1
|
Gong Q, LE X, Yu P, Zhuang L. Therapeutic advances in atrial fibrillation based on animal models. J Zhejiang Univ Sci B 2024; 25:135-152. [PMID: 38303497 PMCID: PMC10835209 DOI: 10.1631/jzus.b2300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 02/03/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia among humans, with its incidence increasing significantly with age. Despite the high frequency of AF in clinical practice, its etiology and management remain elusive. To develop effective treatment strategies, it is imperative to comprehend the underlying mechanisms of AF; therefore, the establishment of animal models of AF is vital to explore its pathogenesis. While spontaneous AF is rare in most animal species, several large animal models, particularly those of pigs, dogs, and horses, have proven as invaluable in recent years in advancing our knowledge of AF pathogenesis and developing novel therapeutic options. This review aims to provide a comprehensive discussion of various animal models of AF, with an emphasis on the unique features of each model and its utility in AF research and treatment. The data summarized in this review provide valuable insights into the mechanisms of AF and can be used to evaluate the efficacy and safety of novel therapeutic interventions.
Collapse
Affiliation(s)
- Qian Gong
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuan LE
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
2
|
Buhl R, Hesselkilde EM, Carstensen H, Hopster‐Iversen C, van Loon G, Decloedt A, Van Steenkiste G, Marr C, Reef VB, Schwarzwald CC, Mitchell KJ, Nostell K, Nogradi N, Nielsen SS, Carlson J, Platonov P. Atrial fibrillatory rate as predictor of recurrence of atrial fibrillation in horses treated medically or with electrical cardioversion. Equine Vet J 2022; 54:1013-1022. [PMID: 34957586 PMCID: PMC9787611 DOI: 10.1111/evj.13551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The recurrence rate of atrial fibrillation (AF) in horses after cardioversion to sinus rhythm (SR) is relatively high. Atrial fibrillatory rate (AFR) derived from surface ECG is considered a biomarker for electrical remodelling and could potentially be used for the prediction of successful AF cardioversion and AF recurrence. OBJECTIVES Evaluate if AFR was associated with successful treatment and could predict AF recurrence in horses. STUDY DESIGN Retrospective multicentre study. METHODS Electrocardiograms (ECG) from horses with persistent AF admitted for cardioversion with either medical treatment (quinidine) or transvenous electrical cardioversion (TVEC) were included. Bipolar surface ECG recordings were analysed by spatiotemporal cancellation of QRST complexes and calculation of AFR from the remaining atrial signal. Kaplan-Meier survival curve and Cox regression analyses were performed to assess the relationship between AFR and the risk of AF recurrence. RESULTS Of the 195 horses included, 74 received quinidine treatment and 121 were treated with TVEC. Ten horses did not cardiovert to SR after quinidine treatment and AFR was higher in these, compared with the horses that successfully cardioverted to SR (median [interquartile range]), (383 [367-422] vs 351 [332-389] fibrillations per minute (fpm), P < .01). Within the first 180 days following AF cardioversion, 12% of the quinidine and 34% of TVEC horses had AF recurrence. For the horses successfully cardioverted with TVEC, AFR above 380 fpm was significantly associated with AF recurrence (hazard ratio = 2.4, 95% confidence interval 1.2-4.8, P = .01). MAIN LIMITATIONS The treatment groups were different and not randomly allocated, therefore the two treatments cannot be compared. Medical records and the follow-up strategy varied between the centres. CONCLUSIONS High AFR is associated with failure of quinidine cardioversion and AF recurrence after successful TVEC. As a noninvasive marker that can be retrieved from surface ECG, AFR can be clinically useful in predicting the probability of responding to quinidine treatment as well as maintaining SR after electrical cardioversion.
