1
|
Rangaswamy D, Nagaraju SP, Bhojaraja MV, Swaminathan SM, Prabhu RA, Rao IR, Shenoy SV. Ocular and systemic vascular endothelial growth factor ligand inhibitor use and nephrotoxicity: an update. Int Urol Nephrol 2024; 56:2635-2644. [PMID: 38498275 PMCID: PMC11266217 DOI: 10.1007/s11255-024-03990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Tumor growth is intricately linked to the process of angiogenesis, with a key role played by vascular endothelial growth factor (VEGF) and its associated signaling pathways. Notably, these pathways also play a pivotal "housekeeping" role in renal physiology. Over the past decade, the utilization of VEGF signaling inhibitors has seen a substantial rise in the treatment of diverse solid organ tumors, diabetic retinopathy, age-related macular degeneration, and various ocular diseases. However, this increased use of such agents has led to a higher frequency of encountering renal adverse effects in clinical practice. This review comprehensively addresses the incidence, pathophysiological mechanisms, and current evidence concerning renal adverse events associated with systemic and intravitreal antiangiogenic therapies targeting VEGF-A and its receptors (VEGFR) and their associated signaling pathways. Additionally, we briefly explore strategies for mitigating potential risks linked to the use of these agents and effectively managing various renal adverse events, including but not limited to hypertension, proteinuria, renal dysfunction, and electrolyte imbalances.
Collapse
Affiliation(s)
- Dharshan Rangaswamy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ravindra A Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Li J, Zhang L, Ge T, Liu J, Wang C, Yu Q. Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications. Drug Des Devel Ther 2024; 18:829-843. [PMID: 38524877 PMCID: PMC10959117 DOI: 10.2147/dddt.s443107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been recognized as crucial agents for treating various tumors, and one of their key targets is the intracellular site of the vascular endothelial growth factor receptor (VEGFR). While TKIs have demonstrated their effectiveness in solid tumor patients and increased life expectancy, they can also lead to adverse cardiovascular effects including hypertension, thromboembolism, cardiac ischemia, and left ventricular dysfunction. Among the TKIs, sorafenib was the first approved agent and it exerts anti-tumor effects on hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) by inhibiting angiogenesis and tumor cell proliferation through targeting VEGFR and RAF. Unfortunately, the adverse cardiovascular effects caused by sorafenib not only affect solid tumor patients but also limit its application in curing other diseases. This review explores the mechanisms underlying sorafenib-induced cardiovascular adverse effects, including endothelial dysfunction, mitochondrial dysfunction, endoplasmic reticulum stress, dysregulated autophagy, and ferroptosis. It also discusses potential treatment strategies, such as antioxidants and renin-angiotensin system inhibitors, and highlights the association between sorafenib-induced hypertension and treatment efficacy in cancer patients. Furthermore, emerging research suggests a link between sorafenib-induced glycolysis, drug resistance, and cardiovascular toxicity, necessitating further investigation. Overall, understanding these mechanisms is crucial for optimizing sorafenib therapy and minimizing cardiovascular risks in cancer patients.
Collapse
Affiliation(s)
- Jue Li
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Lusha Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| | - Teng Ge
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| | - Jiping Liu
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Chuan Wang
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Qi Yu
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
3
|
Chen Y, Lin Y, Guan S, Zhao Z, Lin D, Guan J, Zhou C, Liu J, Cao X, Lin Z, Chen D, Shang J, Zhang W, Chen H, Chen L, Ma S, Gu L, Zhao J, Huang M, Wang X, Long H. The Effects of Drug Exposure and Single Nucleotide Polymorphisms on Aaptinib-Induced Severe Toxicities in Solid Tumors. Drug Metab Dispos 2023; 51:1583-1590. [PMID: 37775332 DOI: 10.1124/dmd.123.001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
To investigate the value of drug exposure and host germline genetic factors in predicting apatinib (APA)-related toxicities. METHOD In this prospective study, plasma APA concentrations were quantified using liquid chromatography with tandem mass spectrometry, and 57 germline mutations were genotyped in 126 advanced solid tumor patients receiving 250 mg daily APA, a vascular endothelial growth factor receptor II inhibitor. The correlation between drug exposure, genetic factors, and the toxicity profile was analyzed. RESULTS Non-small cell lung cancer (NSCLC) was more prone to APA-related toxicities and plasma concentrations of APA, and its main metabolite M1-1 could be associated with high-grade adverse events (AEs) (P < 0.01; M1-1, P < 0.01) and high-grade antiangiogenetic toxicities (APA, P = 0.034; P < 0.05), including hypertension, proteinuria, and hand-foot syndrome, in the subgroup of NSCLC. Besides, CYP2C9 rs34532201 TT carriers tended to have higher levels of APA (P < 0.001) and M1-1 (P < 0.01), whereas CYP2C9 rs1936968 GG carriers were predisposed to higher levels of M1-1 (P < 0.01). CONCLUSION Plasma APA and M1-1 exposures were able to predict severe AEs in NSCLC patients. Dose optimization and drug exposure monitoring might need consideration in NSCLC patients with CYP2C9 rs34532201 TT and rs1936968 GG. SIGNIFICANCE STATEMENT Apatinib is an anti-VEGFR2 inhibitor for the treatment of multiple cancers. Though substantial in response, apatinib-induced toxicity has been a critical issue that is worth clinical surveillance. Few data on the role of drug exposure and genetic factors in apatinib-induced toxicity are available. Our study demonstrated a distinct drug-exposure relationship in NSCLC but not other tumors and provided invaluable evidence of drug exposure levels and single nucleotide polymorphisms as predictive biomarkers in apatinib-induced severe toxicities.
Collapse
Affiliation(s)
- Youhao Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Yaobin Lin
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Shaoxing Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Zerui Zhao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Daren Lin
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Jin Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Chengzhi Zhou
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Junling Liu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Xiaolong Cao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Zhichao Lin
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Diyao Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Jianbiao Shang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Weijian Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Huohui Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Likun Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Shudong Ma
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Lijia Gu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Jian Zhao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Xueding Wang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| | - Hao Long
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (Y.C., S.G., M.H., X.W.); Departments of Thoracic Oncology (Y.L., Z.Z., H.L.) and Medical Oncology (J.L., L.C.), State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Departments of Medical Oncology (D.L.), Thoracic Surgery (Z.L.), and Gynecology (W.Z.), Jiangmen Central Hospital, Jiangmen, China; Department of Oncology, People's Hospital of Jiangmen, Jiangmen, China (J.G.); Department of Medical Pneumology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (C.Z.); Department of Medical Oncology, Guangzhou Panyu Central Hospital, Guangzhou, China (X.C.); Department of Targeted Interventional Oncology, First Hospital of Foshan, Foshan, China (D.C.); Department of Oncology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China (J.S.); Department of Medical Oncology, The Second People's Hospital of Zhaoqing, Zhaoqing, China (H.C.); Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (S.M.); Department of Cardio-thoracic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (L.G.); and Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China (J.Z.)
| |
Collapse
|
4
|
Hwang HJ, Lee TG. Impact on clinical outcomes of renin-angiotensin system inhibitors against doxorubicin-related toxicity in patients with breast cancer and hypertension: A nationwide cohort study in South Korea. PLoS One 2023; 18:e0294649. [PMID: 37983233 PMCID: PMC10659172 DOI: 10.1371/journal.pone.0294649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Although doxorubicin (DOX) is a commonly used potent chemotherapeutic agent in patients with breast cancer, its cardiotoxic effect is a concern, particularly in patients with hypertension. Antihypertensive renin-angiotensin system (RAS) inhibitors may potentially play a role in preventing overt heart failure (HF) due to DOX toxicity. This study aimed to evaluate whether the use of RAS inhibitors improves clinical outcomes in patients with hypertension and breast cancer undergoing DOX-containing chemotherapy. METHODS A total of 54,344 female patients who were first diagnosed with breast cancer and initiated into DOX therapy between 2008 and 2015 were recruited from a nationwide Korean cohort. Patients were divided into two groups: with and without hypertension (HT, n = 10,789; non-HT, n = 43,555), and the RAS inhibitor group (n = 1,728) was sub-classified from the HT group. Two propensity score-matched cohorts were constructed to compare the clinical outcomes between non-HT and HT groups and between non-HT and RAS inhibitor groups. The primary outcome was the composite of HF and death. RESULTS After propensity score matching, the HT group had a higher risk for HF (adjusted hazard ratio [HR] = 1.30, 95% confidence intervals [95% CI] = 1.09-1.55) compared to the non-HT group, but there was no significant difference in primary outcome between the two groups. The RAS inhibitor group had a lower risk for primary outcome (adjusted HR = 0.78, 95% CI = 0.65-0.94) and death (adjusted HR = 0.81, 95% CI = 0.66-0.99) compared to the non-HT group. CONCLUSIONS Hypertension is a risk factor for HF in patients with breast cancer undergoing DOX chemotherapy. However, the RAS inhibitors used to treat hypertension may contribute to decreased mortality and improved clinical outcomes.
Collapse
Affiliation(s)
- Hui-Jeong Hwang
- Department of Cardiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| | - Taek-Gu Lee
- Department of Surgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
5
|
Roa-Chamorro R, Torres-Quintero L, González-Bustos P. [Cardiovascular and metabolic toxicity secondary to sorafenib]. HIPERTENSION Y RIESGO VASCULAR 2023; 40:145-149. [PMID: 35718693 DOI: 10.1016/j.hipert.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/22/2022]
Abstract
Tyrosine kinase inhibitors are a family of chemotherapy drugs used in first and second line for many solid and hematological neoplasms. Its toxicity is relatively low, since the mechanism of action is based on the inhibition of some tyrosine kinases involved in the explosion of neoplastic cells. However, this blockade is not selective, so it can produce secondary effects. Sorafenib can produce arterial hypertension, thyroid disorders, abdominal pain or hyperamylasemia, among others. We must monitor these patients during treatment to avoid side effects.
Collapse
Affiliation(s)
- R Roa-Chamorro
- Unidad de Hipertensión y Riesgo Vascular, Servicio de Medicina Interna. Hospital Universitario Virgen de las Nieves, Granada, España.
| | - L Torres-Quintero
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, España
| | - P González-Bustos
- Unidad de Hipertensión y Riesgo Vascular, Servicio de Medicina Interna. Hospital Universitario Virgen de las Nieves, Granada, España
| |
Collapse
|
6
|
Orozco Scott P, Deshpande P, Abramson M. Genitourinary Cancer: Updates on Treatments and Their Impact on the Kidney. Semin Nephrol 2023; 42:151344. [PMID: 37172546 DOI: 10.1016/j.semnephrol.2023.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genitourinary cancers are diverse in their presentation, prevalence, and mortality risk. Although there have been significant advancements in medical (eg, immune checkpoint inhibitors and tyrosine kinase inhibitors) and surgical treatments of genitourinary cancers, patients are still at risk for chronic kidney disease, hypertension, and electrolyte derangements in the short and long term. In addition, pre-existing kidney disease may increase the risk of developing some genitourinary cancers. This review focuses on the kidney-related effects of treatments for renal cell carcinoma and bladder and prostate cancers.
