1
|
Wang Z, Chen G, Yuan D, Wu P, Guo J, Lu Y, Wang Z. Caveolin-1 promotes glioma proliferation and metastasis by enhancing EMT via mediating PAI-1 activation and its correlation with immune infiltrates. Heliyon 2024; 10:e24464. [PMID: 38298655 PMCID: PMC10827802 DOI: 10.1016/j.heliyon.2024.e24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Glioma is typically characterized by a poor prognosis and is associated with a decline in the quality of life as the disease advances. However, the development of effective therapies for glioma has been inadequate. Caveolin-1 (CAV-1) is a membrane protein that plays a role in caveolae formation and interacts with numerous signaling proteins, compartmentalizing them in caveolae and frequently exerting direct control over their activity through binding to its scaffolding domain. Although CAV-1 is a vital regulator of tumour progression, its role in glioma remains unclear. Our findings indicated that the knockdown of CAV-1 significantly inhibits the proliferation and metastasis of glioma. Subsequent mechanistic investigations demonstrated that CAV-1 promotes proliferation and metastasis by activating the photoshatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Furthermore, we demonstrated that CAV-1 overexpression upregulates the expression of serpin peptidase inhibitor, class E, member 1 (SERPINE1, also known as PAI-1), which serves as a marker for the epithelial-mesenchymal transition (EMT) process. Further research showed that PAI-1 knockdown abolished the CAV-1 mediated activation of PI3K/Akt signaling pathway. In glioma tissues, CAV-1 expression exhibited a correlation with unfavorable prognosis and immune infiltration among glioma patients. In summary, our study provided evidence that CAV-1 activates the PI3K/Akt signaling pathway by upregulating PAI-1, thereby promoting the proliferation and metastasis of glioma through enhanced epithelial-mesenchymal transition (EMT) and angiogenesis, and CAV-1 is involved in the immune infiltration.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Gang Chen
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Debin Yuan
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Peizhang Wu
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Jun Guo
- Department of Neurosurgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
- Department of Neurosurgery, The First People's Hospital of Yancheng, No. 166 Yulong West Road, Yancheng, 224000, Jiangsu, China
| | - Yisheng Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, 226001, China
| | - Zhenyu Wang
- Department of Pediatric General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, Shanghai, China
| |
Collapse
|
2
|
Žitek T, Bjelić D, Kotnik P, Golle A, Jurgec S, Potočnik U, Knez Ž, Finšgar M, Krajnc I, Krajnc I, Marevci MK. Natural Hemp-Ginger Extract and Its Biological and Therapeutic Efficacy. Molecules 2022; 27:7694. [PMID: 36431795 PMCID: PMC9697267 DOI: 10.3390/molecules27227694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The prevention and treatment of skin diseases remains a major challenge in medicine. The search for natural active ingredients that can be used to prevent the development of the disease and complement treatment is on the rise. Natural extracts of ginger and hemp offer a wide range of bioactive compounds with potential health benefits. This study evaluates the effectiveness of hemp and ginger extract as a supportive treatment for skin diseases. It reports a synergistic effect of hemp and ginger extract. The contents of cannabinoids and components of ginger are determined, with the highest being CBD (587.17 ± 8.32 µg/g) and 6-gingerol (60.07 ± 0.40 µg/g). The minimum inhibitory concentration for Staphylococcus aureus (156.5 µg/mL), Escherichia coli (625.2 µg/mL) and Candida albicans (78.3 µg/mL) was also analyzed. Analysis of WM-266-4 cells revealed the greatest decrease in metabolic activity in cells exposed to the extract at a concentration of 1.00 µg/mL. Regarding the expression of genes associated with cellular processes, melanoma aggressiveness, resistance and cell survival, a significant difference was found in the expression of ABCB5, CAV1 and S100A9 compared with the control (cells not exposed to the extract).