Collapse
Affiliation(s)
- Rikke Buhl
- Department of Veterinary Clinical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Eva M. Hesselkilde
- Department of Veterinary Clinical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Helena Carstensen
- Department of Veterinary Clinical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Charlotte Hopster‐Iversen
- Department of Veterinary Clinical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Gunther van Loon
- Equine CardioteamDepartment of Large Animal Internal MedicineGhent UniversityMerelbekeBelgium
| | - Annelies Decloedt
- Equine CardioteamDepartment of Large Animal Internal MedicineGhent UniversityMerelbekeBelgium
| | - Glenn Van Steenkiste
- Equine CardioteamDepartment of Large Animal Internal MedicineGhent UniversityMerelbekeBelgium
| | | | - Virginia B. Reef
- Department of Clinical Studies New Bolton CenterUniversity of Pennsylvania School of Veterinary MedicineKennett SquarePennsylvaniaUSA
| | | | | | - Katarina Nostell
- Department of Clinical SciencesFaculty of Veteirnary SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Søren S. Nielsen
- Department of Veterinary SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | | |
Collapse
|
3
|
Premont A, Saadeh K, Edling C, Lewis R, Marr CM, Jeevaratnam K. Cardiac ion channel expression in the equine model - In-silico prediction utilising RNA sequencing data from mixed tissue samples. Physiol Rep 2022; 10:e15273. [PMID: 35880716 PMCID: PMC9316921 DOI: 10.14814/phy2.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023] Open
Abstract
Understanding cardiomyocyte ion channel expression is crucial to understanding normal cardiac electrophysiology and underlying mechanisms of cardiac pathologies particularly arrhythmias. Hitherto, equine cardiac ion channel expression has rarely been investigated. Therefore, we aim to predict equine cardiac ion channel gene expression. Raw RNAseq data from normal horses from 9 datasets was retrieved from ArrayExpress and European Nucleotide Archive and reanalysed. The normalised (FPKM) read counts for a gene in a mix of tissue were hypothesised to be the average of the expected expression in each tissue weighted by the proportion of the tissue in the mix. The cardiac-specific expression was predicted by estimating the mean expression in each other tissues. To evaluate the performance of the model, predicted gene expression values were compared to the human cardiac gene expression. Cardiac-specific expression could be predicted for 91 ion channels including most expressed Na+ channels, K+ channels and Ca2+ -handling proteins. These revealed interesting differences from what would be expected based on human studies. These differences included predominance of NaV 1.4 rather than NaV 1.5 channel, and RYR1, SERCA1 and CASQ1 rather than RYR2, SERCA2, CASQ2 Ca2+ -handling proteins. Differences in channel expression not only implicate potentially different regulatory mechanisms but also pathological mechanisms of arrhythmogenesis.
Collapse
Affiliation(s)
- Antoine Premont
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Khalil Saadeh
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Charlotte Edling
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Rebecca Lewis
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Celia M. Marr
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
- Rossdales Equine Hospital and Diagnostic CentreExningSuffolkUK
| | | |
Collapse
|
4
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
5
|
Premont A, Balthes S, Marr CM, Jeevaratnam K. Fundamentals of arrhythmogenic mechanisms and treatment strategies for equine atrial fibrillation. Equine Vet J 2021; 54:262-282. [PMID: 34564902 DOI: 10.1111/evj.13518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Atrial fibrillation (AF) is the most common pathological arrhythmia in horses. Although it is not usually a life-threatening condition on its own, it can cause poor performance and make the horse unsafe to ride. It is a complex multifactorial disease influenced by both genetic and environmental factors including exercise training, comorbidities or ageing. The interactions between all these factors in horses are still not completely understood and the pathophysiology of AF remains poorly defined. Exciting progress has been recently made in equine cardiac electrophysiology in terms of diagnosis and documentation methods such as cardiac mapping, implantable electrocardiogram (ECG) recording devices or computer-based ECG analysis that will hopefully improve our understanding of this disease. The available pharmaceutical and electrophysiological treatments have good efficacy and lead to a good prognosis for AF, but recurrence is a frequent issue that veterinarians have to face. This review aims to summarise our current understanding of equine cardiac electrophysiology and pathophysiology of equine AF while providing an overview of the mechanism of action for currently available treatments for equine AF.
