1
|
Jain K, Panigrahi M, Nayak SS, Rajawat D, Sharma A, Sahoo SP, Bhushan B, Dutt T. The evolution of contemporary livestock species: Insights from mitochondrial genome. Gene 2024; 927:148728. [PMID: 38944163 DOI: 10.1016/j.gene.2024.148728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The domestication of animals marks a pivotal moment in human history, profoundly influencing our demographic and cultural progress. This process has led to significant genetic, behavioral, and physical changes in livestock species compared to their wild ancestors. Understanding the evolutionary history and genetic diversity of livestock species is crucial, and mitochondrial DNA (mtDNA) has emerged as a robust marker for investigating molecular diversity in animals. Its highly conserved gene content across animal species, minimal duplications, absence of introns, and short intergenic regions make mtDNA analysis ideal for such studies. Mitochondrial DNA analysis has uncovered distinct cattle domestication events dating back to 8000 years BC in Southwestern Asia. The sequencing of water buffalo mtDNA in 2004 provided important insights into their domestication history. Caprine mtDNA analysis identified three haplogroups, indicating varied maternal origins. Sheep, domesticated 12,000 years ago, exhibit diverse mtDNA lineages, suggesting multiple domestication events. Ovine mtDNA studies revealed clades A, B, C, and a fourth lineage, group D. The origins of domestic pigs were traced to separate European and Asian events followed by interbreeding. In camels, mtDNA elucidated the phylogeographic structure and genetic differentiation between wild and domesticated species. Horses, domesticated around 3500 BC, show significant mtDNA variability, highlighting their diverse origins. Yaks exhibit unique adaptations for high-altitude environments, with mtDNA analysis providing insights into their adaptation. Chicken mtDNA studies supported a monophyletic origin from Southeast Asia's red jungle fowl, with evidence of multiple origins. This review explores livestock evolution and diversity through mtDNA studies, focusing on cattle, water buffalo, goat, sheep, pig, camel, horse, yak and chicken. It highlights mtDNA's significance in unraveling maternal lineages, genetic diversity, and domestication histories, concluding with insights into its potential application in improving livestock production and reproduction dynamics.
Collapse
Affiliation(s)
- Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | | | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
2
|
Raja TV, Alex R, Singh U, Kumar S, Das AK, Sengar G, Singh AK. Genome wide mining of SNPs and INDELs through ddRAD sequencing in Sahiwal cattle. Anim Biotechnol 2023; 34:4885-4899. [PMID: 37093232 DOI: 10.1080/10495398.2023.2200517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The study was conducted in Sahiwal cattle for genome wide identification and annotation of single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) in Sahiwal cattle. The double digest restriction-site associated DNA (ddRAD) sequencing, a reduced representation method was used for the identification of variants at nucleotide level. A total of 1,615,211 variants were identified at RD10 and Q30 consisting of 1,480,930 SNPs and 134,281 INDELs with respect to the Bos taurus reference genome. The SNPs were annotated for their location, impact and functional class. The SNPs identified in Sahiwal cattle were found to be associated with a total of 26,229 genes. A total of 1819 SNPs were annotated for 209 candidate genes associated with different production and reproduction traits. The variants identified in the present study may be useful to strengthen the existing bovine SNP chips for reducing the biasness over the taurine cattle breeds. The diversity analysis provides the insight of the genetic architecture of the Sahiwal population Studied. The large genetic variations identified at the nucleotide level provide ample scope for implementing an effective and efficient breed improvement programme for increasing the productivity of Sahiwal cattle.