Collapse
Affiliation(s)
- Taja Žitek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Dragana Bjelić
- Laboratory for Analytical Chemistry and Industrial Analysis, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Petra Kotnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
- Department of Chemistry, Faculty of Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
| | - Andrej Golle
- National Laboratory for Health, Environment and Food, Prvomajska ul. 1, 2000 Maribor, Slovenia
| | - Staša Jurgec
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
- Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
- Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
- Department of Internal Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
- Department of Chemistry, Faculty of Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
| | - Matjaž Finšgar
- Laboratory for Analytical Chemistry and Industrial Analysis, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| | - Ivan Krajnc
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
- Department of Internal Medicine, University of Maribor, Taborska ul. 8, 2000 Maribor, Slovenia
| | - Igor Krajnc
- Department of Cardiology and Angiology, University Clinical Center Maribor, Ljubljanska ul. 5, 2000 Maribor, Slovenia
| | - Maša Knez Marevci
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
Wei T, Liang Y, Anderson C, Zhang M, Zhu N, Xie J. Identification of candidate hub genes correlated with the pathogenesis, diagnosis, and prognosis of prostate cancer by integrated bioinformatics analysis. Transl Cancer Res 2022; 11:3548-3571. [PMID: 36388030 PMCID: PMC9641109 DOI: 10.21037/tcr-22-703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
Abstract
Background Prostate cancer (PCa) has the second highest morbidity and mortality rates in men. Concurrently, novel diagnostic and prognostic biomarkers of PCa remain crucial. Methods This study utilized integrated bioinformatics method to identify and validate the potential hub genes with high diagnostic and prognostic value for PCa. Results Four Gene Expression Omnibus (GEO) datasets including 123 PCa samples and 76 normal samples were screened and a total of 368 differentially expressed genes (DEGs), including 120 up-regulated DEGs and 248 down-regulated DEGs, were identified. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were majorly enriched in focal adhesion, chemical carcinogenesis, drug metabolism, and cytochrome P450 pathways. Then, 11 hub genes were identified from the protein-protein interaction (PPI) network of the DEGs; 7 of the 11 genes showed the ability of distinguishing PCa from normal prostate based on receiver operating characteristic (ROC) curve analysis. And 5 of the 11 genes were correlated with clinical attributes. Lower CAV1, KRT5, SNAI2 and MYLK expression level were associated with higer Gleason score, advanced pathological T stage and N stage. Lower KRT5 and MYLK expression level were significantly correlated with poor disease-free survival, and lower KRT5 and PTGS2 expression level were significantly related to biochemical recurrence (BCR) status of PCa patients. Conclusions In conclusion, CAV1, KRT5, SNAI2, and MYLK show potential clinical diagnostic and prognostic value and could be used as novel candidate biomarkers and therapeutic targets for PCa.
Collapse
Affiliation(s)
- Tianyi Wei
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yulai Liang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Claire Anderson
- Department of Epidemiology and Biostatistics, University of Georgia, GA, USA
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, GA, USA
| | - Naishuo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhang Y, Hua S, Jiang Q, Xie Z, Wu L, Wang X, Shi F, Dong S, Jiang J. Identification of Feature Genes of a Novel Neural Network Model for Bladder Cancer. Front Genet 2022; 13:912171. [PMID: 35719407 PMCID: PMC9198295 DOI: 10.3389/fgene.2022.912171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The combination of deep learning methods and oncogenomics can provide an effective diagnostic method for malignant tumors; thus, we attempted to construct a reliable artificial neural network model as a novel diagnostic tool for Bladder cancer (BLCA). Methods: Three expression profiling datasets (GSE61615, GSE65635, and GSE100926) were downloaded from the Gene Expression Omnibus (GEO) database. GSE61615 and GSE65635 were taken as the train group, while GSE100926 was set as the test group. Differentially expressed genes (DEGs) were filtered out based on the logFC and FDR values. We also performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to explore the biological functions of the DEGs. Consequently, we utilized a random forest algorithm to identify feature genes and further constructed a neural network model. The test group was given the same procedures to validate the reliability of the model. We also explored immune cells' infiltration degree and correlation coefficients through the CiberSort algorithm and corrplot R package. The qRT-PCR assay was implemented to examine the expression level of the feature genes in vitro. Results: A total of 265 DEGs were filtered out and significantly enriched in muscle system processes, collagen-containing and focal adhesion signaling pathways. Based on the random forest algorithm, we selected 14 feature genes to construct the neural network model. The area under the curve (AUC) of the training group was 0.950 (95% CI: 0.850-1.000), and the AUC of the test group was 0.667 (95% CI: 0.333-1.000). Besides, we observed significant differences in the content of immune infiltrating cells and the expression levels of the feature genes. Conclusion: After repeated verification, our neural network model had clinical feasibility to identify bladder cancer patients and provided a potential target to improve the management of BLCA.
