1
|
Ueda K, Imai T, Ito T, Okayasu T, Harada S, Kamakura T, Ono K, Katsuno T, Tanaka T, Tatsumi K, Hibino H, Wanaka A, Kitahara T. Effects of aging on otolith morphology and functions in mice. Front Neurosci 2024; 18:1466514. [PMID: 39479359 PMCID: PMC11521974 DOI: 10.3389/fnins.2024.1466514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Background Increased fall risk caused by vestibular system impairment is a significant problem associated with aging. A vestibule is composed of linear acceleration-sensing otoliths and rotation-sensing semicircular canals. Otoliths, composed of utricle and saccule, detect linear accelerations. Otolithic organs partially play a role in falls due to aging. Aging possibly changes the morphology and functions of otoliths. However, the specific associations between aging and otolith changes remain unknown. Therefore, this study aimed to clarify these associations in mice. Methods Young C56BL/6 N (8 week old) and old (108-117 weeks old) mice were used in a micro-computed tomography (μCT) experiment for morphological analysis and a linear acceleration experiment for functional analysis. Young C56BL/6 N (8 week old) and middle-aged (50 week old) mice were used in electron microscopy experiments for morphological analysis. Results μCT revealed no significant differences in the otolith volume (p = 0.11) but significant differences in the otolith density (p = 0.001) between young and old mice. μCT and electron microscopy revealed significant differences in the structure of striola at the center of the otolith (μCT; p = 0.029, electron microscopy; p = 0.017). Significant differences were also observed in the amplitude of the eye movement during the vestibulo-ocular reflex induced by linear acceleration (maximum amplitude of stimulation = 1.3G [p = 0.014]; maximum amplitude of stimulation = 0.7G [p = 0.015]), indicating that the otolith function was worse in old mice than in young mice. Discussion This study demonstrated the decline in otolith function with age caused by age-related morphological changes. Specifically, when otolith density decreased, inertial force acting on the hair cells decreased, and when the structure of striola collapsed, the function of cross-striolar inhibition decreased, thereby causing a decline in the overall otolith function.
Collapse
Affiliation(s)
- Keita Ueda
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Takao Imai
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Taeko Ito
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Tadao Okayasu
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Shotaro Harada
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takefumi Kamakura
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Ono
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuya Katsuno
- Electron Microscopy Facility, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Nara, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Nara, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- AMED-CREST, AMED, Osaka, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Nara, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| |
Collapse
|
3
|
Nakamura T, Kiuchi K, Fukuzawa K, Takami M, Watanabe Y, Izawa Y, Takemoto M, Sakai J, Yatomi A, Sonoda Y, Takahara H, Nakasone K, Yamamoto K, Suzuki Y, Tani K, Negi N, Kono A, Ashihara T, Hirata K. The impact of the atrial wall thickness in normal/mild late-gadolinium enhancement areas on atrial fibrillation rotors in persistent atrial fibrillation patients. J Arrhythm 2022; 38:221-231. [PMID: 35387140 PMCID: PMC8977582 DOI: 10.1002/joa3.12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background Some of atrial fibrillation (AF) drivers are found in normal/mild late-gadolinium enhancement (LGE) areas, as well as moderate ones. The atrial wall thickness (AWT) has been reported to be important as a possible AF substrate. However, the AWT and degree of LGEs as an AF substrate has not been fully validated in humans. Objective The purpose of this study was to evaluate the impact of the AWT in normal/mild LGE areas on AF drivers. Methods A total of 287 segments in 15 persistent AF patients were assessed. AF drivers were defined as non-passively activated areas (NPAs), where rotational activation was frequently observed, and were detected by the novel real-time phase mapping (ExTRa Mapping), mild LGE areas were defined as areas with a volume ratio of the enhancement voxel of 0% to <10%. The AWT was defined as the minimum distance from the manually determined endocardium to the epicardial border on the LGE-MRI. Results NPAs were found in 20 (18.0%) of 131 normal/mild LGE areas where AWT was significantly thicker than that in the passively activated areas (PAs) (2.5 ± 0.3 vs. 2.2 ± 0.3 mm, p < .001). However, NPAs were found in 41 (26.3%) of 156 moderate LGE areas where AWT was thinner than that of PAs (2.1 ± 0.2 mm vs. 2.23 ± 0.3 mm, p = .02). An ROC curve analysis yielded an optimal cutoff value of 2.2 mm for predicting the presence of an NPA in normal/mild LGE areas. Conclusion The location of AF drivers in normal/mild LGE areas might be more accurately identified by evaluating AWT.