Collapse
Affiliation(s)
- Thiruvothur Venkatesan Raja
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| | - Rani Alex
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Umesh Singh
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| | - Achintya Kumar Das
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| | - Gyanendra Sengar
- National Research Centre on Pigs, Rani (Near Airport), Guwahati, Assam, India
| | - Amit Kumar Singh
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut Cantt, Uttar Pradesh, India
| |
Collapse
|
3
|
Singh KV, Das R, Sodhi M, Kataria RS. Genetic characterization and diversity assessment in 'Bhangor' indigenous swamp buffalo population using heterologous microsatellite markers. Anim Biotechnol 2023; 34:4380-4386. [PMID: 36519776 DOI: 10.1080/10495398.2022.2154220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
'Bhangor' newly identified swamp buffalo population from North East Indian, was characterized using microsatellite markers. Genomic DNA was isolated from blood samples of 76 unrelated animals, 15 microsatellite markers (CSSM33, BM1818, CSRM60, HEL13, ILSTS019, ILSTS025, ILSTS028, ILSTS029, ILSTS033, ILSTS036, ILSTS056, ILSTS058, ILSTS061, ILSTS089 and ETH003) were found to be highly polymorphic in the population of the selected markers. A total of 114 alleles were observed, which ranged from 3 in CSRM60 and ILSTS025 locus to 12 in ILSTS056 and ILSTS061. The mean effective number of alleles across all polymorphic loci was found to be 3.76. The overall mean expected heterozygosity and unbiased expected heterozygosity values were 0.67 and 0.68, ranging from 0.067 (ILSTS025) to 0.85 (ILSTS058) and 0.068 (ILSTS025) to 0.86 (ILSTS058), respectively. Within the population, the inbreeding estimates (FIS) ranged between -0.4352 and 0.804, with an average FIS of 0.114 ± 0.033. The outcome for infinite allele model (IAM), two-phase model (TPM) and test for mode shift revealed the absence of any recent bottleneck in the investigated buffalo population. The population was found to be in optimum diversity based on polymorphic microsatellite markers. With fast changing agro-climatic conditions; there is an urgent need to characterize the nondescript livestock populations.
Collapse
Affiliation(s)
- Karan Veer Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ramendra Das
- Animal Resources Development Department, Tripura Livestock Development Agency (TLDA), Agartala, Tripura, India
| | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - R S Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
4
|
Raja TV, Alex R, Singh U, Kumar S, Das AK, Sengar G, Singh AK, Ghosh A, Saha S, Mitra A. Genome-wide identification and annotation of SNPs for economically important traits in Frieswal™, newly evolved crossbred cattle of India. 3 Biotech 2023; 13:310. [PMID: 37621321 PMCID: PMC10444711 DOI: 10.1007/s13205-023-03701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/26/2023] [Indexed: 08/26/2023] Open
Abstract
The Frieswal™ is a crossbred cattle evolved by ICAR-Central Institute for Research on Cattle utilizing more than 15,000 cattle maintained at more than 37 military farms spread all over the agro-climatic regions of the country. The ddRAD sequencing method was used to identify and annotate the SNPs and INDELs. The results of variant calling revealed 1,487,851 SNPs and 128,175 INDELs at a read depth of 10. A total of 3,775,079 effects were identified, and majority (66.41%) of the effects were in the intron region of the genome followed by intergenic (21.87%). Majority (99.18%) of the variants had the modifier effect. The results revealed a higher magnitude of transitions as compared to the transversion. The classification of SNPs by functional class revealed a majority of missense (43%) and silent (56%) effects. Out of 26,278 genes identified, 1841 SNPs were annotated in 207 candidate genes responsible for various milk production and reproduction traits. The observed heterozygosity was 0.2804 against the expected heterozygosity value of 0.2978. The overall average inbreeding coefficient (FIS) was 0.0604. The pathway analysis revealed that the prolactin signaling pathway (GO:0038161) was significant biological process complete for both milk production and reproduction traits. The SNP variations can be effectively used as markers for early and accurate identification of the QTLs and for formulating an efficient and effective breed improvement program in Frieswal™ cattle. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03701-0.
