1
|
Çıtar Dazıroğlu ME, Acar Tek N, Cevher Akdulum MF, Yılmaz C, Yalınay AM. Effects of kefir consumption on gut microbiota and health outcomes in women with polycystic ovary syndrome. Food Sci Nutr 2024; 12:5632-5646. [PMID: 39139979 PMCID: PMC11317752 DOI: 10.1002/fsn3.4212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 08/15/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS), which is common among women of reproductive age, is characterized by low-grade chronic inflammation and is associated with several health problems and dysbiosis. Kefir has been shown to have many beneficial health effects; however, its effect on PCOS is unknown. This study aimed to examine the effect of kefir on the intestinal microbiota and health outcomes in PCOS. In this intervention study, 17 women with PCOS consumed 250 mL/day of kefir (containing Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lactobacillus kefiranofaciens subsp. kefirgranum, Lactobacillus kefiri, Lactobacillus acidophilus, Lactobacillus parakefiri, Lactobacillus bulgaricus, Lactobacillus reuteri, Lactobacillus casei, Lactobacillus fermentum, Lactobacillus helveticus, Lactococcus lactis, Leuconostoc mesentereoides, Bifidobacterium bifidum, Streptococcus thermophilus, Kluyveromyces marxianus, Kluyveromyces lactis, Acetobacter pasteurianus, and Saccharomyces cerevisiae) for 8 weeks. Food consumption and physical activity records, anthropometrical measurements, quality of life, and fecal and blood samples were taken at the study's beginning and end. Quality of life in mental health (58.8 ± 15.08; 64.0 ± 15.23, respectively) and physical function (95.00 and 100.00, respectively) categories showed a significant increase after kefir intervention (p < .05). Additionally, Interleukin-6 (IL-6), one of the inflammatory cytokines, significantly decreased (174.00 and 109.10 ng/L, respectively) (p < .05). The intestinal barrier permeability was evaluated with zonulin, and no significant change was observed. Gut microbiota analysis showed that while the relative abundance of the class Bacilli and genus Lactococcus significantly increased, the genus Holdemania decreased with kefir consumption (p < .05). In conclusion, kefir appears to be beneficial for improving the microbiota and some health outcomes, like reducing inflammation and improving quality of life in PCOS. Therefore, kefir may be useful in the treatment of PCOS.
Collapse
Affiliation(s)
| | - Nilüfer Acar Tek
- Department of Nutrition and DieteticsGazi UniversityAnkaraTurkey
| | | | - Canan Yılmaz
- Department of Medical BiochemistryGazi UniversityAnkaraTurkey
| | | |
Collapse
|
2
|
Bozkir E, Yilmaz B, Sharma H, Esatbeyoglu T, Ozogul F. Challenges in water kefir production and limitations in human consumption: A comprehensive review of current knowledge. Heliyon 2024; 10:e33501. [PMID: 39035485 PMCID: PMC11259891 DOI: 10.1016/j.heliyon.2024.e33501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Water kefir is a convenient dairy-free alternative to dairy-based fermented beverages. It is prepared by fermenting a sucrose solution with fresh and dried fruits using water kefir grains, and demineralized whey can be used in water kefir production. This review describes current knowledge on water kefir production and its health effects. The main aims of this paper are to focus on the microbial composition, potential health-promoting properties, limitations in human consumption, and challenges in the production of water kefir. Water kefir grains and substrates, including brown sugar, dried and fresh fruits, vegetables, and molasses, used in the production influence the fermentation characteristics and composition of water kefir. Lactic acid bacteria, acetic acid bacteria, and yeasts are the microorganisms involved in the fermentation process. Lactobacillus species are the most common microorganisms found in water kefir. Water kefir contains various bioactive compounds that have potential health benefits. Water kefir may inhibit the growth of certain pathogenic microorganisms and food spoilage bacteria, resulting in various health-promoting properties, including immunomodulatory, antihypertensive, anti-inflammatory, anti-ulcerogenic, antiobesity, hypolipidemic, and hepatoprotective activities.