Collapse
Affiliation(s)
- Yongqing Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Hua
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiheng Jiang
- Department of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital, Nanjing Medical University School of Medicine, Shanghai, China
| | - Xinjie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengli Dong
- Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Leiser D, Samanta S, Eley J, Strauss J, Creed M, Kingsbury T, Staats PN, Bhandary B, Chen M, Dukic T, Roy S, Mahmood J, Vujaskovic Z, Shukla HD. Role of caveolin-1 as a biomarker for radiation resistance and tumor aggression in lung cancer. PLoS One 2021; 16:e0258951. [PMID: 34762666 PMCID: PMC8584669 DOI: 10.1371/journal.pone.0258951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/14/2023] Open
Abstract
Radiation therapy plays a major role in the treatment of lung cancer patients. However, cancer cells develop resistance to radiation. Tumor radioresistance is a complex multifactorial mechanism which may be dependent on DNA damage and repair, hypoxic conditions inside tumor microenvironment, and the clonal selection of radioresistant cells from the heterogeneous tumor site, and it is a major cause of treatment failure in non-small cell lung cancer (NSCLC). In the present investigation caveolin-1 (CAV-1) has been observed to be highly expressed in radiation resistant A549 lung cancer cells. CRISPR-Cas9 knockout of CAV-1 reverted the cells to a radio sensitive phenotype. In addition, CAV-1 overexpression in parental A549 cells, led to radiation resistance. Further, gene expression analysis of A549 parental, radiation resistant, and caveolin-1 overexpressed cells, exhibited overexpression of DNA repair genes RAD51B, RAD18, SOX2 cancer stem cell marker, MMPs, mucins and cytoskeleton proteins in resistant and caveolin-1 over expressed A549 cells, as compared to parental A549 cells. Bioinformatic analysis shows upregulation of BRCA1, Nuclear Excision DNA repair, TGFB and JAK/STAT signaling pathways in radioresistant and caveolin-1 overexpressed cells, which may functionally mediate radiation resistance. Immunohistochemistry data demonstrated heterogeneous expression of CAV-1 gene in human lung cancer tissues, which was analogous to its enhanced expression in human lung cancer cell line model and mouse orthotopic xenograft lung cancer model. Also, TCGA PanCancer clinical studies have demonstrated amplification, deletions and missense mutation in CAV-1 gene in lung cancer patients, and that CAV-1 alteration has been linked to poor prognosis, and poor survival in lung cancer patients. Interestingly, we have also optimized ELISA assay to measure caveolin-1 protein in the blood of A549 radiation resistant human xenograft preclinical mouse model and discovered higher level of caveolin-1 (950 pg/ml) in tumor bearing animals treated with radiation, as compared to xenograft with radiosensitive lung cancer cells (450 pg/ml). Thus, we conclude that caveolin-1 is involved in radio-resistance and contributes to tumor aggression, and it has potential to be used as prognostic biomarker for radiation treatment response, and tumor progression for precision medicine in lung cancer patients.
