1
|
Sangeetha B, Leroy KI, Udaya Kumar B. Harnessing Bioluminescence: A Comprehensive Review of In Vivo Imaging for Disease Monitoring and Therapeutic Intervention. Cell Biochem Funct 2024; 42:e70020. [PMID: 39673353 DOI: 10.1002/cbf.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The technique of using naturally occurring light-emitting reactants (photoproteins and luciferases] that have been extracted from a wide range of animals is known as bioluminescence imaging, or BLI. This imaging offers important details on the location and functional state of regenerative cells inserted into various disease-modeling animals. Reports on gene expression patterns, cell motions, and even the actions of individual biomolecules in whole tissues and live animals have all been made possible by bioluminescence. Generally speaking, bioluminescent light in animals may be found down to a few centimetres, while the precise limit depends on the signal's brightness and the detector's sensitivity. We can now spatiotemporally visualize cell behaviors in any body region of a living animal in a time frame process, including proliferation, apoptosis, migration, and immunological responses, thanks to BLI. The biological applications of in vivo BLI in nondestructively monitoring biological processes in intact small animal models are reviewed in this work, along with some of the advancements that will make BLI a more versatile molecular imaging tool.
Collapse
Affiliation(s)
- B Sangeetha
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - K I Leroy
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - B Udaya Kumar
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| |
Collapse
|
2
|
Homaei A, Khajeh K, Sariri R, Kamrani E. An emphatic study on the luciferin-luciferase bioluminescence system of Benthosema pterotum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1409-1419. [PMID: 37943346 DOI: 10.1007/s10695-023-01264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Approximately 80% of luminous organisms live in the oceans, and considerable diversity of life dependence on bioluminescence has been observed in marine organisms. Among vertebrates, luminous fish species are the only group of vertebrates that have the ability to emit bioluminescent light. Meanwhile, the lantern fish family (Myctophidae), with 33 genera all of which have the ability to emit light, is considered the most prominent family among the luminous fish of the deep oceans and seas. Lantern fish Benthosema pterotum has bioluminescence properties due to the presence of photophores scattered in its ventral-lateral region. However, no research has been performed on its bioluminescence system and light emission mechanism. The present research aimed to assess the type of bioluminescence, pigment, photoprotein, or luciferin-luciferase system in B. pterotum. In order to determine the type of light-emitting system in B. pterotum species, several specific experiments were designed and performed. It was shown that the light emission system in B. pterotum species is categorized into the luciferin-luciferase type. Conducting this research was not only innovative, but it also could be the beginning of further research in the field of marine biochemistry and production of the recombinant active forms of enzymes for industrial, commercial, medical, and pharmaceutical purposes.
Collapse
Affiliation(s)
- Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
3
|
Rayhan M, Siddiquee MF, Shahriar A, Ahmed H, Mahmud AR, Alam MS, Uddin MR, Acharjee M, Shimu MSS, Shamsir MS, Emran TB. Structural characterization of a novel luciferase-like-monooxygenase from Pseudomonas meliae– an in-silico approach.. [DOI: 10.1101/2023.03.27.534437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractBackgroundLuciferase is a well-known oxidative enzyme that produces bioluminescence. ThePseudomonas meliaeis a plant pathogen that causes wood rot on nectarine and peach and possesses a luciferase-like monooxygenase. After activation, it produces bioluminescence, and the pathogen’s bioluminescence is a visual indicator of diseased plants.MethodsThe present study aims to model and characterize the luciferase-like monooxygenase protein inP. meliaefor its similarity to well-established luciferase. In this study, the luciferase-like monooxygenase fromP. meliaeinfects chinaberry plants has been modeled first and then studied by comparing it with existing known luciferase. Also, the similarities between uncharacterized luciferase fromP. meliaeand template fromGeobacillus thermodenitrificanswere analyzed to find the novelty ofP. meliae.ResultsThe results suggest that the absence of bioluminescence inP. meliaecould be due to the evolutionary mutation in positions 138 and 311. The active site remains identical except for two amino acids;P. meliaeTyr138 instead of His138 and Leu311 instead of His311. Therefore, theP. meliaewill have a potential future application, and mutation of the residues 138 and 311 can be restored luciferase light-emitting ability.ConclusionsThis study will help further improve, activate, and repurpose the luciferase fromP. meliaeas a reporter for gene expression.
