1
|
Oliulla H, Mizan MFR, Kang I, Ha SD. On-going issues regarding biofilm formation in meat and meat products: challenges and future perspectives. Poult Sci 2024; 103:104373. [PMID: 39426218 PMCID: PMC11536009 DOI: 10.1016/j.psj.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
The meat industry has been significantly threatened by the risks of foodborne microorganisms and biofilm formation on fresh meat and processed products. A microbial biofilm is a sophisticated defensive mechanism that enables bacterial cells to survive in unfavorable environmental circumstances. Generally, foodborne pathogens form biofilms in various areas of meat-processing plants, and adequate sanitization of these areas is challenging owing to the high tolerance of biofilm cells to sanitization compared with their planktonic states. Consequently, preventing biofilm initiation and maturation using effective and powerful technologies is imperative. In this review, novel and advanced technologies that prevent bacterial and biofilm development via individual and combined intervention technologies, such as ultrasound, cold plasma, enzymes, bacteriocins, essential oils, and phages, were evaluated. The evidence regarding current technologies revealed in this paper is potentially beneficial to the meat industry in preventing bacterial contamination and biofilm formation in food products and processing equipment.
Collapse
Affiliation(s)
- Humaun Oliulla
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Sang-Do Ha
- Department of Food Science and Biotechnology, GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggido, 17546, Republic of Korea.
| |
Collapse
|
2
|
Gong Y, Sun L, Wan X, Geng P, Hu X. Characterization of the novel bequatrovirus vB-BcgM and its antibacterial effects in a food matrix. Arch Virol 2024; 169:204. [PMID: 39298014 DOI: 10.1007/s00705-024-06134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/21/2024] [Indexed: 09/21/2024]
Abstract
Bacteria belonging to the Bacillus cereus group are ubiquitous in nature, causing food spoilage and food poisoning cases. A bequatrovirus, vB-BcgM, belonging to the C3 cluster infecting B. cereus group members, was isolated and characterized. Its 160-kb linear dsDNA genome contains a number of replication-related coding sequences (CDSs) and displays a collinear relationship with that of the virulent phage B4, with variations in its structural and replication regions. vB-BcgM has a relatively broad host range, with the ability to infect 33.3% of the B. cereus group isolates tested, including B. cereus, B. thuringiensis, B. anthracis, B. paranthracis, B. mycoides, and B. cytotoxicus. Moreover, vB-BcgM displays efficient infection and high replication capacity. It was found that 96.5% of the virions complete the adsorption process within 5 min. The optimal multiplicity of infection (MOI) is 10-7, and the burst size is 63 plaque-forming units (PFU)/cell. This phage showed stability over a broad pH range (4-12) and at temperatures up to 70 °C. Furthermore, vB-BcgM displays significant antibacterial effects in processed food matrices (ultra-high temperature [UHT] sterilized milk [GB 25190], UHT refrigerated milk [GB 25190], pasteurized milk [GB 19645], mashed meat, and cereals) and fresh foods (lettuce, apple, and potato). The antibacterial effects were found to be dependent on the dose of viral inoculum, incubation conditions (food matrix and temperature), and time. The data indicate that vB-BcgM has good potential as an antibacterial agent.
Collapse
Affiliation(s)
- Yunfei Gong
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lin Sun
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaofu Wan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Peiling Geng
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaomin Hu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
3
|
Agaiby C, Ahmed M, Argueta A, Arrowood K, Barrier KP, Church MW, Connell CR, Dao KD, Dao KHT, Davenport MR, Edmondson MD, Estabrook MI, Gondhi S, Gonzalez P, Leduc F, Ma T, Mansoor A, Mansoor S, Mattley L, Meyer C, Nguyen L, Niaz E, Parker JM, Ross DC, Scott DM, Semryck B, Takla K, Tiramdas A, Upputuru SK, Pollenz RS. Genome sequence of Xenia2 a DV cluster phage that infects Gordonia rubripertincta. Microbiol Resour Announc 2024; 13:e0057824. [PMID: 39162485 PMCID: PMC11385102 DOI: 10.1128/mra.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Xenia2 is a DV cluster actinobacteriophage that infects Gordonia rubripertincta NRRL B-16540. The genome is 68,135bp, has a GC content of 57.9% and 98 predicted protein-coding genes, 33 of which have a predicted function. Xenia2 has a lysis cassette with an endolysin (lysin A) and four different holin-like transmembrane proteins.