Collapse
Affiliation(s)
- Paloma Orozco Scott
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, Medical School, New York, NY.
| | - Priya Deshpande
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew Abramson
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Zhu X, Wu S. Risks and management of hypertension in cancer patients undergoing targeted therapy: a review. Clin Hypertens 2022; 28:14. [PMID: 35568958 PMCID: PMC9107678 DOI: 10.1186/s40885-022-00197-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Rapid progress over the last decade has added numerous agents targeting specific cellular signaling pathways to the treatment armamentarium for advanced cancer. However, many of these agents can cause hypertension resulting in major adverse cardiovascular event. Methods and results A systematic literature search was performed on the databases PubMed and Google Scholar for papers published in English until December 2020. This review summarizes the risk, mechanism, diagnosis, and management of hypertension in cancer patients undergoing targeted therapy. The risk and pathogenesis of hypertension vary widely with different classes of targeted agents. Currently there is a paucity of data investigating optimal management of hypertension with targeted therapy. A practical approach is discussed with a focus on the goal of blood pressure control as well as drug selection based on the mechanism of hypertension in the context of advanced cancer, treatment toxicity, comorbidity, and drug-drug interactions. This review also discusses many studies that have explored hypertension as a biomarker for cancer treatment efficacy and as a pharmacodynamic biomarker to titrate drug dose. Conclusions The diversity of targeted agents has provided important insights into the pathogenesis of hypertension in cancer patients. The underlying mechanism may provide a guidance to the management of hypertension. Further studies are needed to investigate optimal treatment and hypertension as a biomarker for cancer treatment.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Division of Primary Care, Department of Medicine, Renaissance School of Medicine at Stony Brook University, 205 North Belle Mead Road, NY, 11733, Stony Brook, USA
| | - Shenhong Wu
- Division of Hematology and Oncology, Department of Medicine, Renaissance School of Medicine at Stony Brook University, Lauterbur drive, NY, 11794, Stony Brook, USA.
| |
Collapse
|
8
|
Quintanilha JCF, Racioppi A, Wang J, Etheridge AS, Denning S, Peña CE, Skol AD, Crona DJ, Lin D, Innocenti F. PIK3R5 genetic predictors of hypertension induced by VEGF-pathway inhibitors. THE PHARMACOGENOMICS JOURNAL 2022; 22:82-88. [PMID: 34775477 PMCID: PMC8799524 DOI: 10.1038/s41397-021-00261-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
No biomarkers are available to predict patients at risk of developing hypertension induced by VEGF-pathway inhibitors. This study aimed to identify predictive biomarkers of hypertension induced by these drugs using a discovery-replication approach. The discovery set included 140 sorafenib-treated patients (TARGET study) genotyped for 973 SNPs in 56 genes. The most statistically significant SNPs associated with grade ≥2 hypertension were tested for association with grade ≥2 hypertension in the replication set of a GWAS of 1039 bevacizumab-treated patients from four clinical trials (CALGB/Alliance). In the discovery set, rs444904 (G > A) in PIK3R5 was associated with an increased risk of sorafenib-induced hypertension (p = 0.006, OR = 3.88 95% CI 1.54-9.81). In the replication set, rs427554 (G > A) in PIK3R5 (in complete linkage disequilibrium with rs444904) was associated with an increased risk of bevacizumab-induced hypertension (p = 0.008, OR = 1.39, 95% CI 1.09-1.78). This study identified a predictive marker of drug-induced hypertension that should be evaluated for other VEGF-pathway inhibitors.ClinicalTrials.gov Identifier:NCT00073307 (TARGET).
Collapse
Affiliation(s)
- Julia C F Quintanilha
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Alessandro Racioppi
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Etheridge
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stefanie Denning
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carol E Peña
- Bayer Health Care Pharmaceuticals, Whippany, NJ, USA
| | - Andrew D Skol
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Daniel J Crona
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Danyu Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Hong S, Daniels B, van Leeuwen MT, Pearson SA, Vajdic CM. Incidence and risk factors of hypertension therapy in Australian cancer patients treated with vascular signalling pathway inhibitors. Discov Oncol 2022; 13:6. [PMID: 35201530 PMCID: PMC8777550 DOI: 10.1007/s12672-022-00468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Clinical trials report systemic hypertension is an adverse effect of vascular signalling pathway inhibitor (VSPi) use. There are limited data from routine clinical practice. We aimed to estimate the real-world incidence and risk factors of new-onset and aggravated hypertension for cancer patients dispensed VSPi in whole-of-population Australian setting. METHODS We used dispensing records for a 10% random sample of Australians to identify treatment with subsidised VSPi from 2013 to 2018. We further identified dispensings of oral antihypertensive medicines 6 months before and 12 months after VSPi therapy. We defined (i) new-onset hypertension in people first dispensed antihypertensives after VSPi and (ii) aggravated hypertension in people with prior antihypertensive use dispensed an additional, or higher strength, antihypertensive after VSPi. We applied the Fine-Gray cumulative incidence function and Cox proportional hazard regression. RESULTS 1802 patients were dispensed at least one VSPi. The mean age of the cohort was 65 years and 57% were male. The incidence of new-onset treated hypertension was 24.3% (95%CI: 21.2-27.8); age ≥ 60 years (HR 1.74; 95%CI: 1.32-2.31) and treatment with oral tyrosine kinase inhibitors compared to bevacizumab (HR 1.96; 95%CI: 1.16-3.31) were risk factors. The incidence of aggravated hypertension was 25.2% (95%CI: 22.0-28.7) and risk was elevated for patients with renal cancer (HR 2.84; 95%CI: 1.49-5.41) and cancers other than colorectal (HR 1.85; 95%CI: 1.12-3.03). CONCLUSIONS Our real-world estimates of incident hypertension appear comparable to those observed in clinical trials (21.6-23.6%). Our population-based study provides some insight into the burden of hypertension in patients commencing VSPi in routine practice.
Collapse
Affiliation(s)
- Soojung Hong
- Centre for Big Data Research in Health, UNSW Sydney, Sydney, Australia.
- Division of Oncology-Hematology, Department of Internal Medicine, National Health Insurance Service, Ilsan Hospital, Ilsan-ro 100, Goyang, Republic of Korea.
| | - Benjamin Daniels
- Centre for Big Data Research in Health, UNSW Sydney, Sydney, Australia
| | | | | | - Claire M Vajdic
- Centre for Big Data Research in Health, UNSW Sydney, Sydney, Australia
| |
Collapse
|
10
|
Eskelinen T, Veitonmäki T, Kotsar A, Tammela TLJ, Pöyhönen A, Murtola TJ. Improved renal cancer prognosis among users of drugs targeting renin-angiotensin system. Cancer Causes Control 2021; 33:313-320. [PMID: 34921656 PMCID: PMC8776666 DOI: 10.1007/s10552-021-01527-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Purpose We explored renal cell cancer (RCC) survival among users of antihypertensive medication as hypertension is proposed to be a risk factor for RCC and ACE-inhibitors and angiotensin receptor blockers (ARBs) have been associated with improved prognosis of RCC. Methods Finnish cohort of 13,873 participants with RCC diagnosed between 1995–2012 was formed from three national databases. RCC cases were identified from Finnish Cancer Registry, medication usage from national prescription database and co-morbidities from Care Registry of Healthcare. Logistic regression was used to calculate odds ratios for metastatic tumor extent at the time of diagnosis. Risk of RCC specific death after diagnosis was analyzed using Cox regression adjusted for tumor clinical characteristics. Results A total of 5,179 participants died of RCC during the follow-up. No risk association was found for metastatic tumor extent for any drug group. ACE-inhibitors, but no other drug group were associated with decreased risk of RCC specific death overall (HR 0.88, 95% CI 0.82–0.95) compared to non-users. In time-dependent analysis high-dose use of ACE-inhibitors (392 Defined Daily Dose (DDD)/year), HR 0.54, 95% CI 0.45–0.66) and ARBs (786.1 DDD/year, HR 0.66, 95% CI 0.50–0.87) associated with improved RCC survival. No information of TNM-classification or tobacco smoking was available. Conclusion ACE-inhibitors and ARBs in high dose associated with improved RCC specific survival. This may reflect overall benefit of treating hypertension with medication targeting renin-angiotensin system (RAS) system among RCC patients. Further studies are needed to explore the role of RAS in RCC. Supplementary Information The online version contains supplementary material available at 10.1007/s10552-021-01527-w.
Collapse
Affiliation(s)
- Tommi Eskelinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | | | - Andres Kotsar
- Department of Urology, Tartu University Hospital, Tartu, Estonia
| | - Teuvo L J Tammela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Urology, TAYS Cancer Center, Tampere, Finland
| | - Antti Pöyhönen
- Centre for Military Medicine, The Finnish Defence Forces, Helsinki, Finland
| | - Teemu J Murtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Urology, TAYS Cancer Center, Tampere, Finland.,Department of Urology, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
11
|
Unravelling the tangled web of hypertension and cancer. Clin Sci (Lond) 2021; 135:1609-1625. [PMID: 34240734 DOI: 10.1042/cs20200307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease remains the primary cause of mortality globally, being responsible for an estimated 17 million deaths every year. Cancer is the second leading cause of death on a global level with roughly 9 million deaths per year being attributed to neoplasms. The two share multiple common risk factors such as obesity, poor physical exercise, older age, smoking and there exists rare monogenic hypertension syndromes. Hypertension is the most important risk factor for cardiovascular disease and affects more than a billion people worldwide and may also be a risk factor for the development of certain types of cancer (e.g. renal cell carcinoma (RCC)). The interaction space of the two conditions becomes more complicated when the well-described hypertensive effect of certain antineoplastic drugs is considered along with the extensive amount of literature on the association of different classes of antihypertensive drugs with cancer risk/prevention. The cardiovascular risks associated with antineoplastic treatment calls for efficient management of relative adverse events and the development of practical strategies for efficient decision-making in the clinic. Pharmacogenetic interactions between cancer treatment and hypertension-related genes is not to be ruled out, but the evidence is not still ample to be incorporated in clinical practice. Precision Medicine has the potential to bridge the gap of knowledge regarding the full spectrum of interactions between cancer and hypertension (and cardiovascular disease) and provide novel solutions through the emerging field of cardio-oncology. In this review, we aimed to examine the bidirectional associations between cancer and hypertension including pharmacotherapy.