Collapse
|
4
|
Zhao P, Wu X, Li J, Dong G, Sun Y, Ma Z, Li M, Du L. Discovery of alkene-conjugated luciferins for redshifted and improved bioluminescence imaging in vitro and in vivo. Org Biomol Chem 2022; 20:4224-4230. [PMID: 35551298 DOI: 10.1039/d1ob02477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The firefly luciferase system is the most extensively utilized bioluminescence system in the field of life science at the moment. In this work, we designed and synthesized a series of alkene-conjugated luciferins to develop new firefly bioluminescence substrates, and further evaluated their activities in vitro and in vivo. It is worth noting that the maximum biological emission wavelength of novel luciferin analogue AL3 ((S,E)-2-(6-hydroxy-5-(3-methoxy-3-oxoprop-1-en-1-yl)benzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) is 100 nm red-shifted compared with D-luciferin, while that of analogue AL4 ((S,E)-2-(5-(2-cyanovinyl)-6-hydroxybenzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) is 75 nm red-shifted. The new substrate AL2 ((S,E)-2-(6-hydroxy-7-(3-methoxy-3-oxoprop-1-en-1-yl)benzo[d]thiazol-2-yl)-4,5-dihydrothiazole-4-carboxylic acid) showed better bioluminescence performance in vivo.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaokang Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Jie Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yingai Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and Heart Failure: How Did We Get Here and Where Are We Going? Int J Mol Sci 2021; 22:ijms22147392. [PMID: 34299010 PMCID: PMC8306046 DOI: 10.3390/ijms22147392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage heart failure. This exploration has resulted in many failed clinical trials testing novel classes of pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm shifts toward and away from differing therapeutic approaches. The continued prevalence of death from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces the need to discover new therapeutic approaches.
Collapse
Affiliation(s)
- Natthaphat Siri-Angkul
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Behzad Dadfar
- Department of General Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari 1471655836, Iran
| | - Riya Jaleel
- School of International Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jazna Naushad
- Weill Cornell Medicine Qatar, Doha P. O. Box 24144, Qatar
| | | | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +973-972-2411; Fax: +973-972-7489
| |
Collapse
|
6
|
Li S, Ruan Z, Zhang H, Xu H. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur J Med Chem 2020; 211:113111. [PMID: 33360804 DOI: 10.1016/j.ejmech.2020.113111] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Bioluminescence imaging (BLI) is a newly developed noninvasive visual approach which facilitates the understanding of a plethora of biological processes in vitro and in vivo due to the high sensitivity, resolution and selectivity, low background signal, and the lack of external light excitation. BLI based on firefly luciferin-luciferase system has been widely used for the activity evaluation of tumor-specific enzymes, for the detection of diseases-related bioactive small molecules and metal ions, and for the diagnosis and therapy of diseases including the studies of drug transport, the research of immune response, and the evaluation of drug potency and tissue distribution. In this review, we highlight the recent achievements in luciferin derivatives with red-shifted emission spectra, mutant luciferase-luciferin pairs, and the diagnostic and therapeutic application of BLI based on firefly luciferin-luciferase system. The development and application of BLI will expand our knowledge of the occurrence and development of diseases and shed light on the diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyang Ruan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
7
|
Xiaoxia X, Jing S, Dongbin X, Yonggang T, Jingke Z, Yanying Z, Hulai W. Realgar Nanoparticles Inhibit Migration, Invasion and Metastasis in a Mouse Model of Breast Cancer by Suppressing Matrix Metalloproteinases and Angiogenesis. Curr Drug Deliv 2020; 17:148-158. [PMID: 31939730 DOI: 10.2174/1567201817666200115105633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/21/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Realgar, a traditional Chinese medicine, has shown antitumor efficacy in several tumor types. We previously showed that realgar nanoparticles (nano-realgar) had significant antileukemia, anti-lung cancer and anti-liver cancer effects. In addition, the anti-tumor effects of nanorealgar were significantly better than those of ordinary realgar. OBJECTIVE To explore the inhibitory effects and molecular mechanisms of nano-realgar on the migration, invasion and metastasis of mouse breast cancer cells. METHODS Wound-healing migration assays and Transwell invasion assays were carried out to determine the effects of nano-realgar on breast cancer cell (4T1) migration and invasion. The expression levels of matrix metalloproteinase (MMP)-2 and -9 were measured by Western blot. A murine breast cancer metastasis model was established, administered nano-realgar for 32 days and monitored for tumor growth and metastasis by an in vivo optical imaging system. Finally, living imaging and hematoxylin and eosin (HE) staining were used to measure the morphology and pathology of lung and liver cancer cell metastases, respectively. Angiogenesis was assessed by CD34 immunohistochemistry. RESULTS Nano-realgar significantly inhibited the migration and invasion of breast cancer 4T1 cells and the expression of MMP-2 and -9. Meanwhile, nano-realgar effectively suppressed the abilities of tumor growth, metastasis and angiogenesis in the murine breast cancer metastasis model in a time- and dosedependent manner. CONCLUSION Nano-realgar significantly inhibited migration and invasion of mouse breast cancer cells in vitro as well as pulmonary and hepatic metastasis in vivo, which may be closely correlated with the downexpression of MMP-2 and -9 and suppression of tumor neovascularization.
