1
|
Akadiri SA, Dada PO, Badejo AA, Adeosun OJ, Ogunrinde AT, Faloye OT. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with Phragmites karka and Typha latifolia. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1133-1143. [PMID: 38140944 DOI: 10.1080/15226514.2023.2294485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
This study focused on assessing the effectiveness of vertical subsurface constructed wetlands (VSFCW) in purifying integrated poultry and aquaculture wastewater (PAW) in a tropical region. This evaluation encompassed the treatment of physico-chemical, heavy metal, and microbiological pollutants across three distinct climatic seasons and hydraulic retention time (HRT: 21 days). Parameters such as BOD (29.50 mg/L), COD (56.67 mg/L), Zn (2.97 mg/L), Cr (0.24 mg/L), Cu (1.78 mg/L), Pb (0.21 mg/L), total fecal coliform (866.67 cfu/mL), total coliform (1666.67 cfu/mL), E. coli (1133.33 cfu/mL), and Salmonella/Shigella (700 cfu/mL) exceeded the discharge limits for wastewater into nearby surface water bodies. Significant removal efficiencies were observed for all parameters tested in the CW planted with both Phragmites karka and Typha latifolia. The macrophytes showed similar removal efficiencies for all tested parameters, and there was no significant difference in the initial concentrations of the parameters based on the experimental season, except for microbial properties. This suggests that weather conditions did not significantly impact the concentration of physical and chemical properties in the wastewater. Consequently, this study successfully demonstrates the potential of using a VSFCW for effective treatment of PAW.
Collapse
Affiliation(s)
- Shadrach A Akadiri
- Department of Agricultural and Biosystems Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
- Department of Agriculture and Natural Resources, Ondo State Local Government Service Commission, Akure, Ondo State, Nigeria
| | - Pius O Dada
- Department of Agricultural and Biosystems Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Adekunle A Badejo
- Department of Civil Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Olayemi J Adeosun
- Department of Agricultural and Biosystems Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Akinwale T Ogunrinde
- Department of Agricultural and Biosystems Engineering, Landmark University, Omu Aran, Kwara State, Nigeria
| | - Oluwaseun T Faloye
- Department of Agricultural and Biosystems Engineering, Landmark University, Omu Aran, Kwara State, Nigeria
| |
Collapse
|
2
|
Liu G, Hu Z, Chen X, Li W, Wu Y, Liu Z, Miao L, Luo Z, Wang J, Guo Y. Oxygen vacancy-rich Ag/CuO nanoarray mesh fabricated by laser ablation for efficient bacterial inactivation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133269. [PMID: 38134696 DOI: 10.1016/j.jhazmat.2023.133269] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The contamination of drinking water by microbes is a critical health concern, underscoring the need for safe, reliable, and efficient methods to treat pathogenic microorganisms. While most sterilization materials are available in powder form, this presents safety risks and challenges in recycling. Herein, this study reports the preparation of an innovative copper oxide supported silver monolithic nanoarray mesh with abundant oxygen vacancies (Ag/CuO-VO) by laser ablation. The instantaneous high temperature caused by laser ablation preserves the material's original structure while generating oxygen vacancies on the CuO surface. The Ag/CuO-VO mesh demonstrated a remarkable ability to inactivate over 99% of Escherichia coli (E. Coli) within 20 min. The oxygen vacancies in the Ag/CuO-VO enhance interactions between oxygen species and the Ag/CuO-VO, leading to the accumulation of large amounts of reactive oxygen species (ROS). The generated ROS effectively disrupt both layers of the bacterial cell wall - the peptidoglycan and the phospholipid - as confirmed by Fourier Transform Infrared (FTIR) spectroscopy, culminating in cell death. This research presents a monolithic material capable of inactivating pathogenic microorganisms efficiently, offering a significant advancement in water sterilization technology.