Collapse
|
12
|
Rao VU, Reeves DJ, Chugh AR, O'Quinn R, Fradley MG, Raghavendra M, Dent S, Barac A, Lenihan D. Clinical Approach to Cardiovascular Toxicity of Oral Antineoplastic Agents: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:2693-2716. [PMID: 34045027 DOI: 10.1016/j.jacc.2021.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Precision medicine has ushered in a new era of targeted treatments for numerous malignancies, leading to improvements in overall survival. Unlike traditional chemotherapy, many molecular targeted antineoplastic agents are available in oral formulation, leading to enhanced patient convenience and a perception of reduced risk of adverse effects. Although oral antineoplastic agents are generally well-tolerated, cardiovascular toxicities are being reported with increasing frequency in part due to U.S. Food and Drug Administration and manufacturer recommended cardiac monitoring. Monitoring strategies have focused on left ventricular dysfunction, hypertension, and QT prolongation/arrhythmias. Given the rapid pace of development and availability of new oral antineoplastic agents, the purpose of this review is to provide clinicians with an up-to-date practical approach to monitoring and management of cardiovascular toxicities with the aim of improving overall outcomes for patients with cancer.
Collapse
Affiliation(s)
- Vijay U Rao
- Franciscan Cardio-Oncology Center, Indiana Heart Physicians, Franciscan Health, Indianapolis, Indiana, USA.
| | - David J Reeves
- Division of Oncology, Franciscan Health and Butler University College of Pharmacy and Health Sciences, Indianapolis, Indiana, USA
| | - Atul R Chugh
- Franciscan Cardio-Oncology Center, Indiana Heart Physicians, Franciscan Health, Indianapolis, Indiana, USA
| | - Rupal O'Quinn
- Cardio-Oncology Center of Excellence, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael G Fradley
- Cardio-Oncology Center of Excellence, Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meghana Raghavendra
- Franciscan Cardio-Oncology Center, Oncology and Hematology Specialists, Franciscan Health, Indianapolis, Indiana, USA
| | - Susan Dent
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Ana Barac
- Medstar Heart and Vascular Institute, Georgetown University, Washington, DC, USA
| | - Daniel Lenihan
- Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Mohammed T, Singh M, Tiu JG, Kim AS. Etiology and management of hypertension in patients with cancer. CARDIO-ONCOLOGY 2021; 7:14. [PMID: 33823943 PMCID: PMC8022405 DOI: 10.1186/s40959-021-00101-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
The pathophysiology of hypertension and cancer are intertwined. Hypertension has been associated with an increased likelihood of developing certain cancers and with higher cancer-related mortality. Moreover, various anticancer therapies have been reported to cause new elevated blood pressure or worsening of previously well-controlled hypertension. Hypertension is a well-established risk factor for the development of cardiovascular disease, which is rapidly emerging as one of the leading causes of death and disability in patients with cancer. In this review, we discuss the relationship between hypertension and cancer and the role that hypertension plays in exacerbating the risk for anthracycline- and trastuzumab-induced cardiomyopathy. We then review the common cancer therapies that have been associated with the development of hypertension, including VEGF inhibitors, small molecule tyrosine kinase inhibitors, proteasome inhibitors, alkylating agents, glucocorticoids, and immunosuppressive agents. When available, we present strategies for blood pressure management for each drug class. Finally, we discuss blood pressure goals for patients with cancer and strategies for assessment and management. It is of utmost importance to maintain optimal blood pressure control in the oncologic patient to reduce the risk of chemotherapy-induced cardiotoxicity and to decrease the risk of long-term cardiovascular disease.
Collapse
Affiliation(s)
- Turab Mohammed
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Meghana Singh
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - John G Tiu
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Agnes S Kim
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA. .,Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
14
|
Dong M, Wang R, Sun P, Zhang D, Zhang Z, Zhang J, Tse G, Zhong L. Clinical significance of hypertension in patients with different types of cancer treated with antiangiogenic drugs. Oncol Lett 2021; 21:315. [PMID: 33692847 PMCID: PMC7933774 DOI: 10.3892/ol.2021.12576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Hypertension is a common comorbidity in patients receiving antiangiogenic therapy. Prior studies have reported worsening or new-onset hypertension as an adverse event of antiangiogenetic therapy, which can be managed by dose reduction or discontinuation of the culprit medication. By contrast, other studies have found that the occurrence of hypertension is a potential biomarker associated with greater efficacy of antiangiogenic therapy and predicts improved survival. At present, there is no consensus on the effects of hypertension in patients treated with antiangiogenic drugs. The present study reviewed the relationship between antiangiogenic drugs and hypertension in different types of cancer. It was demonstrated that the use of antiangiogenic drugs was associated with an increased risk of hypertension in most types of solid cancers. There was no significant difference in the incidence of hypertension between monoclonal antibody and small-molecule tyrosine kinase inhibitor treatments. Hypertension was more likely to occur in patients younger than 75 years old, female, and those with no history of bevacizumab use. Discontinuation or death caused by hypertension was rare, although previous studies have reported that hypertension was a risk factor for acute and chronic cardiovascular diseases and ischemic stroke. Of note, the early development of hypertension may serve as a potential biomarker associated with greater efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Mei Dong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Rujian Wang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Dongxia Zhang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhenzhen Zhang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
15
|
Winters AC, Bedier F, Saab S. Management of Side Effects of Systemic Therapies for Hepatocellular Carcinoma: Guide for the Hepatologist. Clin Liver Dis 2020; 24:755-769. [PMID: 33012457 DOI: 10.1016/j.cld.2020.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Historically, systemic treatment of advanced hepatocellular carcinoma was limited to the tyrosine kinase inhibitor sorafenib. With the recent approval of several new agents the armamentarium of treatment options available to providers and patients has expanded. Although these promising advances offer hope for patients with advanced hepatocellular carcinoma, they also present new and challenging adverse effects that threaten to limit their efficacy. Immunotherapy with checkpoint inhibitors introduce immune-related adverse events, which may affect a wide array of organ systems. With prompt recognition, however, common side effects of systemic therapies for hepatocellular carcinoma are predictable, manageable, and many improve with appropriate intervention.
Collapse
Affiliation(s)
- Adam C Winters
- Pfleger Liver Institute, 200 Medical Plaza Driveway, Suite 214, Los Angeles, CA 90095, USA
| | - Fatima Bedier
- Pfleger Liver Institute, 200 Medical Plaza Driveway, Suite 214, Los Angeles, CA 90095, USA
| | - Sammy Saab
- Pfleger Liver Institute, 200 Medical Plaza Driveway, Suite 214, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Influence of NOS3 rs2070744 genotypes on hepatocellular carcinoma patients treated with lenvatinib. Sci Rep 2020; 10:17054. [PMID: 33051476 PMCID: PMC7553969 DOI: 10.1038/s41598-020-73930-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
We investigated whether or not nitric oxide synthase 3 (NOS3) rs2070744 genotypes can affect the response for lenvatinib treatment in patients with hepatocellular carcinoma (HCC). We evaluated the relation of the NOS3 rs2070744 genotypes to the tumor response, progression-free survival (PFS), and overall survival (OS) as the response for lenvatinib. We also examined the association between fibroblast growth factor receptor (FGFR) gene polymorphisms, a potential feature of lenvatinib, and the response. There were no significant differences between the studies for either PFS or OS, even though patients with the TT genotype had a longer mean PFS (hazard ratio [HR] 0.60; p = 0.069) and mean OS (HR 0.46; p = 0.075) than those with the TC/CC genotypes. However, patients with a single-nucleotide polymorphism (SNP) combination pattern of the NOS3 rs2070744 TC/CC and FGFR4 rs351855 CT/TT genotypes had a significantly shorter mean PFS (HR 2.56; p = 0.006) and mean OS (HR 3.36; p = 0.013) than those with the other genotypes. The NOS3 rs2070744 genotypes did not influence the clinical response. However, the SNP combination pattern of the NOS3 rs2070744 and FGFR4 rs351855 genotypes may be helpful as treatment effect predictors and prognostic factors for HCC patients treated with lenvatinib.
Collapse
|
17
|
Ai L, Xu Z, Yang B, He Q, Luo P. Sorafenib-associated hand-foot skin reaction: practical advice on diagnosis, mechanism, prevention, and management. Expert Rev Clin Pharmacol 2019; 12:1121-1127. [PMID: 31679411 DOI: 10.1080/17512433.2019.1689122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Sorafenib is a multitargeted tyrosine kinase inhibitor, which has been mainly used in the treatment of advanced hepatocellular carcinoma and renal cancer. However, hand-foot skin reaction (HFSR), as one of the most common adverse reactions, have hindered its long-term clinical application. At present, the mechanism of its occurrence has not been clearly studied and it leads to the lack of effective means of intervention. This article reviews known mechanism and management methods of HFSR caused by sorafenib.Areas covered: The author reviews HFSR caused by the treatment of sorafenib including the mechanism and management. English language reports located through PubMed are reviewed.Expert opinion: There are some conjectures about the mechanism of HFSR. However, the mechanism of HFSR induced by sorafenib is still unclear at present. In the absence of understanding the mechanism of HFSR, the most common method for clinical treatment of sorafenib-induced HFSR is dose down-regulation or discontinuation of treatment, which affects efficacy and even survival. Future research should focus on the mechanism of HFSR to find out new ways for prevention. Precautionary measures before the occurrence of HFSR can also be studied in the future.
Collapse
Affiliation(s)
- Leilei Ai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ziheng Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Tighe SP, Iqbal U, Fernandes CT, Ahmed A. Treatment of inoperable hepatocellular carcinoma with immunotherapy. BMJ Case Rep 2019; 12:12/7/e229744. [PMID: 31352386 DOI: 10.1136/bcr-2019-229744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the USA, mortality associated with hepatocellular carcinoma (HCC) continues to rise. Globally, HCC is the third most common cause of cancer-related death. In early stages of HCC, hepatic resection or liver transplantation are the preferred treatment options with a high probability of recurrence-free postoperative course. However, ineffective screening of chronic liver diseases in high-risk populations, poor linkage to care and suboptimal HCC surveillance has led to increasing rates of late-stage HCC at clinical presentation or diagnosis amenable only to palliative and experimental treatment options. Our case is a 66-year-old man with chronic hepatitis C virus infection complicated by cirrhosis and inoperable HCC which was non-responsive to selective intrahepatic trans-arterial chemoembolisation by interventional radiology. Therefore, he was treated with nivolumab immunotherapy and demonstrated normalisation of previously elevated alpha-fetoprotein levels suggestive of at least a partial response to immunotherapy. No adverse events related to nivolumab immunotherapy were encountered.