Collapse
Affiliation(s)
- Carol Agaiby
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Maha Ahmed
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Aidan Argueta
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Kyle Arrowood
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Keelynn P Barrier
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Meghan W Church
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Cheryl R Connell
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Ken D Dao
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Kathleen Huyen T Dao
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Makenzie R Davenport
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Megan D Edmondson
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Makenzie I Estabrook
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Santoshi Gondhi
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Patricia Gonzalez
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Francine Leduc
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Trang Ma
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Adam Mansoor
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Sara Mansoor
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Lillian Mattley
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Cyrus Meyer
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Loc Nguyen
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Emaan Niaz
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Jenna M Parker
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Delaney C Ross
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Devin M Scott
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Brianna Semryck
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Kyrillos Takla
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Aishwarya Tiramdas
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Sai Kaushik Upputuru
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Richard S Pollenz
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
Wang J, Zheng Y, Huang H, Ma Y, Zhao X. An overview of signal amplification strategies and construction methods on phage-based biosensors. Food Res Int 2024; 191:114727. [PMID: 39059923 DOI: 10.1016/j.foodres.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phages are a class of viruses that specifically infect host bacteria. Compared to other recognition elements, phages offer several advantages such as high specificity, easy to obtain and good environmental tolerance, etc. These advantages underscore the potential of phages as recognition elements in the construction of biosensors. Therefore, the phage-based biosensors are currently garnering widespread attention for detecting pathogens in recent years. However, the test performance such as detection limit, sensitivity and stability of exicting phage-based biosensors require enhancement. In the design of sensors, the selection of various materials and construction methods significantly influences the test performance of the sensor, and employing appropriate signal amplification strategies and construction methods to devise biosensors based on different principles is an effective strategy to enhance sensor performance. The manuscript primarily focuses on the signal amplification strategies and construction methods employed in phage-based biosensors recent ten years, and summarizes the advantages and disadvantages of different signal amplification strategies and construction methods. Meanwhile, the manuscript discusses the relationship between sensor performance and various materials and construction methods, and reviews the application progress of phage-based electrochemical biosensors in the detection of foodborne bacteria. Furthermore, the manuscript points out the present limitations and the future research direction for the field of phage-based biosensors, so as to provide the reference for developing high-performance phage-based biosensors.
Collapse
Affiliation(s)
- Jiahao Wang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuqing Zheng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hongkai Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Ya Ma
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiaojuan Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
5
|
Zeng Q, Zou H, Deng T, Wu W, Wang H, Deng C. Photoelectrochemical/Colorimetric Dual-Mode Specific Detection of Staphylococcus aureus Based on the Enzymatic Reaction Triggered by Catalase from Lysed Bacteria. Anal Chem 2024; 96:13207-13216. [PMID: 39078709 DOI: 10.1021/acs.analchem.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Staphylococcus aureus (S. aureus) is abundant in nature and frequently leads to various health issues. Bacteriophages as obligate intracellular parasites of bacteria have the ability to specifically identify and infect S. aureus, causing bacterial lysis and the release of endogenous catalase (CAT). The released CAT triggers the conversion of H2O2 into O2 and H2O, resulting in a notable decrease in UV absorption at 570 nm and a concurrent surge in photocurrent. On the basis of this, a photoelectrochemical/colorimetric dual-mode biosensor for the detection of S. aureus was developed. In the photoelectric detection mode, the reactions involving endogenous enzymes occur directly in the solution, requiring only the simple drop-coating of TiO2@CdS onto the indium tin oxide (ITO) electrode surface. There was no need for immobilizing additional biomolecules, thereby significantly minimizing nonspecific adsorption and improving the biosensor's stability and reproducibility. For colorimetry, we utilized a cost-effective and operationally simple approach based on KI and starch. Remarkably, this photoelectrochemical/colorimetry exhibited a linear range of 102-109 CFU/mL for S. aureus, achieving detection limits of 7 and 10 CFU/mL, respectively. Herein, phage identification ensures the specific detection of live S. aureus, thereby effectively mitigating the potential for false signals. The dual-signal readout mode improves the detection accuracy and reliability. In conclusion, this present method offers numerous advantages, including simplicity, time-efficiency, cost-effectiveness, high specificity, and therefore excellent accuracy.