Collapse
Affiliation(s)
- Eda Bozkir
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Italy
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, 01330, Adana, Turkiye
| | - Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167, Hannover, Germany
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Adana, Turkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, 01330, Turkiye
| |
Collapse
|
3
|
Gökırmaklı Ç, Şatır G, Guzel‐Seydim ZB. Microbial viability and nutritional content of water kefir grains under different storage conditions. Food Sci Nutr 2024; 12:4143-4150. [PMID: 38873456 PMCID: PMC11167166 DOI: 10.1002/fsn3.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 06/15/2024] Open
Abstract
Water kefir grains are an important source of probiotics, mainly containing lactic acid bacteria and yeasts. The aim of this study is to investigate the changes in microbial and chemical properties of water kefir grains during 1-month storage at +4°C and -18°C. The initial content of lactobacilli, lactococci, and yeast in water kefir grains was 6.06, 6.33, and 5.93 log CFU/g, respectively. The number of lactobacilli, Lactobacillus acidophilus, and Bifidobacterium spp. in the water kefir grains were comparable, with slight changes at the end of refrigerated storage (p > .05). Lactococci and yeasts decreased significantly after both storage conditions compared to the initial content (p < .05). The dry matter and ash contents remained unchanged during storage (p > .05). Water kefir grains contained significant amounts of calcium, vitamin B2, vitamin B6, vitamin B7, and vitamin B12. Storage at both +4°C and -18°C did not affect the mineral and vitamin contents, except for Cu and Vitamin B2. The results indicate that the water kefir grains remained viable after storage at both temperatures. If water kefir grains need to be stored, it is recommended to store them at +4°C in sugared water as it ensures better survivability of the microbiota of the grains.
Collapse
Affiliation(s)
- Çağlar Gökırmaklı
- Department of Food EngineeringSuleyman Demirel UniversityIspartaTurkey
| | - Gülçin Şatır
- Department of Nutrition and DieteticsSuleyman Demirel UniversityIspartaTurkey
| | | |
Collapse
|
4
|
Guo X, He Y, Cheng Y, Liang J, Xu P, He W, Che J, Men J, Yuan Y, Yue T. The composition of Tibetan kefir grain TKG-Y and the antibacterial potential and milk fermentation ability of S. warneri KYS-164 screened from TKG-Y. Food Funct 2024; 15:5026-5040. [PMID: 38650522 DOI: 10.1039/d4fo00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study utilized high-throughput sequencing and SEM observation to elucidate the microbial composition of a Tibetan herder's homemade kefir grain named TKG-Y. Subsequently, S. warneri KYS-164 was isolated from TKG-Y, which can produce mixed protein substances with antibacterial activity, namely bacteriocin-like inhibitory substances (BLIS). BLIS can significantly reduce the growth rate of Escherichia coli 366-a, Staphylococcus aureus CICC 10384 and mixed strains at low concentrations (1 × MIC). The presence of the warnericin-centered gene cluster in KYS-164 may explain the antibacterial properties of the BLIS. Pepsin and an acidic environment can reduce the number of colonies of KYS-164 by 2.5 Log10 CFU mL-1 within 1 h, and reduce the antibacterial activity of BLIS by 21.48%. S. warneri KYS-164 showed no antibiotic resistance and biological toxicity after 80 subcultures, while BLIS produced by 40 generations of the strain retained their inhibitory efficacy against pathogenic bacteria. After 48-hour fermentation of milk with KYS-164, volatile compounds such as aldehydes, phenols, esters, and alcohols, giving it a floral, fruity, milky, oily, and nutty aroma, were released, enriching the sensory characteristics of dairy products. This study not only revealed the bacterial colony composition information of home-made kefir grain TKG-Y but also discovered and proved that S. warneri KYS-164 has the potential to inhibit bacteria and ferment dairy products. This will provide a basis for subsequent applied research on KYS-164.
Collapse
Affiliation(s)
- Xing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yining He
- School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jingyimei Liang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- College of Analytical Chemistry and Food Science, Universidade de Vigo, Vigo, 36310, Spain
| | - Pandi Xu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Wenwen He
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jiayin Che
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jiexing Men
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
5
|
de Souza HF, Monteiro GF, Bogáz LT, Freire ENS, Pereira KN, Vieira de Carvalho M, Gomes da Cruz A, Viana Brandi I, Setsuko Kamimura E. Bibliometric analysis of water kefir and milk kefir in probiotic foods from 2013 to 2022: A critical review of recent applications and prospects. Food Res Int 2024; 175:113716. [PMID: 38128984 DOI: 10.1016/j.foodres.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Although milk kefir and water kefir have different physical, chemical and microbiological characteristics, several microbial species that make up kefir stand out with probiotic functions. Furthermore, because it is suitable for a variety of substrates, kefir and the species of probiotic microorganisms that make it up are seen as a promising alternative in the development of probiotic and health-promoting foods. The aim of this study was to carry out a bibliometric analysis of water kefir and milk kefir in probiotic foods and to critically analyze recent applications and prospects. Using the Scopus database, 202 documents published between 2013 and 2022 were identified and submitted to bibliometric analysis using the VOSviewer software. Regarding recent applications, 107 documents published between 2021 and June 2023 were identified. It was observed that, in the literature consulted, no study used bibliometric analysis to evaluate the use of water kefir and milk kefir in probiotic foods. Due to the presence of probiotic species, kefir has been listed as an alternative for the production of new probiotic food matrices that are beneficial to health. Recent applications show kefir's potential in the development of probiotic products based on fruit and fruit juice, whey beverages, fermented milks and derivatives, and alcoholic beverages such as beers.