Collapse
Affiliation(s)
- Sean P Tighe
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Umair Iqbal
- Division of Internal Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Christopher T Fernandes
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
19
|
Peng T, Deng X, Tian F, Li Z, Jiang P, Zhao X, Chen G, Chen Y, Zheng P, Li D, Wang S. The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol 2019; 55:657-670. [PMID: 31322171 PMCID: PMC6685595 DOI: 10.3892/ijo.2019.4837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common hepatobiliary cancer after hepatocellular carcinoma. Antiangiogenic therapy has been administered to patients with CCA, but the benefits of this therapy remain unsatisfactory. Improved understanding of the molecular mechanisms underlying angiogenesis in CCA is required. In the present study, the expression of GATA-binding protein 6 (GATA6), lysyl oxidase-like 2 (LOXL2) and vascular endothelial growth factor A (VEGFA), in addition to the microvessel density (MVD), were evaluated by performing immunohistochemical staining of human CCA microarrays. The expression of GATA6/LOXL2 was associated with poor overall survival (P=0.01) and disease-free survival (P=0.02), and was positively associated with VEGFA expression (P=0.02) and MVD (P=0.04). In vitro, western blotting, reverse transcription-quantitative PCR analysis and ELISAs revealed that altered GATA6 and LOXL2 expression regulated the expression levels of secreted VEGFA. Co-immunoprecipitation demonstrated a physical interaction between GATA6 and LOXL2 in CCA cell lines, and the scavenger receptor cysteine-rich domain of LOXL2 interacted with GATA6, which regulated VEGFA mRNA expression and protein secretion, and promoted tube formation. In vivo analyses further revealed that GATA6/LOXL2 promoted VEGFA expression, angiogenesis and tumor growth. The GATA6/LOXL2 complex represents a novel candidate prognostic marker for stratifying patients with CCA. Drugs targeting this complex may possess great therapeutic value in the treatment of CCA.
Collapse
Affiliation(s)
- Tao Peng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiang Deng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Feng Tian
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Peng Jiang
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xin Zhao
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Guangyu Chen
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yan Chen
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Ping Zheng
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Dajiang Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Shuguang Wang
- Hepatobiliary Surgery Institute, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
20
|
Liu Y, Zhou L, Chen Y, Liao B, Ye D, Wang K, Li H. Hypertension as a prognostic factor in metastatic renal cell carcinoma treated with tyrosine kinase inhibitors: a systematic review and meta-analysis. BMC Urol 2019; 19:49. [PMID: 31174518 PMCID: PMC6555944 DOI: 10.1186/s12894-019-0481-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/28/2019] [Indexed: 02/05/2023] Open
Abstract
Background Conflicting evidence exists regarding the effect of hypertension on the prognosis of metastatic renal cell carcinoma (mRCC) patients treated with tyrosine kinase inhibitors (TKIs). This study aimed to assess the predictive value of TKIs-induced hypertension in patients with mRCC. Methods This study was registered in PROSPERO (CRD42019129593). PubMed, Embase, Web of Science and the Cochrane Library database were searched with terms: “renal cell carcinoma”, “hypertension”, “blood pressure”, “tyrosine kinase inhibitor”, “sunitinib”, “axitinib”, “sorafenib” and “pazopanib” until March 21, 2019. Hazard Ratios (HR) and 95% confidence intervals (CI) for progression-free survival (PFS) or overall survival (OS) were extracted and analyzed with Stata 15.0 software. Heterogeneity was assessed using the I2 value. Meta-regression, subgroup analysis and sensitivity analysis were also performed to explore heterogeneity. Publication bias was assessed with funnel plots and precisely assessed by Egger’s and Begg’s tests. The quality of evidence of outcomes was generated according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results A total of 4661 patients from 22 studies were included in the study. The results showed that the increase of blood pressure was an effective predictor for longer PFS (HR = 0.59, 95% CI: 0.48–0.71, p < 0.001; I2 = 77.3%) and OS (HR = 0.57, 95% CI: 0.45–0.70, p < 0.001; I2 = 77.4%) of patients with mRCC. Subgroup analysis revealed that patients receiving sunitinib and pazopanib could have longer PFS and OS. Conclusions This study indicated that TKIs-induced hypertension may be a good predictor for better prognosis of patients with mRCC receiving TKIs treatment, especially using sunitinib or pazopanib. Electronic supplementary material The online version of this article (10.1186/s12894-019-0481-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuntian Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Donghui Ye
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
21
|
Estrada CC, Maldonado A, Mallipattu SK. Therapeutic Inhibition of VEGF Signaling and Associated Nephrotoxicities. J Am Soc Nephrol 2019; 30:187-200. [PMID: 30642877 DOI: 10.1681/asn.2018080853] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhibition of vascular endothelial growth factor A (VEGFA)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling is a common therapeutic strategy in oncology, with new drugs continuously in development. In this review, we consider the experimental and clinical evidence behind the diverse nephrotoxicities associated with the inhibition of this pathway. We also review the renal effects of VEGF inhibition's mediation of key downstream signaling pathways, specifically MAPK/ERK1/2, endothelial nitric oxide synthase, and mammalian target of rapamycin (mTOR). Direct VEGFA inhibition via antibody binding or VEGF trap (a soluble decoy receptor) is associated with renal-specific thrombotic microangiopathy (TMA). Reports also indicate that tyrosine kinase inhibition of the VEGF receptors is preferentially associated with glomerulopathies such as minimal change disease and FSGS. Inhibition of the downstream pathway RAF/MAPK/ERK has largely been associated with tubulointerstitial injury. Inhibition of mTOR is most commonly associated with albuminuria and podocyte injury, but has also been linked to renal-specific TMA. In all, we review the experimentally validated mechanisms by which VEGFA-VEGFR2 inhibitors contribute to nephrotoxicity, as well as the wide range of clinical manifestations that have been reported with their use. We also highlight potential avenues for future research to elucidate mechanisms for minimizing nephrotoxicity while maintaining therapeutic efficacy.
Collapse
Affiliation(s)
- Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York; and
| | - Alejandro Maldonado
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York; and
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York; and .,Renal Section, Northport Veterans Affairs Medical Center, Northport, New York
| |
Collapse
|
22
|
Justice CN, Derbala MH, Baich TM, Kempton AN, Guo AS, Ho TH, Smith SA. The Impact of Pazopanib on the Cardiovascular System. J Cardiovasc Pharmacol Ther 2018; 23:387-398. [PMID: 29706106 PMCID: PMC6257996 DOI: 10.1177/1074248418769612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pazopanib is an approved treatment for renal cell carcinoma and a second-line treatment for nonadipocytic soft-tissue sarcoma. However, its clinical efficacy is limited by its cardiovascular side effects. Pazopanib and other vascular endothelial growth factor receptor tyrosine kinase inhibitors have been associated with the development of hypertension, QT interval prolongation, and other cardiovascular events; however, these mechanisms are largely unknown. Gaining a deeper understanding of these mechanisms is essential for the development of appropriate surveillance strategies and possible diagnostic biomarkers to allow us to monitor patients and modulate therapy prior to significant cardiac insult. This approach will be vital in keeping patients on these life-saving therapies and may be applicable to other tyrosine kinase inhibitors as well. In this review, we provide a comprehensive overview of the preclinical and clinical side effects of pazopanib with a focus on the mechanisms responsible for its toxicity to the cardiovascular system.
Collapse
Affiliation(s)
- Cody N. Justice
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mohamed H. Derbala
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tesla M. Baich
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Amber N. Kempton
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Aaron S. Guo
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Thai H. Ho
- Mayo Clinic Scottsdale, Arizona, Phoenix, AZ, USA
| | - Sakima A. Smith
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Division of Cardiology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
23
|
Sanidas E, Papadopoulos DP, Velliou M, Tsioufis K, Mantzourani M, Iliopoulos D, Perrea D, Barbetseas J, Papademetriou V. The Role of Angiogenesis Inhibitors in Hypertension: Following "Ariadne's Thread". Am J Hypertens 2018; 31:961-969. [PMID: 29788148 DOI: 10.1093/ajh/hpy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Arterial hypertension (HT) is one of the most frequently recorded comorbidities among patients under antiangiogenic therapy. Inhibitors of vascular endothelial growth factor and vascular endothelial growth factor receptors are most commonly involved in new onset or exacerbation of pre-existing controlled HT. From the pathophysiology point of view, data support that reduced nitric oxide release and sodium and fluid retention, microvascular rarefaction, elevated vasoconstrictor levels, and globular injury might contribute to HT. The purpose of this review was to present recent evidence regarding the incidence of HT induced by antiangiogenic agents, to analyze the pathophysiological mechanisms, and to summarize current recommendations for the management of elevated blood pressure in this field.
Collapse
Affiliation(s)
- Elias Sanidas
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Dimitris P Papadopoulos
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Maria Velliou
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Kostas Tsioufis
- First Department of Cardiology, Hippokration Hospital, University of Athens, Medical School, Athens, Greece
| | - Marina Mantzourani
- First Department of Internal Medicine, LAIKO General Hospital, University of Athens, Medical School, Athens, Greece
| | - Dimitris Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research N.S.Christeas, University of Athens, Medical School, Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S.Christeas, University of Athens, Medical School, Athens, Greece
| | - John Barbetseas
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Vasilios Papademetriou
- Hypertension and Cardiovascular Research Clinic, Veterans Affairs and Georgetown University Medical Centers, Washington DC, USA
| |
Collapse
|
24
|
Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A, Karlíčková J, Jahodář L, Vopršalová M, Varner KJ, Štěrba M. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev 2018; 38:1332-1403. [PMID: 29315692 PMCID: PMC6033155 DOI: 10.1002/med.21476] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in most developed countries of the world. Pharmaceuticals, illicit drugs, and toxins can significantly contribute to the overall cardiovascular burden and thus deserve attention. The present article is a systematic overview of drugs that may induce distinct cardiovascular toxicity. The compounds are classified into agents that have significant effects on the heart, blood vessels, or both. The mechanism(s) of toxic action are discussed and treatment modalities are briefly mentioned in relevant cases. Due to the large number of clinically relevant compounds discussed, this article could be of interest to a broad audience including pharmacologists and toxicologists, pharmacists, physicians, and medicinal chemists. Particular emphasis is given to clinically relevant topics including the cardiovascular toxicity of illicit sympathomimetic drugs (e.g., cocaine, amphetamines, cathinones), drugs that prolong the QT interval, antidysrhythmic drugs, digoxin and other cardioactive steroids, beta-blockers, calcium channel blockers, female hormones, nonsteroidal anti-inflammatory, and anticancer compounds encompassing anthracyclines and novel targeted therapy interfering with the HER2 or the vascular endothelial growth factor pathway.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Jiří Patočka
- Department of Radiology and Toxicology, Faculty of Health and Social StudiesUniversity of South BohemiaČeské BudějoviceCzech Republic
- Biomedical Research CentreUniversity HospitalHradec KraloveCzech Republic
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
| | - Fernando Remiao
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Aleš Mladěnka
- Oncogynaecologic Center, Department of Gynecology and ObstetricsUniversity HospitalOstravaCzech Republic
| | - Jana Karlíčková
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Luděk Jahodář
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Kurt J. Varner
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | | |
Collapse
|
25
|
Małyszko J, Małyszko M, Kozlowski L, Kozlowska K, Małyszko J. Hypertension in malignancy-an underappreciated problem. Oncotarget 2018; 9:20855-20871. [PMID: 29755695 PMCID: PMC5945504 DOI: 10.18632/oncotarget.25024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/19/2018] [Indexed: 12/25/2022] Open
Abstract
Hypertension is one of the most common comorbidities in cancer patients with malignancy, in particular, in the elderly. On the other hand, hypertension is a long-term consequence of antineoplastic treatment, including both chemotherapy and targeted agents. Several chemotherapeutics and targeted drugs may be responsible for development or worsening of the hypertension. The most common side effect of anti-VEGF (vascular endothelial growth factor) treatment is hypertension. However, pathogenesis of hypertension in patients receiving this therapy appears to be associated with multiple pathways and is not yet fully understood. Development of hypertension was associated with improved antitumor efficacy in patients treated with anti-antiangiogenic drugs in some but not in all studies. Drugs used commonly as adjuvants such as steroids, erythropoietin stimulating agents etc, may also cause rise in blood pressure or exacerbate preexisiting hypertension. Hypotensive therapy is crucial to manage hypertension during certain antineoplastic treatment. The choice and dose of antihypertensive drugs depend upon the presence of organ dysfunction, comorbidities, and/or adverse effects. In addition, severity of the hypertension and the urgency of blood pressure control should also be taken into consideration. As there are no specific guidelines on the hypertension treatment in cancer patients we should follow the available guidelines to obtain the best possible outcomes and pay the attention to the individualization of the therapy according to the actual situation.