Collapse
Affiliation(s)
- Thiruvothur Venkatesan Raja
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh 650 001 India
| | - Rani Alex
- National Dairy Research Institute, Karnal, Haryana India
| | - Umesh Singh
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh 650 001 India
| | - Sushil Kumar
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh 650 001 India
| | - Achintya Kumar Das
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh 650 001 India
| | - Gyanendra Sengar
- National Research Centre on Pigs, Rani (Near Airport), Guwahati, Assam 781 131 India
| | - Amit Kumar Singh
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh 650 001 India
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Unified Campus Salt Lake, College More, EN Block, Sector V, Kolkata, West Bengal 700091 India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Unified Campus Salt Lake, College More, EN Block, Sector V, Kolkata, West Bengal 700091 India
| | - Abhijit Mitra
- Molecular Genetics Laboratory, Cattle Genetics and Breeding Division, ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh 650 001 India
- Present Address: Animal Husbandry Commissioner, Department of Animal Husbandry and Dairying, Government of India, New Delhi, India
| |
Collapse
|
5
|
Vipin, Sharma V, Sharma CP, Goyal SP, Stevens H, Gupta SK. A pioneering method to identify bovine horn trophy: a combined morphometric and DNA-based approach in wildlife forensics. FORENSIC SCIENCE INTERNATIONAL: ANIMALS AND ENVIRONMENTS 2022. [DOI: 10.1016/j.fsiae.2022.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Joshi P, Gowane GR, Alex R, Gupta ID, Worku D, George L, Ranjan A, Verma A. Estimation of genetic parameters of growth traits for direct and maternal effects in Murrah buffalo. Trop Anim Health Prod 2022; 54:352. [PMID: 36261674 DOI: 10.1007/s11250-022-03343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
Abstract
An understanding of genetic principles and environmental factors affecting the growth traits is essential to implement optimal breeding and selection programs. Early growth is an indicator of future success in production and reproduction status of dairy animals. In this study, a total of 18,989 records of body weight were used to estimate genetic parameters of body weight at birth (BW), 3 months (3BW), 6 months (6BW), 9 months (9BW),12 months (12BW), 18 months (18BW), 24 months (24 BW), 30 months (3BW), and 36 months (36BW) in Murrah buffalo at ICAR-NDRI Karnal, Haryana, for the period 1974-2019. The genetic parameters were estimated using the average information restricted maximum likelihood (AIREML) procedure by excluding or including maternal effects. Six analytical models were fitted in order to optimize the model for each trait. The most appropriate univariate model was selected based on the log likelihood ratio test (LRT). Influencing factors like calf sex, period of birth, season of birth, and dam's parity were investigated. The results showed that the maternal genetic effects, in addition to direct additive effects, were important for unbiased and accurate genetic parameter estimates of growth traits in Murrah buffaloes. Total heritability estimates h2T1 for BW, 3BW, 6BW, 9BW, 12BW, 18BW, 24BW, 30BW, and 36BW were 0.25, 0.04, 0.14, 0.16, 0.10, 0.15, 0.21, 0.24, and 0.23, respectively. Maternal effect was significant for birth weight and accounted for 13% variation through maternal genetic and 5% variability through maternal permanent environmental effect. Maternal genetic effect was also important for other traits. However, it interfered with the estimates of variance ratios in live weight traits owing to large and negative covariance between direct and maternal genetic effects. Direct genetic correlations between body weight traits were positive and high ranging from 0.10 to 0.94. Results revealed that the Murrah herd has a sizable genetic variability for growth traits and hence, there is sufficient scope for selection for achieving better growth rate if selection in this direction is applied. Owing to higher positive genetic correlation of 6BW with later ages, the scope of indirect selection for optimum growth in later ages can be aimed at by selecting animals for their higher 6-month live weight.
Collapse
Affiliation(s)
- Pooja Joshi
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - G R Gowane
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Rani Alex
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - I D Gupta
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Destaw Worku
- Department of Animal Science, Salale University, Salale, Ethiopia
| | - Linda George
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Ashish Ranjan
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Archana Verma
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
7
|
Kumar SL, Singh R, Gurao A, Mishra SK, Kumar P, Vohra V, Niranjan SK, Sodhi M, Dash SK, Sarangdhar S, Mukesh M, Kataria RS. Genetic admixture and population structure analysis of Indian water buffaloes (Bubalus bubalis) using STR markers. Mol Biol Rep 2022; 49:6029-6040. [DOI: 10.1007/s11033-022-07389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
|
8
|
Singh R, Mishra SK, Gurao A, Niranjan SK, Vohra V, Dash SK, Mukesh M, Rajesh C, Kataria RS. Current status and unique attributes of Indian Chilika buffalo for adaptation to brackish water ecology. Trop Anim Health Prod 2021; 53:544. [PMID: 34775521 DOI: 10.1007/s11250-021-02973-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022]
Abstract
Chilika buffalo is native to the Eastern coast of India and well adapted to the largest coastal brackish water lagoon of Asia, Chilika Lake. We present here a report on the Chilika buffalo breed emphasizing the conservational urgency based on unique biochemical and molecular evidence related to liver and kidney functions while comparing it with tropically adapted other water buffalo breeds (Bubalus bubalis) of India. It is found that the Chilika buffalo breed has a better ability to withstand a long dehydration period as evident from its better glomerular filtration and higher expression of the ion transport channel. Mitochondrial D-loop sequencing results have shown these buffaloes being closer to swamp-type buffaloes of Bangladesh and northeast India and represent a unique "hybrid zone" on the eastern coast of India. Conservation of such uniquely adapted germplasm is crucial owing to the current global trend, where the introduction of exotic breeds has negatively impact "sui-generis" germplasm and they require higher managerial resource consumption for maintaining higher productivity. Further, the introduction of unconventional fisheries activities has proved detrimental to the lagoon ecosystem, potentially causing more threat to the buffalo's population.