Collapse
Affiliation(s)
- Xi Xiaoxia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sun Jing
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xi Dongbin
- General Surgery Department, People's Hospital of Jiuquan City, Jiuquan, China
| | - Tian Yonggang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhang Jingke
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhang Yanying
- Laboratory Animal Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei Hulai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Gosset P, Taupier G, Crégut O, Brazard J, Mély Y, Dorkenoo KD, Léonard J, Didier P. Excited-State Proton Transfer in Oxyluciferin and Its Analogues. J Phys Chem Lett 2020; 11:3653-3659. [PMID: 32310668 DOI: 10.1021/acs.jpclett.0c00839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the most characterized bioluminescent reactions involves the firefly luciferase that catalyzes the oxidation of the luciferin producing oxyluciferin in its first excited state. While relaxing to the ground state, oxyluciferin emits visible light with an emission maximum that can vary from green to red. Oxyluciferin exists under six different chemical forms resulting from a keto/enol tautomerization and the deprotonation of the phenol or enol moieties. The optical properties of each chemical form have been recently characterized by the investigations of a variety of oxyluciferin derivatives, indicating unresolved excited-state proton transfer (ESPT) reactions. In this work, femtosecond pump-probe spectroscopy and time-resolved fluorescence spectroscopy are used to investigate the picosecond kinetics of the ESPT reactions and demonstrate the excited state keto to enol conversion of oxyluciferin and its derivatives in aqueous buffer as a function of pH. A comprehensive photophysical scheme is provided describing the complex luminescence pathways of oxyluciferin in protic solution.
Collapse
Affiliation(s)
- Pauline Gosset
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Grégory Taupier
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Olivier Crégut
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Johanna Brazard
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Kokou-Dodzi Dorkenoo
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Jérémie Léonard
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
9
|
Development of reporter gene assays to determine the bioactivity of biopharmaceuticals. Biotechnol Adv 2020; 39:107466. [DOI: 10.1016/j.biotechadv.2019.107466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023]
|
10
|
Cui CX, Li YQ, Sun YJ, Zhu YL, Fang JB, Bai B, Li WJ, Li SZ, Ma YZ, Li X, Wang WH, Jin NY. Antitumor effect of a dual cancer-specific oncolytic adenovirus on prostate cancer PC-3 cells. Urol Oncol 2019; 37:352.e1-352.e18. [PMID: 30665692 DOI: 10.1016/j.urolonc.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Apoptin can specifically kill cancer cells but has no toxicity to normal cells. Human telomerase reverse transcriptase (hTERT) acts as a tumor-specific promoter, triggering certain genes to replicate or express only in tumor cells, conferring specific replication and killing abilities. This study aimed to investigate the anticancer potential of the recombinant adenovirus Ad-apoptin-hTERTp-E1a (Ad-VT) in prostate cancer. METHODS The pGL4.51 plasmid was used to transfect PC-3 cells to construct tumor cells stably expressing luciferase (PC-3-luc). Crystal violet staining and MTS assays determined the ability of Ad-VT to inhibit cell proliferation. Ad-VT-induced apoptosis of PC-3-luc cells was detected using Hoechst, Annexin V, JC-1 staining, and caspases activity analysis. PC-3-luc cells invasion and migration were detected using cell-scratch and Transwell assays. In vivo tumor inhibition was detected using imaging techniques. RESULTS Crystal violet staining and MTS results showed that the proliferation ability of PC-3-luc cells decreased significantly. Hoechst, JC-1, and Annexin V experiments demonstrated that Ad-VT mainly induced apoptosis to inhibit PC-3-luc cell proliferation. Ad-VT could significantly inhibit the migration and invasion of PC-3-luc cells over a short period of time. In vivo, Ad-VT could effectively inhibit tumor growth and prolong survival of the mice. CONCLUSIONS The recombinant adenovirus, comprising the apoptin protein and the hTERTp promoter, was able to inhibit the growth of prostate cancer PC-3 cells and promote their apoptosis.