Collapse
Affiliation(s)
- Guoli Liu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Zhixin Hu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiaoping Chen
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Weihao Li
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yan Wu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Zuocheng Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lei Miao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhu Luo
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Wuhan 430079, PR China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, PR China
| | - Jinlong Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Wuhan 430079, PR China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, PR China.
| | - Yanbing Guo
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Wuhan 430079, PR China; Wuhan Institute of Photochemistry and Technology, Wuhan 430083, PR China.
| |
Collapse
|
3
|
Liu H, Huang W, Yu Y, Chen D. Lightning-Rod Effect on Nanowire Tips Reinforces Electroporation and Electrochemical Oxidation: An Efficient Strategy for Eliminating Intracellular Antibiotic Resistance Genes. ACS NANO 2023; 17:3037-3046. [PMID: 36715351 DOI: 10.1021/acsnano.2c11811] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conventional oxidative disinfection methods are usually inefficient to eliminate intracellular antibiotic resistance genes (i-ARGs) due to competitive oxidation of cellular components of antibiotic-resistant bacteria (ARB), resulting in the ubiquitous occurrence of ARGs in drinking water systems. Herein, we developed the strategy of coupling electroporation and electrochemical oxidation on a Co3O4-nanowires-modified electrode to destroy the multiresistant Escherichia coli cells and promote subsequent i-ARG (blaTEM-1 and aac(3)-II) degradation. The lightning-rod effect over nanowire tips can form finite regions with a locally enhanced electric field and highly concentrated charge density, in turn facilitating the electroporation for ARB cell damage and electrochemical reactivity for reactive chlorine/oxygen species generation. Characterization of the ARB membrane integrity and morphology revealed that electroporation-induced cell pores were further enlarged by the oxidation of reactive species, resulting in i-ARG removal at lower applied voltages and with 6-9 times lower energy consumption than the conventional electrochemical oxidation approach with a Co3O4-film-modified electrode. The satisfactory application and effective inhibition of horizontal gene transfer in tap water further demonstrated the great potential of our strategy in the control of the ARG dissemination risk in drinking water systems.
Collapse
Affiliation(s)
- Hai Liu
- School of Environment and Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou510632, PR China
| | - Wei Huang
- School of Environment and Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou510632, PR China
| | - Yang Yu
- School of Environment and Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou510632, PR China
| | - Da Chen
- School of Environment and Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou510632, PR China
| |
Collapse
|
4
|
Pi SY, Wang Y, Lu YW, Liu GL, Wang DL, Wu HM, Chen D, Liu H. Fabrication of polypyrrole nanowire arrays-modified electrode for point-of-use water disinfection via low-voltage electroporation. WATER RESEARCH 2021; 207:117825. [PMID: 34763279 DOI: 10.1016/j.watres.2021.117825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/09/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Still ∼10% of world's population has no sustainable access to centralized water supply system, causing millions of deaths annually by waterborne diseases. Here, we develop polypyrrole nanowire arrays (PPyNWs)-modified electrodes by polymerization of pyrrole on graphite felt for point-of-use water disinfection via low-voltage electroporation. A flow-through mode is specially applied to alleviate diffusion barrier of pyrrole in the porous graphite felt for uniform PPyNWs growth. The flow-through disinfection device using the optimized PPyNWs electrode achieves above 4-log removal for model virus (MS2) and gram-positive/negative bacteria (E. faecalis and E. coli) at applied voltage of 1.0 V and fluxes below 1000 and 2500 L/m2/h. Electroporation is recognized as the dominant disinfection mechanism by using square-wave alternating voltage of ±1.0 V to eliminate the electrochemical reactions. In-situ sampling experiments reveal that anode acts as the main disinfection function due to its electric field attraction with negatively charged E. coli cells. The live/dead baclight staining experiments indicate an adsorption-desorption process of E. coli cells on anode, and the adsorption-desorption balance determines the disinfection abilities of PPyNWs anode. Under 1.0 V and 2000 L/m2/h, the disinfection device enables above 4-log E. coli removal in tap water within 7-day operation with energy consumption below 20 mJ/L, suggesting its sound application potential for point-of-use water disinfection.