Collapse
Affiliation(s)
- Qin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - HuiYu Zou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - TingLiu Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wuming Wu
- School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha 410151, China
| | - Heye Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - ChunYan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Sharifi F, Montaseri M, Yousefi MH, Shekarforoush SS, Berizi E, Wagemans J, Vallino M, Hosseinzadeh S. Isolation and characterization of two Staphylococcus aureus lytic bacteriophages "Huma" and "Simurgh". Virology 2024; 595:110090. [PMID: 38718447 DOI: 10.1016/j.virol.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Nowadays finding the new antimicrobials is necessary due to the emerging of multidrug resistant strains. The present study aimed to isolate and characterize bacteriophages against S. aureus. Strains Huma and Simurgh were the two podovirus morphology phages which isolated and then characterized. Huma and Simurgh had a genome size of 16,853 and 17,245 bp, respectively and both were Rosenblumvirus with G + C content of 29%. No lysogeny-related genes, nor virulence genes were identified in their genomes. They were lytic only against two out of four S. aureus strains. They also were able to inhibit S. aureus for 8 h in-vitro. Both showed a rapid adsorption. Huma and Simurgh had the latent period of 80 and 60 m and the burst sizes of 45 and 40 PFU/ml and also, they showed very low cell toxicity of 1.23%-1.79% on HT-29 cells, respectively. Thus, they can be considered potential candidates for biocontrol applications.
Collapse
Affiliation(s)
- Fatemeh Sharifi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Montaseri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, 10135, Turin, Italy
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| |
Collapse
|
7
|
Ul Haq I, Khan M, Khan I. Phytopathological management through bacteriophages: enhancing food security amidst climate change. J Ind Microbiol Biotechnol 2024; 51:kuae031. [PMID: 39210514 PMCID: PMC11388930 DOI: 10.1093/jimb/kuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing global population and climate change pose significant challenges to agriculture, particularly in managing plant diseases caused by phytopathogens. Traditional methods, including chemical pesticides and antibiotics, have become less effective due to pathogen resistance and environmental concerns. Phage therapy emerges as a promising alternative, offering a sustainable and precise approach to controlling plant bacterial diseases without harming beneficial soil microorganisms. This review explores the potential of bacteriophages as biocontrol agents, highlighting their specificity, rapid multiplication, and minimal environmental impact. We discuss the historical context, current applications, and prospects of phage therapy in agriculture, emphasizing its role in enhancing crop yield and quality. Additionally, the paper examines the integration of phage therapy with modern agricultural practices and the development phage cocktails and genetically engineered phages to combat resistant pathogens. The findings suggest that phage therapy could revolutionize phytopathological management, contributing to global food security and sustainable agricultural practices. ONE-SENTENCE SUMMARY The burden of plant diseases and phage-based phytopathological treatment.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Joint Doctoral school, Silesian University of Technology , 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901 MG, Brazil
- Department of Bioscience, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| |
Collapse
|
8
|
Ranveer SA, Dasriya V, Ahmad MF, Dhillon HS, Samtiya M, Shama E, Anand T, Dhewa T, Chaudhary V, Chaudhary P, Behare P, Ram C, Puniya DV, Khedkar GD, Raposo A, Han H, Puniya AK. Positive and negative aspects of bacteriophages and their immense role in the food chain. NPJ Sci Food 2024; 8:1. [PMID: 38172179 PMCID: PMC10764738 DOI: 10.1038/s41538-023-00245-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteriophages infect and replicate inside a bacterial host as well as serve as natural bio-control agents. Phages were once viewed as nuisances that caused fermentation failures with cheese-making and other industrial processes, which lead to economic losses, but phages are now increasingly being observed as being promising antimicrobials that can fight against spoilage and pathogenic bacteria. Pathogen-free meals that fulfil industry requirements without synthetic additives are always in demand in the food sector. This study introduces the readers to the history, sources, and biology of bacteriophages, which include their host ranges, absorption mechanisms, lytic profiles, lysogenic profiles, and the influence of external factors on the growth of phages. Phages and their derivatives have emerged as antimicrobial agents, biodetectors, and biofilm controllers, which have been comprehensively discussed in addition to their potential applications in the food and gastrointestinal tract, and they are a feasible and safe option for preventing, treating, and/or eradicating contaminants in various foods and food processing environments. Furthermore, phages and phage-derived lytic proteins can be considered potential antimicrobials in the traditional farm-to-fork context, which include phage-based mixtures and commercially available phage products. This paper concludes with some potential safety concerns that need to be addressed to enable bacteriophage use efficiently.