Collapse
Affiliation(s)
- Ravinder Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.,Department of Biotechnology, SGGSWU, Fatehgarh Sahib, 140407, Punjab, India
| | | | - Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Saket Kumar Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Vikas Vohra
- Division of Animal Genetics and Breeding, ICAR National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - S K Dash
- Department of Animal Breeding and Genetics, OUAT, Bhubaneshwar, 751003, Odisha, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - C Rajesh
- Department of Biotechnology, SGGSWU, Fatehgarh Sahib, 140407, Punjab, India
| | - Ranjit Singh Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| |
Collapse
|
9
|
Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals (Basel) 2021; 11:904. [PMID: 33809937 PMCID: PMC8004149 DOI: 10.3390/ani11030904] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| |
Collapse
|
10
|
Sun T, Wang S, Hanif Q, Chen N, Chen H, Lei C. Genetic diversity of mitochondrial cytochrome b gene in swamp buffalo. Anim Genet 2020; 51:977-981. [PMID: 32910515 DOI: 10.1111/age.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/12/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
The swamp buffalo (Bubalus carabanensis) is mainly bred for meat, transport and rice cultivation in China and Southeast Asian countries. In the current study, we investigated the genetic diversity, maternal origin and phylogenetic relationship of swamp buffalo by analyzing 1,786 mitochondrial cytochrome b (cytb) sequences from China, Vietnam, Laos, Thailand, India and Bangladesh. Our results indicated that the swamp buffalo can be divided into two major lineages (SA and SB with the sublineages) and three rare lineages (SC, SD and SE), which showed strong geographic differentiation. The SA1 lineage represented a major domestication event, which involved population expansion. Regions III and V showed higher haplotype diversity than the other regions, indicating that the regions of Southwest China and IndoChina are potential domestication centers for the swamp buffalo. In addition, the swamp buffalo showed a closer phylogenetic relationship to tamaraw. In conclusion, our findings revealed a high level of genetic diversity and the phylogenetic pattern of the swamp buffalo.
Collapse
Affiliation(s)
- T Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - S Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Q Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 577, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - N Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - H Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - C Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
Mishra SK, Niranjan SK, Singh R, Kumar P, Kumar SL, Banerjee B, Kataria RS. Diversity analysis at MHC class II DQA locus in buffalo (Bubalus bubalis) indicates extensive duplication and trans-species evolution. Genomics 2020; 112:4417-4426. [PMID: 32738270 DOI: 10.1016/j.ygeno.2020.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
Variation at MHC Class II-DQA locus in riverine and swamp buffaloes (Bubu) has been explored in this study. Through sequencing of buffalo DQA, 48 nucleotide variants identified from 17 individuals, reporting 42 novel alleles, including one pseudogene. Individual animal displayed two to seven variants, suggesting the presence of more than two Bubu-DQA loci, as an evidence of extensive duplication. dN values were found to be higher than dS values at peptide binding sites, separately for riverine and swamp buffaloes, indicating locus being under positive selection. Evolutionary analysis revealed numerous trans-species polymorphism with alleles from water buffalo assigned to at least three different loci (Bubu-DQA1, DQA2, DQA3). Alleles of both the sub-species intermixed within the cluster, showing convergent evolution of MHC alleles in bovines. The results thus suggest that both riverine and swamp buffaloes share con-current arrangement of DQA region, comparable to cattle in terms of copy number and population polymorphism.
Collapse
Affiliation(s)
- Shailendra Kumar Mishra
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India; School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Saket Kumar Niranjan
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India.
| | - Ravinder Singh
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India
| | - Prem Kumar
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India
| | - S Lava Kumar
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India
| | - Bhaswati Banerjee
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201310, India
| | - Ranjit Singh Kataria
- ICAR-National Bureau of Animal Genetic Resources, GT Road By-Pass, Karnal, 132 001, Haryana, India.