Collapse
Affiliation(s)
- Jolanta Małyszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University in Bialystok, Bialystok, Poland
- Department of Nephrology, Dialysis and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Maciej Małyszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University in Bialystok, Bialystok, Poland
| | - Leszek Kozlowski
- Department of Oncological Surgery, Regional Cancer Center, Bialystok, Poland
| | - Klaudia Kozlowska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University in Bialystok, Bialystok, Poland
| | - Jacek Małyszko
- 1st Department of Nephrology and Transplantology with Dialysis Unit, Medical University in Bialystok, Bialystok, Poland
| |
Collapse
|
26
|
Clinical pharmacology of anti-angiogenic drugs in oncology. Crit Rev Oncol Hematol 2017; 119:75-93. [PMID: 28916378 DOI: 10.1016/j.critrevonc.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
Abnormal vasculature proliferation is one of the so-called hallmarks of cancer. Angiogenesis inhibitor therapies are one of the major breakthroughs in cancer treatment in the last two decades. Two types of anti-angiogenics have been approved: monoclonal antibodies and derivatives, which are injected and target the extracellular part of a receptor, and protein kinase inhibitors, which are orally taken small molecules targeting the intra-cellular Adenosine Triphosphate -pocket of different kinases. They have become an important part of some tumors' treatment, both in monotherapy or in combination. In this review, we discuss the key pharmacological concepts and the major pitfalls of anti-angiogenic prescriptions. We also review the pharmacokinetic and pharmacodynamics profile of all approved anti-angiogenic protein kinase inhibitors and the potential role of surrogate markers and of therapeutic drug monitoring.
Collapse
|
27
|
Validation of a Simple Scoring System to Predict Sorafenib Effectiveness in Patients with Hepatocellular Carcinoma. Target Oncol 2017; 12:795-803. [DOI: 10.1007/s11523-017-0522-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Faivre S, de Gramont A, Raymond E. Learning from 7 Years of Experience with Sorafenib in Advanced HCC: Sorafenib Better than Sorafenib? Target Oncol 2017; 11:565-7. [PMID: 26996978 DOI: 10.1007/s11523-016-0427-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sandrine Faivre
- Medical Oncology, Hôpitaux Universitaires Paris Nord Val de Seine (HUPVNS), Université Paris 7, 75010, Paris, France. .,Medical Oncology, Hôpital Beaujon, 100 Avenue du Général Leclerc, 92110, Clichy, France.
| | - Armand de Gramont
- Center of Experimental Therapeutics, Centre Hospitalier Universitaire Lausanne (CHUV), rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Eric Raymond
- Medical Oncology, Hôpitaux Universitaires Paris Nord Val de Seine (HUPVNS), Université Paris 7, 75010, Paris, France
| |
Collapse
|
29
|
Abstract
Tyrosine kinase inhibitors like sunitinib, sorafenib, pazopanib or axintinib are regarded the standard of care in the systemic therapy of metastatic renal cell carcinoma. However, the many side effects associated with this therapy pose challenges for the treating physician and the patient. This review offers an overview of the classification and the treatment of hypertension, which is one of the major side effects induced by all tyrosine kinase inhibitors, in order to improve treatment efficacy and patient compliance.
Collapse
|
30
|
Zhang HL, Qin XJ, Wang HK, Gu WJ, Ma CG, Shi GH, Zhou LP, Ye DW. Clinicopathological and prognostic factors for long-term survival in Chinese patients with metastatic renal cell carcinoma treated with sorafenib: a single-center retrospective study. Oncotarget 2017; 6:36870-83. [PMID: 26472104 PMCID: PMC4742216 DOI: 10.18632/oncotarget.4874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/01/2015] [Indexed: 01/13/2023] Open
Abstract
Data on long-term survival and prognostic significance of demographic factors and adverse events (AEs) associated with sorafenib, an orally administered multikinase inhibitor in Chinese population with advanced renal cell carcinoma (RCC) are limited. Outcome data from adult patients (n = 256) with advanced RCC who received sorafenib (400 mg twice daily) either as first-line or second-line therapy between April 2006 and May 2013 were analyzed retrospectively. The primary endpoint was median overall survival (OS), determined to be 22.2 (95% CI: 17.1–27.4) months, and the secondary endpoint was overall median progression-free survival (PFS), determined to be 13.6 (95% CI: 10.7–16.4) months at a median follow-up time of 61.8 (95% CI: 16.2–97.4) months. Analysis of the incidence of AEs revealed the most common side effect as hand-foot skin reactions (60.5%) followed by diarrhea (38.7%), fatigue (35.5%), alopecia (34.0%), rash (24.6%), hypertension (21.5%) and gingival hemorrhage (21.1%). Multivariate regression analysis revealed older age (≥ 58 years), lower Memorial Sloan-Kettering Cancer Center score, time from nephrectomy to sorafenib treatment, number of metastatic tumors and best response as significant and independent demographic predictors for improved PFS and/or OS (p ≤ 0.05). Alopecia was identified as a significant and independent predictor of increased OS, whereas vomiting and weight loss were identified as significant predictors of decreased OS (p ≤ 0.05). Sorafenib significantly improved OS and PFS in Chinese patients with advanced RCC. Considering the identified significant prognostic demographic factors along with the advocated prognostic manageable AEs while identifying treatment strategy may help clinicians select the best treatment modality and better predict survival in these patients.
Collapse
Affiliation(s)
- Hai-Liang Zhang
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiao-Jian Qin
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hong-Kai Wang
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wei-Jie Gu
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Chun-Guang Ma
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Guo-Hai Shi
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Liang-Ping Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China.,Department of Radiology, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ding-Wei Ye
- Department of Urology, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
31
|
Walko CM, Aubert RE, La-Beck NM, Clore G, Herrera V, Kourlas H, Epstein RS, McLeod HL. Pharmacoepidemiology of Clinically Relevant Hypothyroidism and Hypertension from Sunitinib and Sorafenib. Oncologist 2017; 22:208-212. [PMID: 28167571 DOI: 10.1634/theoncologist.2016-0233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Thyroid dysfunction and hypertension (HTN) have been sporadically reported with sunitinib (SUN) and sorafenib (SOR). Determination of the side effect incidence will enhance monitoring and management recommendations. METHODS An observational cohort study was performed using deidentified pharmacy claims data from a 3-year period to evaluate patients prescribed SUN, SOR, or capecitabine (CAP; comparison group). The primary outcome was time to first prescription for thyroid replacement or HTN treatment. Hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated by Cox proportional hazards models. RESULTS A total of 20,061 patients were eligible for evaluation of thyroid replacement therapy, which was initiated in 11.6% of those receiving SUN (HR, 16.77; 95% CI, 13.54-20.76), 2.6% of those receiving SOR (HR, 3.47; 95% CI, 2.46-4.98), and 1% of those receiving CAP, with median time to initiation of 4 months (range, 1-35 months). A total of 14,468 patients were eligible for evaluation of HTN therapy, which was initiated in 21% of SUN recipients (HR, 4.91; 95% CI, 4.19-5.74), 14% of SOR recipients (HR, 3.25; 95% CI, 2.69-3.91), and 5% of CAP recipients, with median time to initiation of 1 month (range, 1-18 months) for SOR and 2 months (range, 1-25 months) for SUN. CONCLUSION SUN and SOR significantly increased the risk for clinically relevant hypothyroidism; the risk was at least 4 times greater with SUN than with SOR. Patients receiving SUN and SOR had a similar elevated risk for clinically relevant HTN. These data provide robust measures of the incidence and time to onset of these clinically actionable adverse events. The Oncologist 2017;22:208-212Implications for Practice: The side effect profiles for novel therapies are typically used to create monitoring and management recommendations using clinical trial data from patient populations that may not represent those seen in standard clinical practice. This analysis using a large pharmacy claims database better reflects typical patients treated with sorafenib or sunitinib outside of a clinical trial. The findings of increased need for thyroid replacement in patients receiving sunitinib compared with sorafenib and a similar increase in need for hypertension therapy with both agents can be used to form clinically relevant monitoring recommendations for these agents.
Collapse
Affiliation(s)
- Christine M Walko
- DeBartolo Family Personalized Medicine Institute, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, Texas, USA
| | - Gosia Clore
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, Texas, USA
| | | | - Helen Kourlas
- Medco Health Solutions, Franklin Lakes, New Jersey, USA
| | | | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
32
|
Penttilä P, Rautiola J, Poussa T, Peltola K, Bono P. Angiotensin Inhibitors as Treatment of Sunitinib/Pazopanib-induced Hypertension in Metastatic Renal Cell Carcinoma. Clin Genitourin Cancer 2016; 15:384-390.e3. [PMID: 28089721 DOI: 10.1016/j.clgc.2016.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Research suggests that baseline use of angiotensin system inhibitors (ASIs) improves outcome in patients with metastatic renal cell carcinoma (mRCC), but it remains unknown whether the type of antihypertensive medication used to initiate management at onset of treatment-induced hypertension (HTN) is associated with outcome. We evaluated the association of ASIs and outcome among patients with mRCC treated with first-line tyrosine kinase inhibitors (TKIs). PATIENTS AND METHODS We identified 303 consecutive patients with mRCC who were treated with sunitinib or pazopanib in a single university hospital cancer center. Statistical analyses were performed using the Kaplan-Meier method and Cox regression adjusted for known risk factors. RESULTS Progression-free survival (PFS) and overall survival (OS) were similar among patients with baseline HTN (n = 197; 65%) versus patients with no baseline HTN (n = 106; 35%) (PFS; P = .72) (OS; P = .54). There was a significant difference between patients with treatment-induced HTN (n = 110) versus patients with no treatment-induced HTN (n = 193) for PFS (15.6 vs. 6.4 months, respectively; P < .001) and OS (34.9 vs. 13.9 months, respectively; P < .001). Use of ASIs at baseline (n = 126; 41.6%) had no impact on outcome as compared with patients receiving other antihypertensive medication (n = 71; 23.4%) or with patients with no baseline antihypertensive medication (n = 106; 35.0%). Among patients with TKI-induced HTN (n = 110), however, ASI users (n = 91) demonstrated improved OS (37.5 vs. 18.1 months; P = .001) and PFS (17.1 vs. 7.2 months; P = .004) versus ASI nonusers (n = 19), respectively. CONCLUSION Our results demonstrate survival benefit for ASI users among patients with TKI-induced HTN. These results, however, require further validation in a prospective setting.