Collapse
Affiliation(s)
- Soniya Ashok Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Harmeet Singh Dhillon
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Taruna Anand
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, 140413, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Ganganali Srikot, Srinagar Pauri Garhwal, 246174, India
| | - Pradip Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Chand Ram
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Dharun Vijay Puniya
- Centre of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisboa, Portugal.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-gu, Seoul, 143-747, Republic of Korea.
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
9
|
Plunder S, Burkard M, Helling T, Lauer UM, Hoelzle LE, Marongiu L. Determination of Optimal Phage Load and Administration Time for Antibacterial Treatment. Curr Protoc 2024; 4:e954. [PMID: 38217512 DOI: 10.1002/cpz1.954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Using phages as antibacterials is becoming a customary practice in Western countries. Nonetheless, successful treatments must consider the growth rate of the bacterial host and the degradation of the virions. Therefore, successful treatments require administering the right amount of phage (viral load, Vφ) at the right moment (administration time, Tφ). The present protocols implement a machine learning approach to determine the best combination of Vφ and Tφ to obtain the elimination of the target bacterium from a system. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: One bacterium, one phage Alternate Protocol 1: One bacterium, one phage (wrapping function) Alternate Protocol 2: One bacterium, one phage (wrapping function, alternative growing model) Basic Protocol 2: Two bacteria, one phage Alternate Protocol 3: Two bacteria, one phage (launch from terminal).
Collapse
Affiliation(s)
- Steffen Plunder
- Department of Mathematics, University of Vienna, Vienna, Austria
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Ludwig E Hoelzle
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
10
|
Nasr-Eldin MA, Gamal E, Hazza M, Abo-Elmaaty SA. Isolation, characterization, and application of lytic bacteriophages for controlling Enterobacter cloacae complex (ECC) in pasteurized milk and yogurt. Folia Microbiol (Praha) 2023; 68:911-924. [PMID: 37184760 PMCID: PMC10689537 DOI: 10.1007/s12223-023-01059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Reducing bacterial pathogen contamination not only improves overall global public health but also diminishes food waste and loss. The use of lytic bacteriophages (phages) that infect and kill bacteria could be a beneficial tool for suppressing bacterial growth during dairy products storage time. Four Enterobacter cloacae (E. cloacae) complex isolates which were previously isolated from contaminated dairy products were used to identify lytic phages in wastewater. Phages specific to multi-drug resistant (MDR) E. cloacae complex 6AS1 were isolated from local sewage. Two novel phages vB_EclM-EP1 and vB_EclM-EP2 were identified as myoviral particles and have double-stranded DNA genome. Their host range and lytic capabilities were detected using spot test and efficiency of plating (EOP) against several bacterial isolates. The phages had a latent period of 30 min, and a large burst size of about 100 and 142 PFU/cell for vB_EclM-EP1 and vB_EclM-EP2, respectively. Both phages were viable at pH ranging 5-9 and stable at 70 °C for 60 min. The individual phages and their cocktail preparations (vB_EclM-EP1 and vB_EclM-EP2) reduced and inhibited the growth of E. cloacae complex 6AS1 during challenge test in milk and yogurt samples. These results indicate that the E. cloacae complex-specific phages (vB_EclM-EP1 and vB_EclM-EP2) have a potential application as microbicidal agents in packaged milk and milk derivatives during storage time. In addition, our environment is a rich sources of lytic phages which have potential use in eliminating multidrug-resistant isolates in food industry as well as in biocontrol.