Collapse
Affiliation(s)
- Shuang-Yu Pi
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yang Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ying-Wen Lu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guang-Li Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Da-Li Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hai Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Bell RL, Kase JA, Harrison LM, Balan KV, Babu U, Chen Y, Macarisin D, Kwon HJ, Zheng J, Stevens EL, Meng J, Brown EW. The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety. Pathogens 2021; 10:1391. [PMID: 34832547 PMCID: PMC8617848 DOI: 10.3390/pathogens10111391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Water is vital to agriculture. It is essential that the water used for the production of fresh produce commodities be safe. Microbial pathogens are able to survive for extended periods of time in water. It is critical to understand their biology and ecology in this ecosystem in order to develop better mitigation strategies for farmers who grow these food crops. In this review the prevalence, persistence and ecology of four major foodborne pathogens, Shiga toxin-producing Escherichia coli (STEC), Salmonella, Campylobacter and closely related Arcobacter, and Listeria monocytogenes, in water are discussed. These pathogens have been linked to fresh produce outbreaks, some with devastating consequences, where, in a few cases, the contamination event has been traced to water used for crop production or post-harvest activities. In addition, antimicrobial resistance, methods improvements, including the role of genomics in aiding in the understanding of these pathogens, are discussed. Finally, global initiatives to improve our knowledge base of these pathogens around the world are touched upon.
Collapse
Affiliation(s)
- Rebecca L. Bell
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Julie A. Kase
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Lisa M. Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Kannan V. Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Uma Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Yi Chen
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Dumitru Macarisin
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Hee Jin Kwon
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Jie Zheng
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Eric L. Stevens
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA;
| | - Eric W. Brown
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| |
Collapse
|
6
|
First report of novel assemblages and mixed infections of Giardia duodenalis in human isolates from New Zealand. Acta Trop 2021; 220:105969. [PMID: 34029530 DOI: 10.1016/j.actatropica.2021.105969] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022]
Abstract
Giardia duodenalis (syn. G. intestinalis and G. lamblia) is a protozoan parasite that cause disease (giardiasis) in humans and other animals. The pathogen is classified into eight assemblages, further divided into sub-assemblages, based on genetic divergence and host specificities. There are two zoonotic subtypes known as assemblages A and B, whilst assemblages from C to H are mainly found in domesticated animals, rodents and marine mammals. Here, we report for the first time the presence of assemblage E and sub-assemblage AIII in human isolates from the South Island in New Zealand. We identified a > 99% nucleotide similarity of assemblage E and sub-assemblage AIII with sequences of the gdh gene available in GenBank from individual human samples collected in Dunedin and Christchurch, respectively. We also performed a deep sequencing approach to assess intra-host assemblage variation. The sample from Dunedin showed evidence of mixed assemblage E and zoonotic sub-assemblage BIV. The report of two novel assemblages and mixed infections provides insights into the genetic diversity, epidemiology and transmission dynamics of Giardia duodenalis in New Zealand.
Collapse
|
7
|
Strakova N, Korena K, Gelbicova T, Kulich P, Karpiskova R. A Rapid Culture Method for the Detection of Campylobacter from Water Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116098. [PMID: 34198825 PMCID: PMC8200967 DOI: 10.3390/ijerph18116098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
The natural environment and water are among the sources of Campylobacter jejuni and Campylobacter coli. A limited number of protocols exist for the isolation of campylobacters in poorly filterable water. Therefore, the goal of our work was to find a more efficient method of Campylobacter isolation and detection from wastewater and surface water than the ISO standard. In the novel rapid culture method presented here, samples are centrifuged at high speed, and the resuspended pellet is inoculated on a filter, which is placed on Campylobacter selective mCCDA agar. The motile bacteria pass through the filter pores, and mCCDA agar suppresses the growth of background microbiota on behalf of campylobacters. This culture-based method is more efficient for the detection and isolation of Campylobacter jejuni and Campylobacter coli from poorly filterable water than the ISO 17995 standard. It also is less time-consuming, taking only 72 h and comprising three steps, while the ISO standard method requires five or six steps and 144-192 h. This novel culture method, based on high-speed centrifugation, bacterial motility, and selective cultivation conditions, can be used for the detection and isolation of various bacteria from water samples.
Collapse
|
8
|
Phiri BJ, Hayman DTS, Biggs PJ, French NP, Garcia-R JC. Microbial diversity in water and animal faeces: a metagenomic analysis to assess public health risk. NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1831556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bernard J. Phiri
- Biosecurity Surveillance and Incursion Investigation Team, Ministry for Primary Industries, Wellington, New Zealand
| | - David T. S. Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nigel P. French
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Juan C. Garcia-R
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|