| |
Collapse
|
12
|
Singh R, Lava Kumar S, Mishra SK, Gurao A, Niranjan SK, Vohra V, Dash SK, Rajesh C, Kataria RS. Mitochondrial sequence-based evolutionary analysis of riverine-swamp hybrid buffaloes of India indicates novel maternal differentiation and domestication patterns. Anim Genet 2020; 51:476-482. [PMID: 32281135 DOI: 10.1111/age.12938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2020] [Indexed: 11/29/2022]
Abstract
In this study, mitochondrial D-loop sequence data on riverine, swamp and hybrid buffaloes from India have been generated and compared with other reported Indian riverine, Chinese and Bangladeshi swamp buffalo populations. Sequence analysis revealed the presence of 132 haplotypes, with a haplotype diversity of 0.9611 ± 0.0045 and a nucleotide diversity of 0.04801 ± 0.00126. For the first time, the existence of riverine-swamp hybrids among the Indian Chilika buffalo population has been recorded, having 49 chromosomes, which was also confirmed by mitochondrial haplotype sharing between Chilika and Indian swamp as well as Chinese swamp buffalo populations in the network analysis. Phylogenetic analysis documents the sharing of reported pre-domestication haplogroups 'SA1', 'SA2', 'SA3' and 'SB1' between the Chilika and swamp buffalo populations of India, China and Bangladesh, an indication of the migration of swamp buffaloes towards Bangladesh and adjoining lower parts of India and north towards Chinese domestication sites. The results have also been supplemented by multidimension scaling, grouping Indian and Chinese swamp buffaloes more closely together with Bangladeshi buffaloes, but into a separate quadrant, whereas Chilika grouped away from other riverine as well as swamp buffaloes. These findings thus confirm the previous reports that the northeast region of India, close to the Indo-China border, is the point of evolution of swamp buffaloes with multiple sites of domestication.
Collapse
Affiliation(s)
- R Singh
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Department of Biotechnology, SGGSWU, Fatehgarh Sahib, Punjab, 140407, India
| | - S Lava Kumar
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - S K Mishra
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - A Gurao
- Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Sciences, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan, 334001, India
| | - S K Niranjan
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - V Vohra
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - S K Dash
- Department of Animal Breeding and Genetics, OUAT, Bhubaneshwar, Odisha, 751003, India
| | - C Rajesh
- Department of Biotechnology, SGGSWU, Fatehgarh Sahib, Punjab, 140407, India
| | - R S Kataria
- ICAR - National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| |
Collapse
|
13
|
Lu XR, Duan AQ, Li WQ, Abdel-Shafy H, Rushdi HE, Liang SS, Ma XY, Liang XW, Deng TX. Genome-wide analysis reveals genetic diversity, linkage disequilibrium, and selection for milk production traits in Chinese buffalo breeds. J Dairy Sci 2020; 103:4545-4556. [PMID: 32147265 DOI: 10.3168/jds.2019-17364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/13/2020] [Indexed: 11/19/2022]
Abstract
The water buffalo is an important dual-purpose livestock that is widespread throughout central and southern China. However, there has been no characterization of the population genetics of Chinese buffalo. Using an Axiom buffalo genotyping array (Thermo Fisher Scientific, Wilmington, DE), we analyzed the genetic diversity, linkage disequilibrium pattern, and signature of selection in 176 Chinese buffaloes from 13 breeds. A total of 35,547 SNP passed quality control and were used for further analyses. Population genetic analysis revealed a clear separation between swamp and river types. Ten Chinese indigenous breeds were clustered into the swamp group, the Murrah and Nili-Ravi breeds were clustered into the river group, and the crossbred breed was closer to the river group. Genetic diversity analysis showed that the swamp group had a lower average expected heterozygosity. Linkage disequilibrium decay distance was much shorter in the swamp group compared with the river group, with an average square of correlation coefficient value of 0.2 of approximately 50 kb. Analysis of runs of homozygosity indicated extensive remote and recent inbreeding within swamp and river groups, respectively. Moreover, one genomic region under selection was detected between the river and swamp groups. Our findings contribute to our understanding of the characterization of population genetics in Chinese buffaloes, which in turn may be used in buffalo breeding programs.