Collapse
Affiliation(s)
- Antoine Premont
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samantha Balthes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Celia M Marr
- Rossdales Equine Hospital and Diagnostic Centre, Newmarket, UK
| | | |
Collapse
|
6
|
Affiliation(s)
- James A. Reiffel
- Electrophysiology Section, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Saljic A, Jespersen T, Buhl R. Anti-arrhythmic investigations in large animal models of atrial fibrillation. Br J Pharmacol 2021; 179:838-858. [PMID: 33624840 DOI: 10.1111/bph.15417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) constitutes an increasing health problem in the aging population. Animal models reflecting human phenotypes are needed to understand the mechanisms of AF, as well as to test new pharmacological interventions. In recent years, a number of large animal models, primarily pigs, goats, dog and horses have been used in AF research. These animals can to a certain extent recapitulate the human pathophysiological characteristics and serve as valuable tools in investigating new pharmacological interventions for treating AF. This review focuses on anti-arrhythmic investigations in large animals. Initially, spontaneous AF in small and large mammals is discussed. This is followed by a short presentation of frequently used methods for inducing short- and long-term AF. The major focus of the review is on anti-arrhythmic compounds either frequently used in the human clinic (ranolazine, flecainide, vernakalant and amiodarone) or being promising new AF medicine candidates (IK,Ach , ISK,Ca and IK2P blockers).
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
8
|
Vernemmen I, Vera L, Van Steenkiste G, Deserranno B, Muylle S, Decloedt A, van Loon G. Right atrial-related structures in horses of interest during electrophysiological studies. Equine Vet J 2020; 53:1210-1217. [PMID: 33368591 DOI: 10.1111/evj.13413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Arrhythmias are common in horses, but catheter-based minimally invasive electrophysiological studies and therapeutic interventions have been poorly explored in equine medicine, partly due to the lack of detailed anatomical knowledge of the equine heart. OBJECTIVES To describe the dimensions and anatomical features of some electrophysiologically important landmarks of the right atrium in detail and assess their correlation with bodyweight and aortic diameter. STUDY DESIGN Ex vivo cadaveric study. METHODS Twenty-one hearts of Warmblood horses, subjected to euthanasia for noncardiovascular reasons, were examined post-mortem. The dimensions and anatomical features of the coronary sinus, the great cardiac vein and the oval fossa were recorded. Spearman's Rho correlation coefficients were calculated for correlations between the quantitative parameters and bodyweight and aortic diameter. RESULTS Median dimensions for coronary sinus, great cardiac vein and oval fossa were obtained. A Thebesian valve, partially covering the ostium of the coronary sinus, was present in 9 of the 21 hearts. A median of 6.5 (range 4-9) valves were present in the great cardiac vein. Several parameters, among which the dimensions of the oval fossa and the length of the great cardiac vein, were significantly positively correlated with bodyweight and aortic diameter. MAIN LIMITATIONS Measurements do not consider the dynamic changes during the cardiac cycle as measurements were performed ex vivo. All specimens were retrieved from Warmblood horses, therefore measurements might not apply to other breeds. CONCLUSIONS This study delivers a detailed description of important right atrial-related structures, necessary for the development of minimally invasive intracardiac procedures in horses. Adequate imaging techniques will have to be explored in order to guide these procedures.
Collapse
Affiliation(s)
- Ingrid Vernemmen
- Equine Cardioteam Ghent University, Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lisse Vera
- Equine Cardioteam Ghent University, Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Glenn Van Steenkiste
- Equine Cardioteam Ghent University, Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bram Deserranno
- Equine Cardioteam Ghent University, Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Muylle
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies Decloedt
- Equine Cardioteam Ghent University, Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gunther van Loon
- Equine Cardioteam Ghent University, Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Decloedt A, Van Steenkiste G, Vera L, Buhl R, van Loon G. Atrial fibrillation in horses Part 2: Diagnosis, treatment and prognosis. Vet J 2020; 268:105594. [PMID: 33468306 DOI: 10.1016/j.tvjl.2020.105594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/27/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Atrial fibrillation (AF) is suspected by an irregularly irregular rhythm during auscultation at rest and should be confirmed by electrocardiography. Heart rate monitoring is potentially interesting for AF detection by horse owners, based on the disproportionally high heart rate during exercise or increased heart rate variability. Echocardiography and laboratory analysis are useful to identify underlying cardiac disease. Horses with severe cardiac disease should not undergo cardioversion due to the risk of recurrence. Cardioversion is recommended especially in horses performing high intensity exercise or showing average maximal heart rates higher than 220 beats per min or abnormal ventricular complexes during exercise or stress. Pharmacological cardioversion can be performed using quinidine sulphate administered orally, with an overall mean reported success rate around 80%. Other therapeutic drugs have been described such as flecainide, amiodarone or novel atrial specific compounds. Transvenous electrical cardioversion (TVEC) is performed by delivering a shock between two cardioversion catheters positioned in the left pulmonary artery and right atrium, with a success rate of >95%. After cardioversion, most horses return to their previous level of performance. However, the recurrence rate after pharmacological or electrical cardioversion is up to 39%. Recurrence has been related to previous unsuccessful treatment attempts, valvular regurgitation and the presence of atrial premature depolarisations or low atrial contractile function after cardioversion. Large atrial size and long AF duration have also been suggested as risk factors. Different approaches for preventing recurrence have been described such as the administration of sotalol, however, large clinical studies have not been published.