Collapse
Affiliation(s)
- Chuan-Xin Cui
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China
| | - Yi-Quan Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yu-Jia Sun
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Yi-Long Zhu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Jin-Bo Fang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Bing Bai
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Wen-Jie Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Jiang su Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Shan-Zhi Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yi-Zhen Ma
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Jiang su Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Xiao Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Changchun University of Chinese Medicine, Changchun, P. R. China; Jiang su Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China.
| | - Wei-Hua Wang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China; Department of Urology Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China.
| | - Ning-Yi Jin
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, P. R. China; Changchun University of Chinese Medicine, Changchun, P. R. China; Jiang su Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China.
| |
Collapse
|
11
|
Mesenchymal Stem Cell Therapy for Ischemic Tissues. Stem Cells Int 2018; 2018:8179075. [PMID: 30402112 PMCID: PMC6196793 DOI: 10.1155/2018/8179075] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Ischemic diseases such as myocardial infarction, ischemic stroke, and critical limb ischemia are immense public health challenges. Current pharmacotherapy and surgical approaches are insufficient to completely heal ischemic diseases and are associated with a considerable risk of adverse effects. Alternatively, human mesenchymal stem cells (hMSCs) have been shown to exhibit immunomodulation, angiogenesis, and paracrine secretion of bioactive factors that can attenuate inflammation and promote tissue regeneration, making them a promising cell source for ischemic disease therapy. This review summarizes the pathogenesis of ischemic diseases, discusses the potential therapeutic effects and mechanisms of hMSCs for these diseases, and provides an overview of challenges of using hMSCs clinically for treating ischemic diseases.
Collapse
|
12
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
13
|
Park GK, Hoseok, Kim GS, Hwang NS, Choi HS. Optical spectroscopic imaging for cell therapy and tissue engineering. APPLIED SPECTROSCOPY REVIEWS 2017; 53:360-375. [PMID: 29563664 PMCID: PMC5858719 DOI: 10.1080/05704928.2017.1328428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Cell-based therapies hold great potential to treat a wide range of human diseases, yet the mechanisms responsible for cell migration and homing are not fully understood. Emerging molecular imaging technology enables in vivo tracking of transplanted cells and their therapeutic efficacy, which together will improve the clinical outcome of cell-based therapy. Particularly, optical imaging provides highly sensitive, safe (non-radioactive), cost-effective, and fast solutions for real-time cellular trafficking compared to other conventional molecular imaging modalities. This review provides a comprehensive overview of current advances in optical imaging for cell-based therapy and tissue engineering. We discuss different types of fluorescent probes and their labeling methods with a special focus on cardiovascular disease, cancer immunotherapy, and tissue regeneration. In addition, advantages and limitations of optical imaging-based cell tracking strategies along with the future perspectives to translate this imaging technique for a clinical realm are discussed.
Collapse
Affiliation(s)
- G. Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Interdisciplinary Program in Bioengineering, School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX Institute, Seoul National University, Seoul, South Korea
| | - Hoseok
- Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Gaon Sandy Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nathaniel S. Hwang
- Interdisciplinary Program in Bioengineering, School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX Institute, Seoul National University, Seoul, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
14
|
Mata A, Azevedo HS, Botto L, Gavara N, Su L. New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. CURRENT STEM CELL REPORTS 2017; 3:83-97. [PMID: 28596936 PMCID: PMC5445180 DOI: 10.1007/s40778-017-0081-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In this review, we provide a general overview of recent bioengineering breakthroughs and enabling tools that are transforming the field of regenerative medicine (RM). We focus on five key areas that are evolving and increasingly interacting including mechanobiology, biomaterials and scaffolds, intracellular delivery strategies, imaging techniques, and computational and mathematical modeling. RECENT FINDINGS Mechanobiology plays an increasingly important role in tissue regeneration and design of therapies. This knowledge is aiding the design of more precise and effective biomaterials and scaffolds. Likewise, this enhanced precision is enabling ways to communicate with and stimulate cells down to their genome. Novel imaging technologies are permitting visualization and monitoring of all these events with increasing resolution from the research stages up to the clinic. Finally, algorithmic mining of data and soft matter physics and engineering are creating growing opportunities to predict biological scenarios, device performance, and therapeutic outcomes. SUMMARY We have found that the development of these areas is not only leading to revolutionary technological advances but also enabling a conceptual leap focused on targeting regenerative strategies in a holistic manner. This approach is bringing us ever more closer to the reality of personalized and precise RM.
