:e13925. [PMID: 34486133 DOI: 10.1111/jfbc.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
In this study, the cell-free extracts (CFE) of Lactobacillus acidophilus NX2-6 were utilized to treat oleic acid (OA)-induced hepatic steatosis. It was found that CFE treatment improved lipid metabolism in OA-induced hepatic steatosis model by downregulating several lipogenic genes but increasing expression levels of lipolysis-related genes. In addition, gene expression analysis revealed that CFE treatment promoted mitochondrial biogenesis and fission by upregulating the mRNA levels of PGC-1α, PGC-1β, Sirt1, NRF1, and Fis1. CFE treatment also increased protein expression of p-AMPKα, PGC-1α, ACOX1, and Sirt1 in OA-treated cells, suggesting that CFE possessed ability to improve energy metabolism. Furthermore, CFE treatment also reversed OA-induced oxidative stress by increasing CAT activity and protein level of Nrf-2 as well as reducing protein expression of ATF6, XBP1, GRP78, p50, and p-ERK, indicating that CFE could inhibit endoplasmic reticulum stress and sterile inflammation. Thus, L. acidophilus NX2-6 had potential to fight against NAFLD. PRACTICAL APPLICATIONS: Diet-induced hepatic steatosis is one of major public health concerns all over the world. Hepatic steatosis is accompanied by disregulation of lipid metabolism and energy metabolism, endoplasmic reticulum stress, oxidative stress as well as chronic inflammation. It is reported that probiotics are considered as emerging therapeutic strategy to alleviate hepatic steatosis. This study indicated potential applications of dead probiotics in the prevention of hepatic steatosis and development of functional foods.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
23
|
Somashekaraiah R, Mottawea W, Gunduraj A, Joshi U, Hammami R, Sreenivasa MY. Probiotic and Antifungal Attributes of Levilactobacillus brevis MYSN105, Isolated From an Indian Traditional Fermented Food Pozha. Front Microbiol 2021; 12:696267. [PMID: 34290687 PMCID: PMC8287902 DOI: 10.3389/fmicb.2021.696267] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
The use of probiotics and antifungal capabilities of the lactic acid bacteria (LAB) isolated from different niches is a strategy to prepare functional cultures and biopreservatives for food/feed industries. In the present study, LAB strains isolated from an Indian traditional fermented food, Pozha, were evaluated for their probiotic properties and biocontrol potential. A total of 20 LAB isolates were selected from Pozha samples collected aseptically and screened for their antagonistic activity against Fusarium verticillioides. Among the bioactive isolates, Lacticaseibacillus brevis MYSN105 showed the highest antifungal activity in vitro, causing some morphological alterations such as damaged mycelia and deformed conidia. Cell-free supernatant (CFS) from L. brevis MYSN105 at 16% concentration effectively reduced the mycelial biomass to 0.369 g compared to 1.938 g in control. Likewise, the conidial germination was inhibited to 20.12%, and the seed treatment using CFS induced a reduction of spore count to 4.1 × 106 spores/ml compared to 1.1 × 109 spores/ml for untreated seeds. The internal transcribed spacer (ITS) copy number of F. verticillioides decreased to 5.73 × 107 and 9.026 × 107 by L. brevis MYSN105 and CFS treatment, respectively, compared to 8.94 × 1010 in control. The L. brevis MYSN105 showed high tolerance to in vitro gastrointestinal conditions and exhibited high adhesive abilities to intestinal epithelial cell lines. The comparative genome analysis demonstrated specific secondary metabolite region coding for bacteriocin and T3PKS (type III polyketide synthase) possibly related to survival and antimicrobial activity in the gut environment. Our results suggest that L. brevis MYSN105 has promising probiotic features and could be potentially used for developing biological control formulations to minimize F. verticillioides contamination and improve food safety measures.
Collapse
Affiliation(s)
| | - Walid Mottawea
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Adithi Gunduraj
- Departmen of Studies in Microbiology, University of Mysore, Mysuru, India
| | - Udit Joshi
- Departmen of Studies in Microbiology, University of Mysore, Mysuru, India
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - M Y Sreenivasa
- Departmen of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
24
|
Ye P, Wang J, Liu M, Li P, Gu Q. Purification and characterization of a novel bacteriocin from Lactobacillus paracasei ZFM54. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111125] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – A probiogenomics review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|