Collapse
Affiliation(s)
- Annelies Decloedt
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium.
| | - Glenn Van Steenkiste
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Lisse Vera
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Gunther van Loon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium
| |
Collapse
|
10
|
Diagnosis and management of canine atrial fibrillation. Vet J 2020; 265:105549. [PMID: 33129554 DOI: 10.1016/j.tvjl.2020.105549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022]
Abstract
Atrial fibrillation (AF) is the most common non-physiological arrhythmia in dogs and humans. Its high prevalence in both species and the impact it has on survival time and quality of life of affected patients, makes it a very relevant topic for medical research. In dogs, the diagnosis of AF is usually fairly straightforward, but optimal management can be complicated. Rate control is the most commonly used strategy; rhythm control can also be considered in very specific cases. Concurrent congestive heart failure is frequently identified, which represents an extra challenge for the clinicians. This article reviews the current recommendations for the diagnosis and management considerations of AF in dogs. Future perspectives, focusing on new drugs that may prevent development of AF based on recent discoveries, will also be discussed.
Collapse
|
11
|
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in humans and is a significant source of morbidity and mortality. Despite its prevalence, our mechanistic understanding is incomplete, the therapeutic options have limited efficacy, and are often fraught with risks. A better biological understanding of AF is needed to spearhead novel therapeutic avenues. Although "natural" AF is nearly nonexistent in most species, animal models have contributed significantly to our understanding of AF and some therapeutic options. However, the impediments of animal models are also apparent and stem largely from the differences in basic physiology as well as the complexities underlying human AF; these preclude the creation of a "perfect" animal model and have obviated the translation of animal findings. Herein, we review the vast array of AF models available, spanning the mouse heart (weighing 1/1000th of a human heart) to the horse heart (10× heavier than the human heart). We attempt to highlight the features of each model that bring value to our understanding of AF but also the shortcomings and pitfalls. Finally, we borrowed the concept of a SWOT analysis from the business community (which stands for strengths, weaknesses, opportunities, and threats) and applied this introspective type of analysis to animal models for AF. We identify unmet needs and stress that is in the context of rapidly advancing technologies, these present opportunities for the future use of animal models.
Collapse
Affiliation(s)
- Dominik Schüttler
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.).,Cardiac Arrhythmia Service, Division of Cardiology, Massachusetts General Hospital, Boston (A.B., W.J.H.)
| | - Stefan Kääb
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.)
| | - Kichang Lee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.)
| | - Philipp Tomsits
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - Sebastian Clauss
- From the Department of Medicine I, University Hospital Munich, Campus Großhadern, Ludwig-Maximilians University Munich (LMU), Germany (D.S., S.K., P.T., S.C.).,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Germany (D.S., S.K., P.T., S.C.).,Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University Munich (LMU), Germany (D.S., P.T., S.C.)
| | - William J Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (A.B., K.L., W.J.H.).,Cardiac Arrhythmia Service, Division of Cardiology, Massachusetts General Hospital, Boston (A.B., W.J.H.)