Collapse
Affiliation(s)
- X R Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - A Q Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - W Q Li
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - H Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - H E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - S S Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - X Y Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - X W Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - T X Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| |
Collapse
|
14
|
Zhang Y, Colli L, Barker JSF. Asian water buffalo: domestication, history and genetics. Anim Genet 2020; 51:177-191. [PMID: 31967365 DOI: 10.1111/age.12911] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
The domestic Asian water buffalo (Bubalus bubalis) is found on all five continents, with a global population of some 202 million. The livelihoods of more people depend on this species than on any other domestic animal. The two distinct types (river and swamp) descended from different wild Asian water buffalo (Bubalus arnee) populations that diverged some 900 kyr BP and then evolved in separate geographical regions. After domestication in the western region of the Indian subcontinent (ca. 6300 years BP), the river buffalo spread west as far as Egypt, the Balkans and Italy. Conversely, after domestication in the China/Indochina border region ca. 3000-7000 years BP, swamp buffaloes dispersed through south-east Asia and China as far as the Yangtze River valley. Molecular and morphological evidence indicates that swamp buffalo populations have strong geographic genetic differentiation and a lack of gene flow, but strong phenotypic uniformity. In contrast, river buffalo populations show a weaker phylogeographic structure, but higher phenotypic diversity (i.e. many breeds). The recent availability of a high-quality reference genome and of a medium-density marker panel for genotyping has triggered a number of genome-wide investigations on diversity, evolutionary history, production traits and functional elements. The growing molecular knowledge combined with breeding programmes should pave the way to improvements in production, environmental adaptation and disease resistance in water buffalo populations worldwide.
Collapse
Affiliation(s)
- Y Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding and Reproduction of MOA, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - L Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - J S F Barker
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
15
|
Ravi Kumar D, Joel Devadasan M, Surya T, Vineeth MR, Choudhary A, Sivalingam J, Kataria RS, Niranjan SK, Tantia MS, Verma A. Genomic diversity and selection sweeps identified in Indian swamp buffaloes reveals it's uniqueness with riverine buffaloes. Genomics 2020; 112:2385-2392. [PMID: 31978420 DOI: 10.1016/j.ygeno.2020.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The present investigation was focused to study genomic diversity of Indian swamp buffalo populations through reduced representation approach (ddRAD). The heterozygosity (FST) among the swamp buffaloes was 0.11 between Assam and Manipuri; 0.20 between swamp (Manipuri) and riverine buffaloes; 0.30 between swamp (Manipuri) and cattle. The average observed and expected heterozygosity in swamp buffalo populations was 0.254 and 0.221 respectively. The Inbreeding coefficient (FIS) value was 0.02 among the swamp buffaloes. PCA and structure analysis revealed Manipuri swamp buffalo was genetically distinct and closely related to Nagaland swamp buffalo and least to Assam swamp buffalo. Identification of selective sweeps revealed 1087 regions to have undergone selection related to immune response, adaptation and nervous system. A total of 3451 SSRs were identified in the genome of swamp buffaloes. The study evidenced the genomic diversity in the swamp buffalo populations and its uniqueness in comparison with riverine buffalo and cattle.
Collapse
Affiliation(s)
- D Ravi Kumar
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | | - T Surya
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - M R Vineeth
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | | | | - R S Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - S K Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - M S Tantia
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Archana Verma
- ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
16
|
Sun T, Wang S, Chanthakhoun V, Dang R, Huang Y, Chen H, Lei C. Multiple domestication of swamp buffalo in China and South East Asia. J Anim Breed Genet 2019; 137:331-340. [PMID: 31588618 DOI: 10.1111/jbg.12445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 11/28/2022]
Abstract
The domestication of swamp buffalo (Bubalus bubalis carabanesis) has been discussed for years and still remained unclear. To obtain a better understanding of where, when and how the swamp buffaloes were domesticated, the complete mitochondrial DNA D-loop sequences of 1,788 individuals from China, Vietnam, Laos, Thailand, Burma, Bangladesh and India were investigated. Our results revealed swamp buffalo with abundant genetic diversity. The lineage SA of swamp buffalo may be first domesticated in Lower Yangtze and then migrated following two different routes: one migrated along the Upper Yangtze to Southwest China (L1); the other migrated to Southeast China to Southeast Asia through Guangxi province (L2). During the migration process several later domestication events may be inspired in the Upper Yangtze (SB3), Southwest China and North of Southeast Asia (SB1 and SB2). In this study, we proposed a non-independent multiple domestication pattern in swamp buffalo.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shaoqiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Vongprasith Chanthakhoun
- Department of Animal Science, Faculty of Agriculture and Forest Resource, Souphanouvong University, Luangprabang, Lao People's Democratic Republic
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Sakaguchi K, Maylem ERS, Tilwani RC, Yanagawa Y, Katagiri S, Atabay EC, Atabay EP, Nagano M. Effects of follicle-stimulating hormone followed by gonadotropin-releasing hormone on embryo production by ovum pick-up and in vitro fertilization in the river buffalo (Bubalus bubalis). Anim Sci J 2019; 90:690-695. [PMID: 30854764 PMCID: PMC6593430 DOI: 10.1111/asj.13196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Abstract
In this study, we examined the effects of superstimulation using follicle‐stimulating hormone (FSH) followed by gonadotropin‐releasing hormone (GnRH) on buffalo embryo production by ultrasound‐guided ovum pick‐up (OPU) and in vitro fertilization (IVF). Nine Murrah buffaloes were subjected to OPU‐IVF without superstimulation (control). The morphologies of the oocytes collected were evaluated, and oocytes were then submitted to in vitro maturation (IVM). Two days after OPU, same nine buffaloes were treated with twice‐daily injections of FSH for 3 days for superstimulation followed by a GnRH injection. Oocytes were collected by OPU 23–24 hr after the GnRH injection and submitted to IVM (the superstimulated group). The total number of follicles, number of follicles with a diameter > 8 mm, and number of oocytes surrounded by multi‐layered cumulus cells were higher in the superstimulated group than in the control group (p ≤ 0.05). After IVF, the percentages of cleavage and development to blastocysts were higher in the superstimulated group than in the control group (p < 0.05). In conclusion, superstimulation improved the quality of oocytes and the embryo productivity of OPU‐IVF in river buffaloes.