Collapse
Affiliation(s)
- Mohamed A Nasr-Eldin
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt.
| | - Eman Gamal
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Mahmoud Hazza
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Sabah A Abo-Elmaaty
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt
| |
Collapse
|
11
|
Imm S, Chang Y. Evaluation of the biocontrol potential of a collagen peptide/trehalose-based Cronobacter sakazakii phage powder in rehydrated powdered infant formula. Food Res Int 2023; 173:113257. [PMID: 37803569 DOI: 10.1016/j.foodres.2023.113257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 10/08/2023]
Abstract
Cronobacter sakazakii is a major foodborne pathogen that is mainly transmitted through powdered infant formula (PIF) and has a high mortality rate of up to 80%, particularly in fetuses and neonates. Bacteriophages have emerged as an effective biocontrol agent for antibiotic-resistant bacteria. In this study, lytic phage SG01 was newly characterized and loaded into collagen peptide/trehalose-based powders to develop an antibacterial agent against C. sakazakii contamination in PIF. The phage belongs to the Siphoviridae family, has an icosahedral head and a flexible tail, and showed rapid and persistent antibacterial activity up to 17 h. It was specifically active against C. sakazakii and also exhibited effective anti-biofilm properties. The phage was freeze-dried to a collagen peptide/trehalose-based powder and the phage was tested for viability, storage stability, and antibacterial activity. The optimal composition was 5% (w/v) collagen peptides and 1% (w/v) trehalose, which demonstrated the highest phage viability after freeze-drying. The phage remained stable in the collagen peptide/trehalose-based powder for up to four weeks at 4 °C and 25 °C, indicating that this is a desirable formulation for phage protection. Furthermore, the phage powder showed significant antibacterial efficacy in PIF, with a 4-log CFU/mL reduction within 6 h. Overall, the tested phage powder has the potential to be used as an antimicrobial agent in the food industry, particularly in powdered foods such as PIF.
Collapse
Affiliation(s)
- Seulgi Imm
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
12
|
Shymialevich D, Wójcicki M, Świder O, Średnicka P, Sokołowska B. Characterization and Genome Study of a Newly Isolated Temperate Phage Belonging to a New Genus Targeting Alicyclobacillus acidoterrestris. Genes (Basel) 2023; 14:1303. [PMID: 37372483 PMCID: PMC10297869 DOI: 10.3390/genes14061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The spoilage of juices by Alicyclobacillus spp. remains a serious problem in industry and leads to economic losses. Compounds such as guaiacol and halophenols, which are produced by Alicyclobacillus, create undesirable flavors and odors and, thus, decrease the quality of juices. The inactivation of Alicyclobacillus spp. constitutes a challenge because it is resistant to environmental factors, such as high temperatures, and active acidity. However, the use of bacteriophages seems to be a promising approach. In this study, we aimed to isolate and comprehensively characterize a novel bacteriophage targeting Alicyclobacillus spp. The Alicyclobacillus phage strain KKP 3916 was isolated from orchard soil against the Alicyclobacillus acidoterrestris strain KKP 3133. The bacterial host's range and the effect of phage addition at different rates of multiplicity of infections (MOIs) on the host's growth kinetics were determined using a Bioscreen C Pro growth analyzer. The Alicyclobacillus phage strain KKP 3916, retained its activity in a wide range of temperatures (from 4 °C to 30 °C) and active acidity values (pH from 3 to 11). At 70 °C, the activity of the phage decreased by 99.9%. In turn, at 80 °C, no activity against the bacterial host was observed. Thirty minutes of exposure to UV reduced the activity of the phages by almost 99.99%. Based on transmission-electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the Alicyclobacillus phage strain KKP 3916 was classified as a tailed bacteriophage. The genomic sequencing revealed that the newly isolated phage had linear double-stranded DNA (dsDNA) with sizes of 120 bp and 131 bp and 40.3% G+C content. Of the 204 predicted proteins, 134 were of unknown function, while the remainder were annotated as structural, replication, and lysis proteins. No genes associated with antibiotic resistance were found in the genome of the newly isolated phage. However, several regions, including four associated with integration into the bacterial host genome and excisionase, were identified, which indicates the temperate (lysogenic) life cycle of the bacteriophage. Due to the risk of its potential involvement in horizontal gene transfer, this phage is not an appropriate candidate for further research on its use in food biocontrol. To the best of our knowledge, this is the first article on the isolation and whole-genome analysis of the Alicyclobacillus-specific phage.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (P.Ś.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (P.Ś.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| |