Collapse
Affiliation(s)
- Patrick Penttilä
- Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland.
| | - Juhana Rautiola
- Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Katriina Peltola
- Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Petri Bono
- Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
33
|
Semeniuk-Wojtaś A, Lubas A, Stec R, Szczylik C, Niemczyk S. Influence of Tyrosine Kinase Inhibitors on Hypertension and Nephrotoxicity in Metastatic Renal Cell Cancer Patients. Int J Mol Sci 2016; 17:ijms17122073. [PMID: 27941701 PMCID: PMC5187873 DOI: 10.3390/ijms17122073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/06/2016] [Accepted: 12/02/2016] [Indexed: 01/09/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common kidney malignancies. An upgraded comprehension of the molecular biology implicated in the development of cancer has stimulated an increase in research and development of innovative antitumor therapies. The aim of the study was to analyze the medical literature for hypertension and renal toxicities as the adverse events of the vascular endothelial growth factor (VEGF) signaling pathway inhibitor (anti-VEGF) therapy. Relevant studies were identified in PubMed and ClinicalTrials.gov databases. Eligible studies were phase III and IV prospective clinical trials, meta-analyses and retrospective studies that had described events of hypertension or nephrotoxicity for patients who received anti-VEGF therapy. A total of 48 studies were included in the systematic review. The incidence of any grade hypertension ranged from 17% to 49.6%. Proteinuria and increased creatinine levels were ascertained in 8% to 73% and 5% to 65.6% of patients, respectively. These adverse events are most often mild in severity but may sometimes lead to treatment discontinuation. Nephrotoxicity and hypertension are related to multiple mechanisms; however, one of the main disturbances in those patients is VEGF inhibition. There is a significant risk of developing hypertension and renal dysfunction among patients receiving anti-VEGF treatment; however, there is also some evidence that these side effects may be used as biomarkers of response to antiangiogenic agents.
Collapse
Affiliation(s)
| | - Arkadiusz Lubas
- Military Institute of Medicine Szaserów, 128 Street, 04-141 Warsaw, Poland.
| | - Rafał Stec
- Military Institute of Medicine Szaserów, 128 Street, 04-141 Warsaw, Poland.
| | - Cezary Szczylik
- Military Institute of Medicine Szaserów, 128 Street, 04-141 Warsaw, Poland.
| | - Stanisław Niemczyk
- Military Institute of Medicine Szaserów, 128 Street, 04-141 Warsaw, Poland.
| |
Collapse
|
34
|
Gu B, Gao W, Chu H, Gao J, Fu Z, Ding H, Lv J, Wu Q. Adverse events risk associated with anti-VEGFR agents in the treatment of advanced nonsmall-cell lung cancer: A meta-analysis. Medicine (Baltimore) 2016; 95:e3752. [PMID: 27902583 PMCID: PMC5134808 DOI: 10.1097/md.0000000000003752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To perform this meta-analysis, we investigated the risk of the most clinically relevant adverse events related to antivascular endothelial growth factor receptor (VEGFR) agents in advanced nonsmall-cell lung cancer (NSCLC).A comprehensive literature search for studies published up to October 2015 was performed. Prospective randomized controlled phase II/III clinical trials that comparing therapy with or without anti-VEGFR agents for advanced NSCLC were included for analysis. Summary relative risk (RR) and 95% confidence intervals (CIs) were calculated using random effects or fixed effects according to the heterogeneity among included trials.A total of 11,701 patients from 18 clinical trials were included for analysis. Pooled RR showed that the use of anti-VEGFR agents significantly increased the risk of developing hypertension (RR 4.71, 95% CI 3.29-6.73, P < 0.001) and fatal adverse events (RR 1.33, 95% CI 1.12-1.58, P = 0.001). No statistically significant differences were found for gastrointestinal (GI) perforation (P = 0.41), arterial or venous thromboembolic events (P = 0.49 and P = 0.16, respectively), or hemorrhagic events (P = 0.81). Sensitive analysis indicated that the significance estimate of pooled RR of fatal adverse event (FAEs) was not significantly influenced by omitting any single study.The use of anti-VEGFR agents in advanced NSCLC does significantly increase the risk of hypertension and fatal adverse events, but not for arterial or venous thromboembolic events, GI perforation, or hemorrhagic events.
Collapse
Affiliation(s)
- Biao Gu
- Department of Thoracic Surgery, Huai’an First People's Hospital, Nanjing Medical University
| | - WenChuang Gao
- Department of Thoracic Surgery, Lian Shui People's Hospital, Lianshui, Huai’an
| | - HongJun Chu
- Department of Thoracic Surgery, Nantong Third People's Hospital, Nantong University, Nantong
| | - Jian Gao
- Department of Analysis, Huai’an First People's Hospital, Nanjing Medical University, Huai’an, Jiangsu
| | - Zhi Fu
- Department of Thoracic Surgery, Huai’an First People's Hospital, Nanjing Medical University
| | - Hui Ding
- Department of Thoracic Surgery, Huai’an First People's Hospital, Nanjing Medical University
| | - JunJie Lv
- Department of Thoracic Surgery, Huai’an First People's Hospital, Nanjing Medical University
| | - QingQuan Wu
- Department of Thoracic Surgery, Huai’an First People's Hospital, Nanjing Medical University
| |
Collapse
|
35
|
Gover-Proaktor A, Granot G, Shapira S, Raz O, Pasvolsky O, Nagler A, Lev DL, Inbal A, Lubin I, Raanani P, Leader A. Ponatinib reduces viability, migration, and functionality of human endothelial cells. Leuk Lymphoma 2016; 58:1455-1467. [PMID: 27733071 DOI: 10.1080/10428194.2016.1239258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the prognosis of chronic myeloid leukemia. With the advent of highly efficacious therapy, the focus has shifted toward managing TKI adverse effects, such as vascular adverse events (VAEs). We used an in vitro angiogenesis model to investigate the TKI-associated VAEs. Our data show that imatinib, nilotinib, and ponatinib reduce human umbilical vein endothelial cells (HUVECs) viability. Pharmacological concentrations of ponatinib induced apoptosis, reduced migration, inhibited tube formation of HUVECs, and had a negative effect on endothelial progenitor cell (EPC) function. Furthermore, in HUVECs transfected with VEGF receptor 2 (VEGFR2), the effect of ponatinib on tube formation and on all parameters representing normal endothelial cell function was less prominent than in control cells. This is the first report regarding the pathogenesis of ponatinib-associated VAEs. The antiangiogenic effect of ponatinib, possibly mediated by VEGFR2 inhibition, as shown in our study, is another piece in the intricate puzzle of TKI-associated VAEs.
Collapse
Affiliation(s)
| | - Galit Granot
- a Felsenstein Medical Research Center , Tel Aviv , Israel
| | - Saar Shapira
- a Felsenstein Medical Research Center , Tel Aviv , Israel.,b The Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Oshrat Raz
- a Felsenstein Medical Research Center , Tel Aviv , Israel
| | - Oren Pasvolsky
- b The Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel.,c Division of Hematology, Davidoff Cancer Center , Beilinson Hospital, Rabin Medical Center , Petah- Tikva , Israel
| | - Arnon Nagler
- b The Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel.,d Division of Hematology , Chaim Sheba Medical Center , Tel Aviv , Israel
| | - Dorit L Lev
- a Felsenstein Medical Research Center , Tel Aviv , Israel
| | - Aida Inbal
- c Division of Hematology, Davidoff Cancer Center , Beilinson Hospital, Rabin Medical Center , Petah- Tikva , Israel
| | - Ido Lubin
- a Felsenstein Medical Research Center , Tel Aviv , Israel.,b The Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Pia Raanani
- b The Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel.,c Division of Hematology, Davidoff Cancer Center , Beilinson Hospital, Rabin Medical Center , Petah- Tikva , Israel
| | - Avi Leader
- b The Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel.,c Division of Hematology, Davidoff Cancer Center , Beilinson Hospital, Rabin Medical Center , Petah- Tikva , Israel
| |
Collapse
|
36
|
Derosa L, Izzedine H, Albiges L, Escudier B. Hypertension and Angiotensin System Inhibitors in Patients with Metastatic Renal Cell Carcinoma. Oncol Rev 2016; 10:298. [PMID: 27994768 PMCID: PMC5136757 DOI: 10.4081/oncol.2016.298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022] Open
Abstract
Arterial hypertension (HTN) is a class effect of anti-vascular endothelial growth factor (VEGF) therapies, including the monoclonal antibody bevacizumab. Data are conflicting regarding the role of the renin-angiotensin system on angiogenesis and recent data suggest that the use of angiotensin system inhibitors (ASIs; angiotensin receptor blockers or angiotensin-converting enzyme inhibitors) is associated with improved survival in metastatic renal cell carcinoma (mRCC), particularly when used with VEGF targeted therapies. The aim of this review is to discuss the available treatment options for mRCC and associated incidence of hypertension as well as summarize the known data about ASIs use and mRCC. Additionally, given that the optimal management of HTN remains unclear, we will focus on prevention strategies and propose potential therapeutic approaches.
Collapse
Affiliation(s)
- Lisa Derosa
- Gustave Roussy Cancer Center, University of Paris-Saclay, Villejuif, France
| | - Hassane Izzedine
- Department of Nephrology and Pathology, Pitié Salpêtrière Hospital, Paris, France
| | - Laurence Albiges
- Gustave Roussy Cancer Center, University of Paris-Saclay, Villejuif, France
| | - Bernard Escudier
- Gustave Roussy Cancer Center, University of Paris-Saclay, Villejuif, France
| |
Collapse
|
37
|
Abstract
With the incorporation of targeted therapies in routine cancer therapy, it is imperative that the array of toxicities associated with these agents be well-recognized and managed, especially since these toxicities are distinct from those seen with conventional cytotoxic agents. This review will focus on these renal toxicities from commonly used targeted agents. This review discusses the mechanisms of these side effects and management strategies. Anti-vascular endothelial growth factor (VEGF) agents including the monoclonal antibody bevacizumab, aflibercept (VEGF trap), and anti-VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) all cause hypertension, whereas some of them result in proteinuria. Monoclonal antibodies against the human epidermal growth factor receptor (HER) family of receptors, such as cetuximab and panitumumab, cause electrolyte imbalances including hypomagnesemia and hypokalemia due to the direct nephrotoxic effect of the drug on renal tubules. Cetuximab may also result in renal tubular acidosis. The TKIs, imatinib and dasatinib, can result in acute or chronic renal failure. Rituximab, an anti-CD20 monoclonal antibody, can cause acute renal failure following initiation of therapy because of the onset of acute tumor lysis syndrome. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, can result in proteinuria. Discerning the renal adverse effects resulting from these agents is essential for safe treatment strategies, particularly in those with pre-existing renal disease.