Collapse
Affiliation(s)
- Kenichiro Sakaguchi
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Excel Rio S Maylem
- Reproductive Biotechnology and Physiology Laboratory, Philippine Carabao Center, National Headquarters, Science City of Munoz, Nueva Ecija, Philippines
| | - Ramesh C Tilwani
- Reproductive Biotechnology and Physiology Laboratory, Philippine Carabao Center, National Headquarters, Science City of Munoz, Nueva Ecija, Philippines
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Edwin C Atabay
- Reproductive Biotechnology and Physiology Laboratory, Philippine Carabao Center, National Headquarters, Science City of Munoz, Nueva Ecija, Philippines
| | - Eufrocina P Atabay
- Reproductive Biotechnology and Physiology Laboratory, Philippine Carabao Center, National Headquarters, Science City of Munoz, Nueva Ecija, Philippines
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Colli L, Milanesi M, Vajana E, Iamartino D, Bomba L, Puglisi F, Del Corvo M, Nicolazzi EL, Ahmed SSE, Herrera JRV, Cruz L, Zhang S, Liang A, Hua G, Yang L, Hao X, Zuo F, Lai SJ, Wang S, Liu R, Gong Y, Mokhber M, Mao Y, Guan F, Vlaic A, Vlaic B, Ramunno L, Cosenza G, Ahmad A, Soysal I, Ünal EÖ, Ketudat-Cairns M, Garcia JF, Utsunomiya YT, Baruselli PS, Amaral MEJ, Parnpai R, Drummond MG, Galbusera P, Burton J, Hoal E, Yusnizar Y, Sumantri C, Moioli B, Valentini A, Stella A, Williams JL, Ajmone-Marsan P. New Insights on Water Buffalo Genomic Diversity and Post-Domestication Migration Routes From Medium Density SNP Chip Data. Front Genet 2018; 9:53. [PMID: 29552025 PMCID: PMC5841121 DOI: 10.3389/fgene.2018.00053] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/02/2018] [Indexed: 01/14/2023] Open
Abstract
The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-density 90K SNP panel. We estimated the levels of molecular diversity and described population structure, which revealed historical relationships between populations and migration events. Three distinct gene pools were identified in pure river as well as in pure swamp buffalo populations. Genomic admixture was seen in the Philippines and in Brazil, resulting from importations of animals for breed improvement. Our results were largely consistent with previous archeological, historical and molecular-based evidence for two independent domestication events for river- and swamp-type buffaloes, which occurred in the Indo-Pakistani region and close to the China/Indochina border, respectively. Based on a geographical analysis of the distribution of diversity, our evidence also indicated that the water buffalo spread out of the domestication centers followed two major divergent migration directions: river buffaloes migrated west from the Indian sub-continent while swamp buffaloes migrated from northern Indochina via an east-south-eastern route. These data suggest that the current distribution of water buffalo diversity has been shaped by the combined effects of multiple migration events occurred at different stages of the post-domestication history of the species.