Collapse
|
13
|
Tang YJ, Yuan L, Chen CW, Tang AQ, Zhou WY, Yang ZQ. Isolation and characterization of the new isolated bacteriophage YZU-L1 against Citrobacter freundii from a package-swelling of meat product. Microb Pathog 2023; 179:106098. [PMID: 37028686 DOI: 10.1016/j.micpath.2023.106098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Citrobacter freundii is an important foodborne pathogen that can cause urethritis, bacteremia, necrotizing abscess, and meningitis in infants. In this study, a gas-producing isolate from vacuum-packed meat products was identified as C. freundii by 16S rDNA. In addition, a new virulent phage YZU-L1, which could specifically lyse C. freundii, was isolated from sewage samples in Yangzhou. Transmission electron microscopy showed that phage YZU-L1 had a polyhedral head of 73.51 nm in diameter and a long tail of 161.15 nm in length. According to phylogenetic analysis employing the terminase large subunit, phage YZU-L1 belonged to the Demerecviridae family and the Markadamsvirinae subfamily. The burst size was 96 PFU/cell after 30 min of latent period and 90 min of rising period. Phage YZU-L1 could maintain high activity at pH of 4-13, and resist 50 °C for up to 60 min. The complete genome of YZU-L1 was 115,014 bp double-stranded DNA with 39.94% G + C content, encoding 164 open reading frames (ORFs), without genes encoding for virulence, antibiotic resistance, or lysogenicity. Phage YZU-L1 treatment significantly reduced the viable bacterial count of C. freundii in a sterile fish juice model, which is expected to be a natural agent for the biocontrol of C. freundii in foods.
Collapse
|
14
|
Elbehiry A, Abalkhail A, Marzouk E, Elmanssury AE, Almuzaini AM, Alfheeaid H, Alshahrani MT, Huraysh N, Ibrahem M, Alzaben F, Alanazi F, Alzaben M, Anagreyyah SA, Bayameen AM, Draz A, Abu-Okail A. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines (Basel) 2023; 11:vaccines11040725. [PMID: 37112637 PMCID: PMC10143666 DOI: 10.3390/vaccines11040725] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogens found in food are believed to be the leading cause of foodborne illnesses; and they are considered a serious problem with global ramifications. During the last few decades, a lot of attention has been paid to determining the microorganisms that cause foodborne illnesses and developing new methods to identify them. Foodborne pathogen identification technologies have evolved rapidly over the last few decades, with the newer technologies focusing on immunoassays, genome-wide approaches, biosensors, and mass spectrometry as the primary methods of identification. Bacteriophages (phages), probiotics and prebiotics were known to have the ability to combat bacterial diseases since the turn of the 20th century. A primary focus of phage use was the development of medical therapies; however, its use quickly expanded to other applications in biotechnology and industry. A similar argument can be made with regards to the food safety industry, as diseases directly endanger the health of customers. Recently, a lot of attention has been paid to bacteriophages, probiotics and prebiotics most likely due to the exhaustion of traditional antibiotics. Reviewing a variety of current quick identification techniques is the purpose of this study. Using these techniques, we are able to quickly identify foodborne pathogenic bacteria, which forms the basis for future research advances. A review of recent studies on the use of phages, probiotics and prebiotics as a means of combating significant foodborne diseases is also presented. Furthermore, we discussed the advantages of using phages as well as the challenges they face, especially given their prevalent application in food safety.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
- Correspondence:
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Ahmed Elnadif Elmanssury
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Human Nutrition, School of Medicine, Nursing and Dentistry, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK
| | - Mohammed T. Alshahrani
- Department of Neurology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia
| | - Nasser Huraysh
- Department of Family Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Farhan Alanazi
- Supply Administration, Armed Forces Hospital, King Abdul Aziz Naval Base in Jubail, Jubail 35517, Saudi Arabia
| | - Mohammed Alzaben
- Department of Food Factories Inspection, Operation Sector, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | | | | | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
15
|