Collapse
Affiliation(s)
- Anum Abbas
- Department of Internal Medicine, School of Medicine, Creighton University, Omaha, NE, USA
| | - Mohsin M Mirza
- Department of Internal Medicine, School of Medicine, Creighton University, Omaha, NE, USA
| | - Apar Kishor Ganti
- Division of Oncology and Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, NE, USA
| | - Ketki Tendulkar
- Division of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, 983040 Nebraska Medical Center, Omaha, NE, 68198-3040, USA.
| |
Collapse
|
38
|
Yada M, Miyazaki M, Motomura K, Masumoto A, Nakamuta M, Kohjima M, Sugimoto R, Aratake Y, Higashi N, Morizono S, Takao S, Yamashita N, Satoh T, Yamashita S, Kuniyoshi M, Kotoh K. The prognostic role of lactate dehydrogenase serum levels in patients with hepatocellular carcinoma who are treated with sorafenib: the influence of liver fibrosis. J Gastrointest Oncol 2016; 7:615-23. [PMID: 27563453 DOI: 10.21037/jgo.2016.03.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Serum lactate dehydrogenase (LDH) levels could be a prognostic factor for sorafenib-treated patients with several types of solid tumor because it reflects hypoxic circumstances in aggressive tumors. For hepatocellular carcinoma (HCC), however, the prognostic role of LDH has been controversial. Liver fibrosis can potentially cause hypoxia in the liver, which has not been previously studied in the patients with advanced HCC. Thus, we aimed to analyze the prognostic role of LDH based on the degree of fibrosis. METHODS Eighty-nine consecutive patients with HCC (Child-Pugh class A) who were treated using sorafenib were enrolled into this study. Pretreatment characteristics and changes in hepatic functional tests based on early response to sorafenib and serum LDH levels were analyzed. The degree of fibrosis was estimated using the aspartate aminotransferase (AST) to platelet ratio index (APRI), and the tumor response was evaluated after 3 months of sorafenib treatment. RESULTS Overall, five patients discontinued sorafenib within 4 weeks. For the other 84 patients, those with progressive disease (PD) had significantly high pretreatment LDH levels, which correlated with the APRI score but not with the tumor stage. Multivariate logistic analysis revealed that older age and lower pretreatment LDH levels were independent prognostic factors for a better response to sorafenib. In patients who discontinued sorafenib early, three experienced acute liver failure accompanied with an increase in serum LDH. CONCLUSIONS We demonstrated that baseline serum LDH levels in HCC patients were affected by liver fibrosis but not by the tumor stage, and these LDH levels could be a marker for early response to sorafenib. A marked increase in serum LDH levels during sorafenib administration might also indicate subsequent acute liver failure. Close observation of serum LDH levels before and during sorafenib treatment could be useful in managing treatment of patients receiving this therapy.
Collapse
Affiliation(s)
- Masayoshi Yada
- Department of Hepatology, Iizuka Hospital, Iizuka, Japan
| | | | - Kenta Motomura
- Department of Hepatology, Iizuka Hospital, Iizuka, Japan
| | | | - Makoto Nakamuta
- Department of Gastroenterology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Gastroenterology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Rie Sugimoto
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yoshifusa Aratake
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Nobuhiko Higashi
- Department of Gastroenterology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Shusuke Morizono
- Department of Gastroenterology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Shinichiro Takao
- Department of Gastroenterology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Naoki Yamashita
- Department of Hepatology, Steel Memorial Yawata Hospital, Fukuoka, Japan
| | - Takeaki Satoh
- Department of Gastroenterology, National Hospital Organization Kokura Medical Center, Fukuoka, Japan
| | - Shinsaku Yamashita
- Department of Gastroenterology, National Hospital Organization Kokura Medical Center, Fukuoka, Japan
| | - Masami Kuniyoshi
- Department of Gastroenterology, Kyushu Rosai Hospital, Fukuoka, Japan
| | - Kazuhiro Kotoh
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Feasibility of 4D perfusion CT imaging for the assessment of liver treatment response following SBRT and sorafenib. Adv Radiat Oncol 2016; 1:194-203. [PMID: 28740888 PMCID: PMC5514015 DOI: 10.1016/j.adro.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/26/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
Objectives To evaluate the feasibility of 4-dimensional perfusion computed tomography (CT) as an imaging biomarker for patients with hepatocellular carcinoma and metastatic liver disease. Methods and materials Patients underwent volumetric dynamic contrast-enhanced CT on a 320-slice scanner before and during stereotactic body radiation therapy and sorafenib, and at 1 and 3 months after treatment. Quiet free breathing was used in the CT acquisition and multiple techniques (rigid or deformable registration as well as outlier removal) were applied to account for residual liver motion. Kinetic modeling was performed on a voxel-by-voxel basis in the gross tumor volume and normal liver resulting in 3-dimensional parameter maps of blood perfusion, capillary permeability, blood volume, and mean transit time. Perfusion characteristics in the tumor and adjacent liver were correlated with radiation dose distributions to evaluate dose-response. Paired t tests assessed change in spatial and histogram parameters from baseline to different time points during and after treatment. Technique reproducibility as well as the impact of arterial and portal vein input functions was also investigated using intra- and inter-subject variance and Bland-Altman analysis. Results Quantitative perfusion parameters were reproducible (±5.7%; range, 2%-10%) depending on tumor/normal liver type and kinetic parameter. Statistically significant reductions in tumor perfusion were measurable over the course of treatment and as early as 1 week after sorafenib administration (P < .05). Marked liver parenchyma perfusion reduction was seen with a strong dose-response effect (R2 = 0.95) that increased significantly over the course treatment. Conclusions The proposed methodology demonstrated feasibility of evaluating spatiotemporal changes in liver tumor perfusion and normal liver function following antiangiogenic therapy and radiation treatment warranting further evaluation of biomarker prognostication.
Collapse
|
40
|
Yamasaki A, Umeno N, Harada S, Tanaka K, Kato M, Kotoh K. Deteriorated portal flow may cause liver failure in patients with hepatocellular carcinoma being treated with sorafenib. J Gastrointest Oncol 2016; 7:E36-40. [PMID: 27284486 DOI: 10.21037/jgo.2015.10.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We encountered two patients with hepatocellular carcinoma (HCC) who showed rapid progression of liver failure during sorafenib treatment. One had portal vein tumor thrombus (PVTT) and the other developed portal vein thrombosis (PVT) during the treatment, and both of them experienced the elevation of serum lactate dehydrogenase (LDH) concentration during the administration of sorafenib. Their clinical courses indicate that the liver failure might have been caused by sorafenib-induced liver hypoxia, being amplified in the circumstances with reduced portal flow. To our best knowledge, all the reported patients who achieved complete remission (CR) during sorafenib monotherapy had a condition that could decrease portal blood flow. We hypothesized that pathogenesis of disease may be similar in HCC patients who achieve CR and those who experience liver failure while on sorafenib. Sorafenib treatment of patients with HCC and deteriorated portal flow may be a double-edged sword.
Collapse
Affiliation(s)
- Akihiro Yamasaki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Narihiro Umeno
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeru Harada
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Kotoh
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Granito A, Marinelli S, Negrini G, Menetti S, Benevento F, Bolondi L. Prognostic significance of adverse events in patients with hepatocellular carcinoma treated with sorafenib. Therap Adv Gastroenterol 2016; 9:240-9. [PMID: 26929785 PMCID: PMC4749854 DOI: 10.1177/1756283x15618129] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sorafenib is the standard treatment for patients with hepatocellular carcinoma (HCC) with advanced stage disease. Although its effectiveness has been demonstrated by randomized clinical trials and confirmed by field practice studies, reliable markers predicting therapeutic response have not yet been identified. Like other tyrosine kinase inhibitors, treatment with sorafenib is burdened by the development of adverse effects, the most frequent being cutaneous toxicity, diarrhoea, arterial hypertension and fatigue. In recent years, several studies have analysed the correlation between off-target effects and sorafenib efficacy in patients with HCC. In this review, an overview of the studies assessing the prognostic significance of sorafenib-related adverse events is provided.
Collapse
Affiliation(s)
| | - Sara Marinelli
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giulia Negrini
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Saverio Menetti
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesca Benevento
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Luigi Bolondi
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
42
|
Wasserstrum Y, Kornowski R, Raanani P, Leader A, Pasvolsky O, Iakobishvili Z. Hypertension in cancer patients treated with anti-angiogenic based regimens. CARDIO-ONCOLOGY 2015; 1:6. [PMID: 33530150 PMCID: PMC7837153 DOI: 10.1186/s40959-015-0009-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023]
Abstract
New anti-cancer drugs that inhibit the vascular endothelial growth factor (VEGF) signaling pathway are highly effective in the treatment of solid tumors, however concerns remain regarding their cardiovascular safety. The most common side effect of VEGF signaling pathway (VSP) inhibition is the development of systemic hypertension. We review the incidence, possible mechanisms, significance and management of hypertension in patients treated with VSP inhibitors.
Collapse
Affiliation(s)
- Yishay Wasserstrum
- Department of Cardiology, Rabin Medical Center, Petah Tikva, 49100, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petah Tikva, 49100, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pia Raanani
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Leader
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pasvolsky
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zaza Iakobishvili
- Department of Cardiology, Rabin Medical Center, Petah Tikva, 49100, Israel. .,Sackler School of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
43
|
Pasvolsky O, Leader A, Iakobishvili Z, Wasserstrum Y, Kornowski R, Raanani P. Tyrosine kinase inhibitor associated vascular toxicity in chronic myeloid leukemia. CARDIO-ONCOLOGY 2015; 1:5. [PMID: 33530148 PMCID: PMC7837152 DOI: 10.1186/s40959-015-0008-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/25/2015] [Indexed: 11/28/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the management and outcomes of chronic myeloid leukemia (CML) patients. Improved disease control and prolonged life expectancy now mandate focus on improving TKIs’ safety profile. Recently, vascular adverse events (VAEs) have emerged as a serious consequence of some of the newer TKIs. In this review, we describe the clinical spectrum of TKI-associated VAE, and examine the unique vascular safety profile of the main TKIs currently used in the treatment of CML: imatinib, nilotinib, dasatinib, bosutinib and ponatinib. The issue of TKI-related platelet dysfunction is discussed as well. We describe the contemporary research findings regarding the possible pathogenesis of the VAE. Finally, the different aspects of TKI-associated VAE management are addressed, including prevention methods, monitoring strategies and treatment options.