Collapse
Affiliation(s)
- Alvaro Mata
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lorenzo Botto
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Nuria Gavara
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| | - Lei Su
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, E1 4NS UK
| |
Collapse
|
15
|
Speidel A, Stuckey DJ, Chow LW, Jackson LH, Noseda M, Abreu Paiva M, Schneider MD, Stevens MM. Multimodal Hydrogel-Based Platform To Deliver and Monitor Cardiac Progenitor/Stem Cell Engraftment. ACS CENTRAL SCIENCE 2017; 3:338-348. [PMID: 28470052 PMCID: PMC5408339 DOI: 10.1021/acscentsci.7b00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 05/17/2023]
Abstract
Retention and survival of transplanted cells are major limitations to the efficacy of regenerative medicine, with short-term paracrine signals being the principal mechanism underlying current cell therapies for heart repair. Consequently, even improvements in short-term durability may have a potential impact on cardiac cell grafting. We have developed a multimodal hydrogel-based platform comprised of a poly(ethylene glycol) network cross-linked with bioactive peptides functionalized with Gd(III) in order to monitor the localization and retention of the hydrogel in vivo by magnetic resonance imaging. In this study, we have tailored the material for cardiac applications through the inclusion of a heparin-binding peptide (HBP) sequence in the cross-linker design and formulated the gel to display mechanical properties resembling those of cardiac tissue. Luciferase-expressing cardiac stem cells (CSC-Luc2) encapsulated within these gels maintained their metabolic activity for up to 14 days in vitro. Encapsulation in the HBP hydrogels improved CSC-Luc2 retention in the mouse myocardium and hind limbs at 3 days by 6.5- and 12- fold, respectively. Thus, this novel heparin-binding based, Gd(III)-tagged hydrogel and CSC-Luc2 platform system demonstrates a tailored, in vivo detectable theranostic cell delivery system that can be implemented to monitor and assess the transplanted material and cell retention.
Collapse
Affiliation(s)
- Alessondra
T. Speidel
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Daniel J. Stuckey
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
- Centre
for
Advanced Biomedical Imaging (CABI), University
College London, London WC1E 6DD, United Kingdom
| | - Lesley W. Chow
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Laurence H. Jackson
- Centre
for
Advanced Biomedical Imaging (CABI), University
College London, London WC1E 6DD, United Kingdom
| | - Michela Noseda
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Marta Abreu Paiva
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Michael D. Schneider
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- British Heart Foundation Centre of Research Excellence, Department of Materials, Department of Bioengineering, Institute for Biomedical
Engineering, and National Heart and Lung Institute, Imperial
College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Ghose A, Maltsev OV, Humbert N, Hintermann L, Arntz Y, Naumov P, Mély Y, Didier P. Oxyluciferin Derivatives: A Toolbox of Environment-Sensitive Fluorescence Probes for Molecular and Cellular Applications. J Phys Chem B 2017; 121:1566-1575. [PMID: 28118001 DOI: 10.1021/acs.jpcb.6b12616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work, we used firefly oxyluciferin (OxyLH2) and its polarity-dependent fluorescence mechanism as a sensitive tool to monitor biomolecular interactions. The chromophores, OxyLH2, and its two analogues, 4-MeOxyLH and 4,6'-DMeOxyL, were modified trough carboxylic functionalization and then coupled to the N-terminus part of Tat and NCp7 peptides of human immunodeficiency virus type-1 (HIV-1). The photophysical properties of the labeled peptides were studied in live cells as well as in complex with different oligonucleotides in solution. By monitoring the emission properties of these derivatives we were able, for the first time, to study in vitro biomolecular interactions using oxyluciferin as a sensor. As an additional application, cyclopropyl-oxyluciferin (5,5-Cpr-OxyLH) was site-specifically conjugated to the thiol group (Cys-232) of the human protein α-1 antytripsin to investigate its interaction with porcine pancreatic elastase. Our data demonstrate that OxyLH2 and its derivatives can be used as fluorescence reporters for monitoring biomolecular interactions.