Collapse
Affiliation(s)
- Handray Fernandes de Souza
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil.
| | - Giovana Felício Monteiro
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Lorena Teixeira Bogáz
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Eduardo Novais Souza Freire
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Karina Nascimento Pereira
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Marina Vieira de Carvalho
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro (IFRJ), 20270-021 Rio de Janeiro, RJ, Brazil
| | - Igor Viana Brandi
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Av. Universitária, 1000, 39404-547 Montes Claros, Minas Gerais, Brazil
| | - Eliana Setsuko Kamimura
- Department of Food Engineering, School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, São Paulo, Brazil
| |
Collapse
|
6
|
Güzel‐Seydim ZB, Şatır G, Gökırmaklı Ç. Use of mandarin and persimmon fruits in water kefir fermentation. Food Sci Nutr 2023; 11:5890-5897. [PMID: 37823165 PMCID: PMC10563690 DOI: 10.1002/fsn3.3561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 10/13/2023] Open
Abstract
Water kefir is a non-dairy probiotic beverage. It is obtained by fermentation of water kefir grains with a sugar solution. This study aims to determine the properties of water kefir beverages obtained by fermentation of mandarin and persimmon-containing water for 42 h. According to microbiological results, both fruits containing water samples provided a high number of lactic acid bacteria and yeasts. Moreover, after fermentation, pH, Brix, and dry matter content did not significantly differ. On the other hand, fructose, maltose, and acetic acid contents of mandarin water kefir are significantly higher than persimmon water kefir (p < .05). Persimmon water kefir had higher total phenolic contents, twice as much as mandarin water kefir (p < .05). Both water kefirs had good color properties. The organoleptic acceptability of the fruit water kefirs was promising.
Collapse
Affiliation(s)
| | - Gülçin Şatır
- Department of Nutrition and DieteticsSüleyman Demirel UniversityIspartaTurkey
| | - Çağlar Gökırmaklı
- Department of Food EngineeringSüleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
7
|
Esatbeyoglu T, Fischer A, Legler AD, Oner ME, Wolken HF, Köpsel M, Ozogul Y, Özyurt G, De Biase D, Ozogul F. Physical, chemical, and sensory properties of water kefir produced from Aronia melanocarpa juice and pomace. Food Chem X 2023; 18:100683. [PMID: 37138825 PMCID: PMC10149414 DOI: 10.1016/j.fochx.2023.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Water kefir is widely consumed all over the world due to its potential health benefits. The aim of this current study was to compare non-fermented juice and fermented beverage of water kefir produced from Aronia melanocarpa juice and pomace in terms of chemical, physical and sensory quality as well as valorisation of pomace in the production of water kefir. When compared to water kefir made with aronia juice, less reduction in total phenolic content (TPC), total flavonoid content (TFC) and total anthocyanin content (TAC) was observed in samples made with aronia pomace during the fermentation process. Similarly, greater antioxidant activity was demonstrated in water kefir made with aronia pomace than juice. Based on sensory evaluation, no difference was found in overall acceptability, taste, aroma/odor, and turbidity of water kefir made with aronia pomace before and after fermentation. Results indicated that aronia pomace has potential in water kefir production.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
- Corresponding authors.
| | - Annik Fischer
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Alessandra D.S. Legler
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Manolya E. Oner
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
- Alanya Alaaddin Keykubat University, Faculty of Engineering, Department of Food Engineering, Alanya, Antalya, Turkey
| | - Henrik F. Wolken
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Magdalena Köpsel
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Yesim Ozogul
- Cukurova University, Department of Seafood Processing and Technology, 01330, Adana, Turkey
| | - Gülsün Özyurt
- Cukurova University, Department of Seafood Processing and Technology, 01330, Adana, Turkey
| | - Daniela De Biase
- Sapienza University of Rome, Department of Medico-Surgical Sciences and Biotechnologies, 04100 Latina, Italy
| | - Fatih Ozogul
- Cukurova University, Department of Seafood Processing and Technology, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
- Corresponding authors.