Collapse
Affiliation(s)
- Oren Pasvolsky
- Hematology Institute, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, 39 Jabotinsky Street, Petah Tikva, 49100, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Leader
- Hematology Institute, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, 39 Jabotinsky Street, Petah Tikva, 49100, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zaza Iakobishvili
- Department of Cardiology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yishay Wasserstrum
- Department of Cardiology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Kornowski
- Department of Cardiology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pia Raanani
- Hematology Institute, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, 39 Jabotinsky Street, Petah Tikva, 49100, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
44
|
Lu YY, Wang JJ, Zhang XK, Li WB, Guo XL. 1118-20, an indazole diarylurea compound, inhibits hepatocellular carcinoma HepG2 proliferation and tumour angiogenesis involving Wnt/β-catenin pathway and receptor tyrosine kinases. J Pharm Pharmacol 2015; 67:1393-405. [DOI: 10.1111/jphp.12440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/12/2015] [Indexed: 12/17/2022]
Abstract
Abstract
Objectives
Sorafenib is a first multi-kinase inhibitor and one of the most widely used small-molecule oral-targeted drugs. It has been widely used for the treatment of patients with advanced renal cell carcinoma and hepatocellular carcinoma. However, some common adverse effects of sorafenib may impact quality of life. In this study, we evaluated the inhibitory effect on the growth of hepatocellular carcinoma cell line (HepG2) and suppression on angiogenesis of 1118-20, a newly synthesized indazole diarylurea compound.
Methods
We evaluated the activity of 1118-20 against HepG2 cells growth and tumour angiogenesis of human umbilical vascular endothelial cell line (HUVECs) with sorafenib as a positive control.
Key findings
The cytotoxic efficacy of 1118-20 was higher in HepG2 cells than human normal liver cell line (HL-7702). 1118-20 significantly suppressed the proliferation of HepG2 cells by apoptosis induction via Bcl-2 family-mediated mitochondria pathway and inhibition on Wnt/β-catenin signalling pathway. 1118-20 effectively blunt the motility and migration, and inhibited the formation of capillary tube of HUVECs through suppression of angiogenic factors expression. Moreover, the results indicated that 1118-20 exerted higher efficacy than sorafenib on tumour cell proliferation and angiogenesis.
Conclusions
Compared with its parent drug sorafenib, we found that 1118-20 possessed more potential on inhibition of angiogenesis and cancer cells growth. Inhibitory effect of 1118-20 on non-tumour liver cell HL-7702 was lower than that on hepatoma carcinoma cell HepG2. These results suggest that 1118-20 is a promising candidate compound that could be developed to a potent anticancer agent.
Collapse
Affiliation(s)
- Yu-Yin Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jing-Jing Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin-Ke Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wen-Bao Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
45
|
Izzedine H, Derosa L, Le Teuff G, Albiges L, Escudier B. Hypertension and angiotensin system inhibitors: impact on outcome in sunitinib-treated patients for metastatic renal cell carcinoma. Ann Oncol 2015; 26:1128-1133. [PMID: 25795198 DOI: 10.1093/annonc/mdv147] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/12/2015] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND To examine the association between hypertension (HTN), angiotensin system inhibitors (ASI) use and survival outcomes in patients with metastatic renal cell carcinoma (mRCC) treated with sunitinib (SU). METHODS We retrospectively reviewed all patients with mRCC who received SU as first-line treatment in Gustave Roussy from April 2004 to November 2013. The HTN (either pre-existing or secondary to SU), use of ASI (either before or during SU) were analysed. Overall survival (OS) and progression-free survival (PFS) of different exposures were compared with log-rank test. The associations between exposures and survival outcomes were estimated with hazard ratios (HRs) and 95% confidence interval (CI) through a multivariable Cox model adjusted for age, gender, International mRCC Database Consortium risk group and histology. RESULTS Among 213 patients with a 3.6-year median follow-up, 134 were hypertensive and 105 were ASI users with a significant association between the two exposures (P < 0.0001). Hypertensive patients have longer OS (median: 41.6 versus 16.4 months, P < 0.0001) and longer PFS (median: 12.9 versus 5.6 months, P < 0.0001) than non-hypertensive patients (n = 79). ASI users (n = 105) had more HTN_PRE compared with those (n = 108) who did not (65% versus 19%, P < 0.001). Multivariable analysis showed that hypertensive patients were significantly associated with OS (P = 0.05) and marginally with PFS (P = 0.06) while ASI intake was significantly associated with better OS [HR = 0.40; 95% CI (0.24-0.66), P < 0.001] and PFS [HR = 0.55 (0.35-0.86), P = 0.009]. The latter remain statistically significantly associated after controlling for the number of metastases. There is no difference on outcome between patients who receive ASI before starting SU and those who received ASI during SU treatment. CONCLUSION Concomitant use of ASI may significantly improve OS and PFS in mRCC patients receiving SU. HTN is marginally associated with the outcome in these patients.
Collapse
Affiliation(s)
- H Izzedine
- Department of Nephrology, Monceau Park International Clinic, Paris.
| | - L Derosa
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Santa Chiara Hospital, Pisa, Italy
| | - G Le Teuff
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | - L Albiges
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - B Escudier
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
46
|
Minguet J, Smith KH, Bramlage CP, Bramlage P. Targeted therapies for treatment of renal cell carcinoma: recent advances and future perspectives. Cancer Chemother Pharmacol 2015; 76:219-33. [PMID: 25963382 DOI: 10.1007/s00280-015-2770-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE A wide variety of targeted therapies are available for the treatment of renal cancer that has progressed beyond the point at which surgery is a viable option. In addition, there are many more that are in the different stages of clinical trials. Here, we provide a methodical discussion of the efficacy and safety of targeted therapies for the treatment of advanced renal cell carcinoma. METHODS We conducted a systematic literature employing the search terms: renal cell carcinoma targets, tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors, and each of the drugs discussed within these papers. RESULTS The identified targeted therapies work by disrupting specific signalling pathways involved in tumour progression, such as those responsible for angiogenesis and cell proliferation. Tyrosine kinase inhibitors and mammalian target of rapamycin inhibitors are now established classes of drugs used in the treatment of renal cancer, with a total of six having received regulatory approval to date (sorafenib, sunitinib, pazopanib, axitinib, temsirolimus, and everolimus). Ongoing trials are likely to result in addition to these in the near future, for example, tivozanib, dovitinib, and cediranib. Furthermore, in addition to these small molecule drugs, immunotherapies involving monoclonal antibodies against signalling molecules such as vascular endothelial growth factor (bevacizumab) or programmed death-1 (nivolumab) are receiving increasing attention. CONCLUSIONS Targeted therapies have great potential for disrupting tumour progression by inhibiting certain signalling pathways. As our understanding of the biochemical pathways involved in cancer progresses, additional targets are certain to become apparent, expanding treatment options even further.
Collapse
Affiliation(s)
- Joan Minguet
- European Institute of Cancer Research (EICR), Carrer del Passeig, 2, 08221, Terrassa, Spain,
| | | | | | | |
Collapse
|
47
|
Kitai Y, Matsubara T, Yanagita M. Onco-nephrology: current concepts and future perspectives. Jpn J Clin Oncol 2015; 45:617-28. [DOI: 10.1093/jjco/hyv035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
|
48
|
Abstract
The use of novel targeted anticancer agents has led to overall improvement in the prognosis of many patients affected by various malignancies, but has also been associated with an increased risk of poorly characterized toxic effects to different organs, including the kidneys. The high prevalence of kidney impairment in the general population complicates the issue further. Nephrologists most frequently work with patients with cancer when they are asked to investigate kidney function to assess the need for dose adjustments in anticancer therapy. A thorough knowledge of the renal safety profile of novel life-prolonging anticancer therapies, specific features of their metabolism, and pharmacokinetic and pharmacodynamic properties (under normal circumstances as well as in the setting of renal replacement therapy) is, therefore, necessary to preserve kidney function as far as possible and to ensure optimum treatment. In this Review we summarize the present knowledge of renal toxic effects from novel targeted anticancer agents and discuss whether the management of patients' treatment needs to be modified. We also advocate the development of a new onconephrology subspeciality.
Collapse
|
49
|
Li Y, Gao ZH, Qu XJ. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin Pharmacol Toxicol 2015; 116:216-21. [PMID: 25495944 DOI: 10.1111/bcpt.12365] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Sorafenib is the first multi-kinase inhibitor (TKI) approved for the treatment of advanced hepatocellular cancer (HCC) and metastatic renal cell cancer (RCC) and is increasingly being used to treat patients with well-differentiated radioiodine-resistant thyroid cancer (DTC). Sorafenib demonstrates targeted activity on several families of receptor and non-receptor tyrosine kinases that are involved in angiogenesis, tumour growth and metastatic progression of cancer. Sorafenib treatment results in long-term efficacy and low incidence of life-threatening toxicities. Although sorafenib has demonstrated many benefits in patients, the adverse effects cannot be ignored. The most common treatment-related toxicities include diarrhoea, fatigue, hand-foot skin reaction and hypertension. Most of these toxicities are considered mild to moderate and manageable to varying degrees; however, cardiovascular events might lead to death. In this MiniReview, we summarize the adverse effects of sorafenib that commonly occur in patients with advanced cancers.
Collapse
Affiliation(s)
- Ye Li
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
50
|
Haque S, Choe K, Olowokure O. Bilateral above knee amputations after prolonged exposure to sorafenib and trebananib. J Gastrointest Oncol 2014; 5:E109-12. [PMID: 25436132 PMCID: PMC4226824 DOI: 10.3978/j.issn.2078-6891.2014.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/29/2014] [Indexed: 01/20/2023] Open
Abstract
Sorafenib is an oral tyrosine kinase inhibitor (TKI) that acts on many targets including RAF kinases, vascular endothelial growth factor (VEGF) 1, 2, 3, platelet derived growth factor and c-kit receptor and is currently FDA approved for unresectable hepatocellular carcinoma (HCC). Trebananib (AMG 386) is an angiopoietin 1/2 antagonist and acts as anti-angiogenic agent and may possess synergistic effects with sorafenib. Here we report a case of a 66-year-old male with a history of Hepatitis C, and a 22 pack year (PY) smoking history with unresectable multifocal HCC who was placed on both therapies for an extended period of time with an excellent clinical response but ended up developing bilateral critical limb ischemia requiring above knee amputations.
Collapse
Affiliation(s)
- Sulsal Haque
- University of Cincinnati, Cincinnati OH, 45267, USA
| | - Kyuran Choe
- University of Cincinnati, Cincinnati OH, 45267, USA
| | | |
Collapse
|