Collapse
Affiliation(s)
- Avisek Ghose
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Oleg V Maltsev
- Department Chemie, Technische Universität München , Lichtenbergstr. 4, 85748 Garching bei München, Germany
| | - Nicolas Humbert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Lukas Hintermann
- Department Chemie, Technische Universität München , Lichtenbergstr. 4, 85748 Garching bei München, Germany
| | - Youri Arntz
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Pascal Didier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| |
Collapse
|
17
|
Snellenburg JJ, Laptenok SP, DeSa RJ, Naumov P, Solntsev KM. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase. J Am Chem Soc 2016; 138:16252-16258. [PMID: 27998082 DOI: 10.1021/jacs.6b05078] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time-resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH-dependent emission to a single chemical species would be an oversimplification.
Collapse
Affiliation(s)
- Joris J Snellenburg
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Sergey P Laptenok
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Richard J DeSa
- Olis, Inc. , 130 Conway Drive, Bogart, Georgia 30622, United States
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Kyril M Solntsev
- Olis, Inc. , 130 Conway Drive, Bogart, Georgia 30622, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
18
|
Gao X, Wang Y, Hou HY, Lyu Y, Wang HY, Yao LB, Zhang J, Cao F, Wang YS. In vivo bioluminescence imaging of hyperglycemia exacerbating stem cells on choroidal neovascularization in mice. Int J Ophthalmol 2016; 9:519-27. [PMID: 27162722 DOI: 10.18240/ijo.2016.04.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022] Open
Abstract
AIM To investigate the influence of hyperglycemia on the severity of choroidal neovascularization (CNV), especially the involvement of bone marrow-derived cells (BMCs) and underlying mechanisms. METHODS BMCs from firefly luciferase (Fluc)/green fluorescent protein (GFP) double transgenic mice were transplanted into C57BL/6J wide-type mice. The recipient mice were injected intraperitoneally with streptozotocin (STZ) daily for 5 consecutive days to induce diabetes mellitus (DM), followed by CNV laser photocoagulation. The BMCs recruitment in CNV exposed to hyperglycemia was firstly examined in Fluc/GFP chimeric mice by in vivo optical bioluminescence imaging (BLI) and in vitro Fluc assays. The CNV severity was evaluated by H&E staining and choroidal flatmount. The expression of vascular endothelial growth factor (VEGF) and stromal cell derived factor-1 (SDF-1) was detected by Western Blot. RESULTS BLI showed that the BMCs exerted dynamic effects in CNV model in Fluc/GFP chimeric mice exposed to hyperglycemia. The signal intensity of transplanted Fluc(+)GFP(+) BMCs in the DM chimeric mice was significantly higher than that in the control chimeric mice with CNV induction at days 5, 7, 14 and 21 (121861.67±9948.81 vs 144998.33±13787.13 photons/second/cm(2)/sr for control and DM mice, P 5d<0.05; 178791.67±30350.8 vs 240166.67±22605.3, P 7d<0.05; 124176.67±16253.52 vs 196376.67±18556.79, P 14d<0.05; 97951.60±10343.09 vs 119510.00±14383.76, P 21d<0.05), which was consistent with in vitro Fluc assay at day 7 [relative light units of Fluc (RLU1)], 215.00±52.05 vs 707.33±88.65, P<0.05; RLU1/ relative light units of renilla luciferase (RLU2), 0.90±0.17 vs 1.83±0.17, P<0.05]. The CNVs in the DM mice were wider than those in the control group at days 5, 7, 14 and 21 (147.83±17.36 vs 220.33±20.17 µm, P 5d<0.05; 212.17±24.63 vs 326.83±19.49, P 7d<0.05; 163.17±18.24 vs 265.17±20.55, P 14d<0.05; 132.00±10.88 vs 205.33±12.98, P 21d<0.05). The average area of CNV in the DM group was larger at 7d (20688.67±3644.96 vs 32218.00±4132.69 µm(2), P<0.05). The expression of VEGF and SDF-1 was enhanced in the DM mice. CONCLUSION Hyperglycemia promots the vasculogenesis of CNV, especially the contribution of BMCs, which might be triggered by VEGF and SDF-1 production.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu Wang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hui-Yuan Hou
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yang Lyu
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hai-Yan Wang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li-Bo Yao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Feng Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
19
|