Paramithiotis S. Molecular Targets for Foodborne Pathogenic Bacteria Detection. Pathogens 2023; 12:pathogens12010104. [PMID: 36678453 PMCID: PMC9865778 DOI: 10.3390/pathogens12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The detection of foodborne pathogenic bacteria currently relies on their ability to grow on chemically defined liquid and solid media, which is the essence of the classical microbiological approach. Such procedures are time-consuming and the quality of the result is affected by the selectivity of the media employed. Several alternative strategies based on the detection of molecular markers have been proposed. These markers may be cell constituents, may reside on the cell envelope or may be specific metabolites. Each marker provides specific advantages and, at the same time, suffers from specific limitations. The food matrix and chemical composition, as well as the accompanying microbiota, may also severely compromise detection. The aim of the present review article is to present and critically discuss all available information regarding the molecular targets that have been employed as markers for the detection of foodborne pathogens. Their strengths and limitations, as well as the proposed alleviation strategies, are presented, with particular emphasis on their applicability in real food systems and the challenges that are yet to be effectively addressed.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
16
|
Hyla K, Dusza I, Skaradzińska A. Recent Advances in the Application of Bacteriophages against Common Foodborne Pathogens. Antibiotics (Basel) 2022; 11:1536. [PMID: 36358191 PMCID: PMC9686946 DOI: 10.3390/antibiotics11111536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 02/13/2024] Open
Abstract
Bacteriophage potential in combating bacterial pathogens has been recognized nearly since the moment of discovery of these viruses at the beginning of the 20th century. Interest in phage application, which initially focused on medical treatments, rapidly spread throughout different biotechnological and industrial fields. This includes the food safety sector in which the presence of pathogens poses an explicit threat to consumers. This is also the field in which commercialization of phage-based products shows the greatest progress. Application of bacteriophages has gained special attention particularly in recent years, presumably due to the potential of conventional antibacterial strategies being exhausted. In this review, we present recent findings regarding phage application in fighting major foodborne pathogens, including Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter jejuni and Listeria monocytogenes. We also discuss advantages of bacteriophage use and challenges facing phage-based antibacterial strategies, particularly in the context of their widespread application in food safety.
Collapse
Affiliation(s)
| | | | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| |
Collapse
|
17
|
Plunder S, Burkard M, Lauer UM, Venturelli S, Marongiu L. Determination of phage load and administration time in simulated occurrences of antibacterial treatments. Front Med (Lausanne) 2022; 9:1040457. [PMID: 36388928 PMCID: PMC9650209 DOI: 10.3389/fmed.2022.1040457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/13/2022] [Indexed: 03/19/2024] Open
Abstract
The use of phages as antibacterials is becoming more and more common in Western countries. However, a successful phage-derived antibacterial treatment needs to account for additional features such as the loss of infective virions and the multiplication of the hosts. The parameters critical inoculation size (V F ) and failure threshold time (T F ) have been introduced to assure that the viral dose (V ϕ) and administration time (T ϕ) would lead to the extinction of the targeted bacteria. The problem with the definition of V F and T F is that they are non-linear equations with two unknowns; thus, obtaining their explicit values is cumbersome and not unique. The current study used machine learning to determine V F and T F for an effective antibacterial treatment. Within these ranges, a Pareto optimal solution of a multi-criterial optimization problem (MCOP) provided a pair of V ϕ and T ϕ to facilitate the user's work. The algorithm was tested on a series of in silico microbial consortia that described the outgrowth of a species at high cell density by another species initially present at low concentration. The results demonstrated that the MCOP-derived pairs of V ϕ and T ϕ could effectively wipe out the bacterial target within the context of the simulation. The present study also introduced the concept of mediated phage therapy, where targeting booster bacteria might decrease the virulence of a pathogen immune to phagial infection and highlighted the importance of microbial competition in attaining a successful antibacterial treatment. In summary, the present work developed a novel method for investigating phage/bacteria interactions that can help increase the effectiveness of the application of phages as antibacterials and ease the work of microbiologists.
Collapse
Affiliation(s)
- Steffen Plunder
- Department of Mathematics, University of Vienna, Vienna, Austria
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tübingen, Tübingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|