| |
Collapse
|
8
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Red beetroot juice fermented by water kefir grains: physicochemical, antioxidant profile and anticancer activity. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
The effects of fermentation with water kefir grains on two varieties of tigernut (Cyperus esculentus L.) milk. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Sy H, Chan M, Finley J. Determination of Ethanol Content in Water Kefir Using Headspace Gas Chromatography With Mass Spectrometry Detection: Matrix Extension and Methanol Characterization. J AOAC Int 2022; 106:348-355. [PMID: 36264117 PMCID: PMC9978574 DOI: 10.1093/jaoacint/qsac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Water kefir is a fermented beverage using water, sugar, and cultured microorganism grains as the primary ingredients. Ethanol may be present at varying levels within the final product due to the fermentation process, so it is vital to have a validated method to meet regulatory, quality, and safety requirements. OBJECTIVE This study describes using water kefir as a matrix for the evaluation of the previously validated method employing headspace gas chromatography mass spectrometry (HS-GCMS) detection for ethanol in kombucha. The study objective is to demonstrate the method originally using kombucha is also fit for the analysis of water kefir. This method will also evaluate the determination of methanol within the water kefir samples. METHOD The matrix extension study was performed as per the AOAC INTERNATIONAL guidance documents outlined in Appendix K: Guidelines for Dietary Supplements and Botanicals using HS-GCMS for ethanol determination. Ethanol determination in each water kefir sample is quantified against an external standard calibration curve. The same instrumentation is used for methanol characterization. RESULTS RSDr and HorRat values obtained for from the study demonstrated acceptable precision with RSDr values of 1.03 to 6.68% and HorRat values determined to be between 0.23 and 1.52 for ethanol determination within kefir samples. Similarly, acceptable values of RSDr ranging from 1.45 to 3.39% and HorRat ranging from 0.25 to 0.49 were observed with methanol determination. For methanol determination, the limit of detection (LOD) and limit of quantification (LOQ) determined for the method in this study to be 16 and 21 ppm, respectively. The methanol spike recovery study gave overall recoveries ranging from 89 to 91%, demonstrating acceptable method accuracy. CONCLUSIONS The results of this study demonstrate the previously validated HS-GCMS method for ethanol determination in kombucha can also be used to quantify ethanol in water kefir samples. The method is also suitable for the determination of methanol within water kefir samples. HIGHLIGHTS A straightforward method has been adapted to include the the quantification of ethanol and methanol in fermented beverages such as Water Kefir samples.
Collapse
Affiliation(s)
- Hong Sy
- Corresponding author’s e-mail:
| | - Michael Chan
- Natural Health and Food Products Research Group, British Columbia Institute of Technology, 3700 Willingdon Ave, Burnaby, BC V5G 3H2, Canada
| | - Jamie Finley
- Natural Health and Food Products Research Group, British Columbia Institute of Technology, 3700 Willingdon Ave, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
12
|
Multi-Objective Optimization of Beverage Based on Lactic Fermentation of Goat’s Milk Whey and Fruit Juice Mixes by Kefir Granules. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Numerous fruits are produced in Ecuador, of which about 40% are never eaten. In addition, fresh goat cheeses are in high demand. However, goat cheese generates goat milk whey with high contamination loads, and, therefore, it must be adequately treated before being discharged into ecosystems. This research aims to use a mixture of tree tomato, common strawberry juices, and goat’s milk whey, to be statically fermented by milk and water kefir grains (WKG) for 48 h. For this, a dual mixture design of L-optimal response surface methodology was carried out to find the conditions that maximized all the responses evaluated (lactic-acid bacteria and yeasts concentrations and the overall acceptability assessed on a 7-point scale). Experiments were carried out in San Gabriel, Ecuador. Temperatures during the day and night were 20.2 ± 0.3 °C and 18.7 ± 0.3 °C, respectively. Three conditions were selected, where the highest response values were reached. Complementary experiments demonstrated the validity of the models. When comparing the results of the present study with similar ones carried out previously, higher values were observed in the concentration of yeasts, which seems related to the presence of the WKG. It is concluded that they could be suitable functional beverage candidates.
Collapse
|