| |
Collapse
|
12
|
Isaac E, Cooper SM, Jones SA, Loubani M. Do age-associated changes of voltage-gated sodium channel isoforms expressed in the mammalian heart predispose the elderly to atrial fibrillation? World J Cardiol 2020; 12:123-135. [PMID: 32431783 PMCID: PMC7215965 DOI: 10.4330/wjc.v12.i4.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/18/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. The prevalence of the disease increases with age, strongly implying an age-related process underlying the pathology. At a time when people are living longer than ever before, an exponential increase in disease prevalence is predicted worldwide. Hence unraveling the underlying mechanics of the disease is paramount for the development of innovative treatment and prevention strategies. The role of voltage-gated sodium channels is fundamental in cardiac electrophysiology and may provide novel insights into the arrhythmogenesis of AF. Nav1.5 is the predominant cardiac isoform, responsible for the action potential upstroke. Recent studies have demonstrated that Nav1.8 (an isoform predominantly expressed within the peripheral nervous system) is responsible for cellular arrhythmogenesis through the enhancement of pro-arrhythmogenic currents. Animal studies have shown a decline in Nav1.5 leading to a diminished action potential upstroke during phase 0. Furthermore, the study of human tissue demonstrates an inverse expression of sodium channel isoforms; reduction of Nav1.5 and increase of Nav1.8 in both heart failure and ventricular hypertrophy. This strongly suggests that the expression of voltage-gated sodium channels play a crucial role in the development of arrhythmias in the diseased heart. Targeting aberrant sodium currents has led to novel therapeutic approaches in tackling AF and continues to be an area of emerging research. This review will explore how voltage-gated sodium channels may predispose the elderly heart to AF through the examination of laboratory and clinical based evidence.
Collapse
Affiliation(s)
- Emmanuel Isaac
- Department of Cardiothoracic Surgery, Hull University Teaching Hospitals, Cottingham HU16 5JQ, United Kingdom
| | - Stephanie M Cooper
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Sandra A Jones
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Mahmoud Loubani
- Department of Cardiothoracic Surgery, Hull University Teaching Hospitals, Cottingham HU16 5JQ, United Kingdom
| |
Collapse
|
13
|
Carstensen H, Hesselkilde EZ, Haugaard MM, Flethøj M, Carlson J, Pehrson S, Jespersen T, Platonov PG, Buhl R. Effects of dofetilide and ranolazine on atrial fibrillatory rate in a horse model of acutely induced atrial fibrillation. J Cardiovasc Electrophysiol 2019; 30:596-606. [PMID: 30661267 PMCID: PMC6849868 DOI: 10.1111/jce.13849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The atrial fibrillatory rate is a potential biomarker in the study of antiarrhythmic drug effects on atrial fibrillation (AF). The purpose of this study was to evaluate whether dose-dependent changes in the atrial fibrillatory rate can be monitored on surface electrocardiography (ECG) following treatment with dofetilide, ranolazine, and a combination of the two in an acute model of AF in horses. METHODS AND RESULTS Eight horses were subjected to pacing-induced AF on 4 separate days. Saline (control), dofetilide, ranolazine, or a combination of dofetilide and ranolazine was administered in four incremental doses. Atrial fibrillatory activity was extracted from surface ECGs using spatiotemporal QRST cancellation. The mean atrial fibrillatory rate before drug infusion was 297 ± 27 fpm. Dofetilide reduced the atrial fibrillatory rate following the infusion of low doses (0.89 µg/kg, P < 0.05) and within 5 minutes preceding cardioversion (P < 0.05). Cardioversion with ranolazine was preceded by a reduction in the atrial fibrillatory rate in the last minute (P < 0.05). The combination of drugs reduced the atrial fibrillatory rate in a similar manner to dofetilide used alone. A trend toward a lower atrial fibrillatory rate before drug infusion was found among horses cardioverting on low doses of the drugs. CONCLUSION The atrial fibrillatory rate derived from surface ECGs showed a difference in the mode of action on AF between dofetilide and ranolazine. Dofetilide reduced the atrial fibrillatory rate, whereas ranolazine displayed a cardioverting mechanism that was distinct from a slowing of the fibrillatory process.
Collapse
Affiliation(s)
- Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Eva Zander Hesselkilde
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Maria Mathilde Haugaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Mette Flethøj
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Jonas Carlson
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Steen Pehrson
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Taastrup, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden.,Arrhythmia Clinic, Skåne University Hospital, Lund, Sweden
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|