Roura S, Gálvez-Montón C, Bayes-Genis A. Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. J Tissue Eng Regen Med 2016; 11:2304-2313. [PMID: 27061269 DOI: 10.1002/term.2129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Fibrin is a topical haemostat, sealant and tissue glue, which consists of concentrated fibrinogen and thrombin. It has broad medical and research uses. Recently, several studies have shown that engineered patches comprising mixtures of biological or synthetic materials and progenitor cells showed therapeutic promise for regenerating damaged tissues. In that context, fibrin maintains cell adherence at the site of injury, where cells are required for tissue repair, and offers a nurturing environment that protects implanted cells without interfering with their expected benefit. Here we review the past, present and future uses of fibrin, with a focus on its use as a scaffold material for cardiac repair. Fibrin patches filled with regenerative cells can be placed over the scarring myocardium; this methodology avoids many of the drawbacks of conventional cell-infusion systems. Advantages of using fibrin also include extraction from the patient's blood, an easy readjustment and implantation procedure, increase in viability and early proliferation of delivered cells, and benefits even with the patch alone. In line with this, we discuss the numerous preclinical studies that have used fibrin-cell patches, the practical issues inherent in their generation, and the necessary process of scaling-up from animal models to patients. In the light of the data presented, fibrin stands out as a valuable biomaterial for delivering cells to damaged tissue and for promoting beneficial effects. However, before the fibrin scaffold can be translated from bench to bedside, many issues must be explored further, including suboptimal survival and limited migration of the implanted cells to underlying ischaemic myocardium. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Santiago Roura
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain.,Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Programme, Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
20
|
In Vivo Tracking of Cell Therapies for Cardiac Diseases with Nuclear Medicine. Stem Cells Int 2016; 2016:3140120. [PMID: 26880951 PMCID: PMC4737458 DOI: 10.1155/2016/3140120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022] Open
Abstract
Even though heart diseases are amongst the main causes of mortality and morbidity in the world, existing treatments are limited in restoring cardiac lesions. Cell transplantations, originally developed for the treatment of hematologic ailments, are presently being explored in preclinical and clinical trials for cardiac diseases. Nonetheless, little is known about the possible efficacy and mechanisms for these therapies and they are the center of continuous investigation. In this scenario, noninvasive imaging techniques lead to greater comprehension of cell therapies. Radiopharmaceutical cell labeling, firstly developed to track leukocytes, has been used successfully to evaluate the migration of cell therapies for myocardial diseases. A substantial rise in the amount of reports employing this methodology has taken place in the previous years. We will review the diverse radiopharmaceuticals, imaging modalities, and results of experimental and clinical studies published until now. Also, we report on current limitations and potential advances of radiopharmaceutical labeling for cell therapies in cardiac diseases.
Collapse
|
21
|
Postinfarction Functional Recovery Driven by a Three-Dimensional Engineered Fibrin Patch Composed of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells Transl Med 2015; 4:956-66. [PMID: 26106218 DOI: 10.5966/sctm.2014-0259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/17/2015] [Indexed: 01/16/2023] Open
Abstract
Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound.
Collapse
|
22
|
Theoretical Study of the Nontraditional Enol-Based Photoacidity of Firefly Oxyluciferin. Chemphyschem 2014; 16:455-64. [DOI: 10.1002/cphc.201402533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/16/2014] [Indexed: 11/07/2022]
|
23
|
Umbilical cord blood-derived mesenchymal stem cells: new therapeutic weapons for idiopathic dilated cardiomyopathy? Int J Cardiol 2014; 177:809-18. [PMID: 25305679 DOI: 10.1016/j.ijcard.2014.09.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
Dilated cardiomyopathy is the most frequent etiology of non-ischemic heart failure. In a majority of cases the causal mechanism is unknown, giving rise to the term 'idiopathic' dilated cardiomyopathy (IDCM). Major pathological derangements include patchy interstitial fibrosis, degenerated cardiomyocytes, and dilatation of the cardiac chambers, but recent evidence suggests that disease progression may also have the signature of cardiac endothelial dysfunction. As we better understand the molecular basis of IDCM, novel therapeutic approaches, mainly gene transfer and cell-based therapies, are being explored. Cells with regenerative potential have been extensively tested in cardiac diseases of ischemic origin in both pre-clinical and clinical settings. However, whether cell therapy has any clinical value in IDCM patients is still being evaluated. This article is a concise summary of cell therapy studies for IDCM, with a focus on recent advances that highlight the vascular potential exhibited by umbilical cord blood-derived mesenchymal stem cells (UCBMSCs). We also provide an overview of cardiac vasculature as a key regulator of subjacent myocardial integrity and function, and discuss the potential mechanisms of UCBMSC amelioration of IDCM myocardium. Consideration of these issues shows that these cells are conceivably new therapeutic agents for this complex and elusive human disorder.