Collapse
Affiliation(s)
- Toshihiro Nakamura
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Kunihiko Kiuchi
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Koji Fukuzawa
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Mitsuru Takami
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yoshiaki Watanabe
- Department of RadiologyKobe University Graduate School of MedicineKobeJapan
| | - Yu Izawa
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Makoto Takemoto
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Jun Sakai
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Atsusuke Yatomi
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yusuke Sonoda
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hiroyuki Takahara
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Kazutaka Nakasone
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Kyoko Yamamoto
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yuya Suzuki
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Ken‐ichi Tani
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Noriyuki Negi
- Division of RadiologyCenter for Radiology and Radiation OncologyKobe University HospitalKobeJapan
| | - Atsushi Kono
- Department of RadiologyKobe University Graduate School of MedicineKobeJapan
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical EngineeringShiga University of Medical ScienceOtsuJapan
| | - Ken‐ichi Hirata
- Section of ArrhythmiaDivision of Cardiovascular MedicineDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
4
|
Roney CH, Sillett C, Whitaker J, Lemus JAS, Sim I, Kotadia I, O'Neill M, Williams SE, Niederer SA. Applications of multimodality imaging for left atrial catheter ablation. Eur Heart J Cardiovasc Imaging 2021; 23:31-41. [PMID: 34747450 PMCID: PMC8685603 DOI: 10.1093/ehjci/jeab205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Atrial arrhythmias, including atrial fibrillation and atrial flutter, may be treated through catheter ablation. The process of atrial arrhythmia catheter ablation, which includes patient selection, pre-procedural planning, intra-procedural guidance, and post-procedural assessment, is typically characterized by the use of several imaging modalities to sequentially inform key clinical decisions. Increasingly, advanced imaging modalities are processed via specialized image analysis techniques and combined with intra-procedural electrical measurements to inform treatment approaches. Here, we review the use of multimodality imaging for left atrial ablation procedures. The article first outlines how imaging modalities are routinely used in the peri-ablation period. We then describe how advanced imaging techniques may inform patient selection for ablation and ablation targets themselves. Ongoing research directions for improving catheter ablation outcomes by using imaging combined with advanced analyses for personalization of ablation targets are discussed, together with approaches for their integration in the standard clinical environment. Finally, we describe future research areas with the potential to improve catheter ablation outcomes.
Collapse
Affiliation(s)
- Caroline H Roney
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Charles Sillett
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | | | - Iain Sim
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Irum Kotadia
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
- Centre for Cardiovascular Science, The University of Edinburgh, Scotland, UK
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College, London, UK
| |
Collapse
|
5
|
Nakamura T, Kiuchi K, Fukuzawa K, Takami M, Watanabe Y, Izawa Y, Suehiro H, Akita T, Takemoto M, Sakai J, Yatomi A, Sonoda Y, Takahara H, Nakasone K, Yamamoto K, Negi N, Kono A, Ashihara T, Hirata KI. Late-gadolinium enhancement properties associated with atrial fibrillation rotors in patients with persistent atrial fibrillation. J Cardiovasc Electrophysiol 2021; 32:1005-1013. [PMID: 33556994 DOI: 10.1111/jce.14933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A computational model demonstrated that atrial fibrillation (AF) rotors could be distributed in patchy late-gadolinium enhancement (LGE) areas and play an important role in AF drivers. However, this was not validated in humans. OBJECTIVE The purpose of this study was to evaluate the LGE properties of AF rotors in patients with persistent AF. METHODS A total of 287 segments in 15 patients with persistent AF (long-standing persistent AF in 9 patients) that underwent AF ablation were assessed. Non-passively activated areas (NPAs), where rotational activation (AF rotor) was frequently observed, were detected by the novel real-time phase mapping (ExTRa Mapping). The properties of the LGE areas were assessed using the LGE heterogeneity and the density which was evaluated by the entropy (LGE-entropy) and the volume ratio of the enhancement voxel (LGE-volume ratio), respectively. RESULTS NPAs were found in 61 (21%) of 287 segments and were mostly found around the pulmonary vein antrum. A receiver operating characteristic curve analysis yielded an optimal cutoff value of 5.7% and 10% for the LGE-entropy and LGE-volume ratio, respectively. The incidence of NPAs was significantly higher at segments with an LGE-entropy of >5.7 and LGE-volume ratio of >10% than at the other segments (38 [30%] of 126 vs. 23 [14%] of 161 segments; p = .001). No NPAs were found at segments with an LGE-volume ratio of >50% regardless of the LGE-entropy. Of five patients with AF recurrence, NPAs outside the PV antrum were not ablated in three patients and the remaining NPAs were ablated, but their LGE-entropy and LGE-volume ratio were low. CONCLUSION AF rotors are mostly distributed in relatively weak and much more heterogenous LGE areas.
Collapse
Affiliation(s)
- Toshihiro Nakamura
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kunihiko Kiuchi
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Fukuzawa
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitsuru Takami
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Watanabe
- Division of Radiology, Center for Radiology and Radiation Oncology, Kobe University Hospital, Kobe, Japan
| | - Yu Izawa
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideya Suehiro
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomomi Akita
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Takemoto
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Sakai
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsusuke Yatomi
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Sonoda
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Takahara
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazutaka Nakasone
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyoko Yamamoto
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Negi
- Division of Radiology, Center for Radiology and Radiation Oncology, Kobe University Hospital, Kobe, Japan
| | - Atsushi Kono
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science, Otsu, Japan
| | - Ken-Ichi Hirata
- Section of Arrhythmia, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|