Collapse
Affiliation(s)
- Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy.,Centro di Ricerca sulla Biodiversità e sul DNA Antico (BioDNA), Piacenza, Italy
| | - Marco Milanesi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy.,Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil.,International Atomic Energy Agency (IAEA), Colaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Elia Vajana
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Daniela Iamartino
- PTP Science Park, Lodi, Italy.,LGS-AIA Associazione Italiana Allevatori, Cremona, Italy
| | - Lorenzo Bomba
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Francesco Puglisi
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma, Italy
| | - Marcello Del Corvo
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Sahar S E Ahmed
- Cell Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | | | | | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guohua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xingjie Hao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Fuyuan Zuo
- Department of Animal Husbandry, Southwest University, Chongqing, China
| | - Song-Jia Lai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Shuilian Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ruyu Liu
- College of Animal Science, Guizhou University, Guiyang, China
| | | | - Mahdi Mokhber
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, Urmia, Iran
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Feng Guan
- College of Life Science, China Jiliang University, Hangzhou, China
| | - Augustin Vlaic
- Department of Animal Genetics, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania
| | - Bogdan Vlaic
- Department of Animal Genetics, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania
| | - Luigi Ramunno
- Department of Agriculture, University of Naples Federico II, Portici, Italy
| | - Gianfranco Cosenza
- Department of Agriculture, University of Naples Federico II, Portici, Italy
| | - Ali Ahmad
- COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Ihsan Soysal
- Department of Animal Science, Faculty of Agriculture, Namik Kemal University, Tekirdag, Turkey
| | - Emel Ö Ünal
- Department of Animal Science, Faculty of Agriculture, Namik Kemal University, Tekirdag, Turkey
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - José F Garcia
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, Araçatuba, Brazil.,International Atomic Energy Agency (IAEA), Colaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil.,Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp.), São Paulo, Brazil
| | - Yuri T Utsunomiya
- International Atomic Energy Agency (IAEA), Colaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil.,Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp.), São Paulo, Brazil
| | - Pietro S Baruselli
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Maria E J Amaral
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Rangsun Parnpai
- School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Peter Galbusera
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - James Burton
- IUCN SSC Asian Wild Cattle Specialist Group and Chester Zoo, Upton by Chester, United Kingdom.,Royal (Dick) School of Veterinary Studies & The Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Eileen Hoal
- NRF/DST Centre of Excellence for Biomedical TB Research, MRC Centre for TB Research, and Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Yulnawati Yusnizar
- Research Centre for Biotechnology, Indonesian Institute of Sciences, Jalan Raya, Indonesia.,Indonesian Buffalo Conservation and Breeding Centre, Ciapus-Bogor, Indonesia
| | - Cece Sumantri
- Department of Animal Production and Technology, Bogor Agricultural University (IPB), Bogor, Indonesia
| | - Bianca Moioli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Monterotondo, Italy
| | - Alessio Valentini
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, DIBAF, Università della Tuscia, Viterbo, Italy
| | | | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Science, University of Adelaide, Roseworthy, SA, Australia
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy.,Centro di Ricerca sulla Biodiversità e sul DNA Antico (BioDNA), Piacenza, Italy
| |
Collapse
|
19
|
Whole Mitogenomes Reveal the History of Swamp Buffalo: Initially Shaped by Glacial Periods and Eventually Modelled by Domestication. Sci Rep 2017; 7:4708. [PMID: 28680070 PMCID: PMC5498497 DOI: 10.1038/s41598-017-04830-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
The newly sequenced mitochondrial genomes of 107 Asian swamp buffalo (Bubalus bubalis carabensis) allowed the reconstruction of the matrilineal divergence since ~900 Kya. Phylogenetic trees and Bayesian skyline plots suggest a role of the glacial periods in the demographic history of swamp buffalo. The ancestral swamp-buffalo mitogenome is dated ~232 ± 35 Kya. Two major macro-lineages diverged during the 2nd Pleistocene Glacial Period (~200-130 Kya), but most (~99%) of the current matrilines derive from only two ancestors (SA1'2 and SB) that lived around the Last Glacial Maximum (~26-19 Kya). During the late Holocene optimum (11-6 Kya) lineages differentiated further, and at least eight matrilines (SA1, SA2, SB1a, SB1b, SB2a, SB2b, SB3 and SB4) were domesticated around 7-3 Kya. Haplotype distributions support an initial domestication process in Southeast Asia, while subsequent captures of wild females probably introduced some additional rare lineages (SA3, SC, SD and SE). Dispersal of domestic buffaloes created local population bottlenecks and founder events that further differentiated haplogroup distributions. A lack of maternal gene flow between neighboring populations apparently maintained the strong phylogeography of the swamp buffalo matrilines, which is the more remarkable because of an almost complete absence of phenotypic differentiation.
Collapse
|