Collapse
|
24
|
Newman RH, Zhang J, Zhu H. Toward a systems-level view of dynamic phosphorylation networks. Front Genet 2014; 5:263. [PMID: 25177341 PMCID: PMC4133750 DOI: 10.3389/fgene.2014.00263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/16/2014] [Indexed: 11/13/2022] Open
Abstract
To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks.
Collapse
Affiliation(s)
- Robert H Newman
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; High-Throughput Biology Center, Institute for Basic Biomedical Sciences, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
25
|
Naumova AV, Modo M, Moore A, Murry CE, Frank JA. Clinical imaging in regenerative medicine. Nat Biotechnol 2014; 32:804-18. [PMID: 25093889 PMCID: PMC4164232 DOI: 10.1038/nbt.2993] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023]
Abstract
In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring.
Collapse
Affiliation(s)
- Anna V Naumova
- 1] Department of Radiology, University of Washington, Seattle, Washington, USA. [2] Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA. [3] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Michel Modo
- 1] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [2] Centre for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [3] Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [4] Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Moore
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Charles E Murry
- 1] Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA. [2] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA. [3] Department of Pathology, University of Washington, Seattle, Washington, USA. [4] Department of Bioengineering, University of Washington, Seattle, Washington, USA. [5] Department of Medicine/Cardiology, University of Washington, Seattle, Washington, USA
| | - Joseph A Frank
- 1] Radiology and Imaging Sciences, Clinical, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institutes of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Natashin PV, Ding W, Eremeeva EV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Structures of the Ca2+-regulated photoprotein obelin Y138F mutant before and after bioluminescence support the catalytic function of a water molecule in the reaction. ACTA ACUST UNITED AC 2014; 70:720-32. [DOI: 10.1107/s1399004713032434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/28/2013] [Indexed: 11/11/2022]
Abstract
Ca2+-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca2+inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca2+discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2in wild-type obelin is not found. However, in Ca2+-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca2+-regulated photoproteins in some of its properties, they are believed to share a common mechanism.
Collapse
|
27
|
Webb SE, Karplus E, Miller AL. Retrospective on the development of aequorin and aequorin-based imaging to visualize changes in intracellular free [Ca2+]. Mol Reprod Dev 2014; 82:563-86. [DOI: 10.1002/mrd.22298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/26/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Sarah E. Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Kowloon Hong Kong
| | | | - Andrew L. Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Kowloon Hong Kong
- Marine Biological Laboratory; Woods Hole Massachusetts
| |
Collapse
|
28
|
Watt SM, Gullo F, van der Garde M, Markeson D, Camicia R, Khoo CP, Zwaginga JJ. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 2013; 108:25-53. [PMID: 24152971 PMCID: PMC3842875 DOI: 10.1093/bmb/ldt031] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Blood vessel formation is fundamental to development, while its dysregulation can contribute to serious disease. Expectations are that hundreds of millions of individuals will benefit from therapeutic developments in vascular biology. MSCs are central to the three main vascular repair mechanisms. SOURCES OF DATA Key recent published literature and ClinicalTrials.gov. AREAS OF AGREEMENT MSCs are heterogeneous, containing multi-lineage stem and partly differentiated progenitor cells, and are easily expandable ex vivo. There is no single marker defining native MSCs in vivo. Their phenotype is strongly determined by their specific microenvironment. Bone marrow MSCs have skeletal stem cell properties. Having a perivascular/vascular location, they contribute to vascular formation and function and might be harnessed to regenerate a blood supply to injured tissues. AREAS OF CONTROVERSY These include MSC origin, phenotype and location in vivo and their ability to differentiate into functional cardiomyocytes and endothelial cells or act as vascular stem cells. In addition their efficacy, safety and potency in clinical trials in relation to cell source, dose, delivery route, passage and timing of administration, but probably even more on the local preconditioning and the mechanisms by which they exert their effects. GROWING POINTS Understanding the origin and the regenerative environment of MSCs, and manipulating their homing properties, proliferative ability and functionality through drug discovery and reprogramming strategies are important for their efficacy in vascular repair for regenerative medicine therapies and tissue engineering approaches. AREAS TIMELY FOR DEVELOPING RESEARCH Characterization of MSCs' in vivo origins and biological properties in relation to their localization within tissue niches, reprogramming strategies and newer imaging/bioengineering approaches.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
|