Collapse
Affiliation(s)
- Dominic Leiser
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Santanu Samanta
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - John Eley
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, United States of America
| | - Josh Strauss
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, United States of America
| | - Michael Creed
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Tami Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul N. Staats
- Department of Pathology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Binny Bhandary
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Minjie Chen
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Tijana Dukic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sanjit Roy
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Hem D. Shukla
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
6
|
Moriconi C, Civita P, Neto C, Pilkington GJ, Gumbleton M. Caveolin-1, a Key Mediator Across Multiple Pathways in Glioblastoma and an Independent Negative Biomarker of Patient Survival. Front Oncol 2021; 11:701933. [PMID: 34490102 PMCID: PMC8417742 DOI: 10.3389/fonc.2021.701933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GB) remains an aggressive malignancy with an extremely poor prognosis. Discovering new candidate drug targets for GB remains an unmet medical need. Caveolin-1 (Cav-1) has been shown to act variously as both a tumour suppressor and tumour promoter in many cancers. The implications of Cav-1 expression in GB remains poorly understood. Using clinical and genomic databases we examined the relationship between tumour Cav-1 gene expression (including its spatial distribution) and clinical pathological parameters of the GB tumour and survival probability in a TCGA cohort (n=155) and CGGA cohort (n=220) of GB patients. High expression of Cav-1 represented a significant independent predictor of shortened survival (HR = 2.985, 5.1 vs 14.9 months) with a greater statistically significant impact in female patients and in the Proneural and Mesenchymal GB subtypes. High Cav-1 expression correlated with other factors associated with poor prognosis: IDH w/t status, high histological tumour grade and low KPS score. A total of 4879 differentially expressed genes (DEGs) in the GB tumour were found to correlate with Cav-1 expression (either positively or negatively). Pathway enrichment analysis highlighted an over-representation of these DEGs to certain biological pathways. Focusing on those that lie within a framework of epithelial to mesenchymal transition and tumour cell migration and invasion we identified 27 of these DEGs. We then examined the prognostic value of Cav-1 when used in combination with any of these 27 genes and identified a subset of combinations (with Cav-1) indicative of co-operative synergistic mechanisms of action. Overall, the work has confirmed Cav-1 can serve as an independent prognostic marker in GB, but also augment prognosis when used in combination with a panel of biomarkers or clinicopathologic parameters. Moreover, Cav-1 appears to be linked to many signalling entities within the GB tumour and as such this work begins to substantiate Cav-1 or its associated signalling partners as candidate target for GB new drug discovery.
Collapse
Affiliation(s)
- Chiara Moriconi
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
- Department of Pathology and Cell Biology, Columbia University, New York Presbyterian Hospital, New York, NY, United States
| | - Prospero Civita
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
- Brain Tumour Research Centre, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Catia Neto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Geoffrey J. Pilkington
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
- Brain Tumour Research Centre, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Department of Basic and Clinical Neuroscience, Division of Neuroscience, Institute of Psychiatry & Neurology, King’s College London, London, United Kingdom
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Bertero L, Gambella A, Barreca A, Osella-Abate S, Chiusa L, Francia di Celle P, Lista P, Papotti M, Cassoni P. Caveolin-1 expression predicts favourable outcome and correlates with PDGFRA mutations in gastrointestinal stromal tumours (GISTs). J Clin Pathol 2021; 75:825-831. [PMID: 34155091 DOI: 10.1136/jclinpath-2021-207595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 11/04/2022]
Abstract
AIMS Novel prognostic markers are warranted for gastrointestinal stromal tumours. Caveolin-1 is a multifunctional protein that proved to be associated with outcome in multiple tumour types. Aim of this study was to investigate Caveolin-1 expression and prognostic efficacy in a series of gastrointestinal stromal tumours. METHODS Caveolin-1 expression was assessed by immunohistochemistry in a retrospective series of 66 gastrointestinal stromal tumours representative of the different molecular subtypes. Correlations with clinical, histopathological and molecular features were investigated. Statistical analyses were performed as appropriate. RESULTS Thirty-five cases out of 66 (53.0%) expressed Caveolin-1. Presence of Caveolin-1 expression correlated with favourable histopathologic and clinical traits, including a lower mitotic count (p=0.003) and lower relapse rate (p=0.005). Caveolin-1 expression also resulted associated with the presence of PDGFRA mutations (p=0.010). Outcome analyses showed a favourable prognostic significance of Caveolin-1 expression in terms of relapse-free survival (HR=0.14; 95% CI=0.03 to 0.63) and overall survival (HR=0.29; 95% CI=0.11 to 0.74), even after adjusting for the mutational subgroup (relapse-free survival: HR=0.14, 95% CI=0.04 to 0.44; overall survival: HR=0.29, 95% CI=0.11 to 0.51) and imatinib treatment (relapse-free survival: HR=0.14, 95% CI=0.02 to 0.81; overall survival: HR=0.29, 95% CI=0.17 to 0.48). CONCLUSION Caveolin-1 represents a novel prognostic marker in gastrointestinal stromal tumours. Further studies are warranted to validate these results and to explore the mechanisms linking Caveolin-1 expression with the PDGFRA oncogenic pathway.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonella Barreca
- Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Simona Osella-Abate
- Molecular Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Luigi Chiusa
- Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Paola Francia di Celle
- Molecular Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Patrizia Lista
- Oncology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Panic A, Reis H, Wittka A, Darr C, Hadaschik B, Jendrossek V, Klein D. The Biomarker Potential of Caveolin-1 in Penile Cancer. Front Oncol 2021; 11:606122. [PMID: 33868995 PMCID: PMC8045968 DOI: 10.3389/fonc.2021.606122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023] Open
Abstract
Various types of human cancers were characterized by an altered expression of epithelial or stromal caveolin-1 (CAV1). However, the clinical significance of CAV1 expression in penile cancer remains largely unknown. Here the expression patterns of CAV1 were analyzed in a retrospective cohort (n=43) of penile squamous cell carcinomas (SCC). Upon penile cancer progression, significantly increased CAV1-levels were determined within the malignant epithelium, whereas within the tumor stroma, namely the fibroblastic tumor compartment harboring activated and/or cancer associated fibroblasts, CAV1 levels significantly decline. Concerning the clinicopathological significance of CAV1 expression in penile cancer as well as respective epithelial-stromal CAV1 distributions, high expression within the tumor cells as well as low expression of CAV1 within the stromal compartment were correlated with decreased overall survival of penile cancer patients. Herein, CAV1 expressions and distributions at advanced penile cancer stages were independent of the immunohistochemically proven tumor protein p53 status. In contrast, less differentiated p16-positive tumor epithelia (indicative for human papilloma virus infection) were characterized by significantly decreased CAV1 levels. Conclusively, we provide further and new evidence that the characteristic shift in stromal‐epithelial CAV1 being functionally relevant to tumor progression even occurs in penile SCC.
Collapse
Affiliation(s)
- Andrej Panic
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christopher Darr
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
9
|
Immune Stroma in Lung Cancer and Idiopathic Pulmonary Fibrosis: A Common Biologic Landscape? Int J Mol Sci 2021; 22:ijms22062882. [PMID: 33809111 PMCID: PMC8000622 DOI: 10.3390/ijms22062882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.
Collapse
|
10
|
Abstract
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
Collapse
|
11
|
Circulating Melanoma-Derived Extracellular Vesicles: Impact on Melanoma Diagnosis, Progression Monitoring, and Treatment Response. Pharmaceuticals (Basel) 2020; 13:ph13120475. [PMID: 33353043 PMCID: PMC7766072 DOI: 10.3390/ph13120475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma, one of the most aggressive human malignancies, is responsible for 80% of skin cancer deaths. Whilst early detection of disease progression or metastasis can improve patient survival, this remains a challenge due to the lack of reliable biomarkers. Importantly, these clinical challenges are not unique to humans, as melanoma affects many other species, including companion animals, such as the dog and horse. Extracellular vesicles (EVs) are tiny nanoparticles involved in cell-to-cell communication. Several protein and genomic EV markers have been described in the literature, as well as a wide variety of methods for isolating EVs from body fluids. As such, they may be valuable biomarkers in cancer and may address some clinical challenges in the management melanoma. This review aimed to explore the translational applications of EVs as biomarkers in melanoma, as well as their role in the clinical setting in humans and animals. A summary of melanoma-specific protein and genomic EV markers is presented, followed by a discussion of the role EVs in monitoring disease progression and treatment response. Finally, herein, we reviewed the advantages and disadvantages of methods utilised to isolate EVs from bodily fluids in melanoma patients (human and animals) and describe some of the challenges that will need to be addressed before EVs can be introduced in the clinical setting.
Collapse
|
12
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
13
|
Skryabin GO, Komelkov AV, Galetsky SA, Bagrov DV, Evtushenko EG, Nikishin II, Zhordaniia KI, Savelyeva EE, Akselrod ME, Paianidi IG, Tchevkina EM. Stomatin is highly expressed in exosomes of different origin and is a promising candidate as an exosomal marker. J Cell Biochem 2020; 122:100-115. [PMID: 32951259 DOI: 10.1002/jcb.29834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/13/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
Proteins involved in the organizing of lipid rafts can be found in exosomes, as shown for caveolin-1, and they could contribute to exosomal cargo sorting, as shown for flotillins. Stomatin belongs to the same stomatin/prohibitin/flotillin/HflK/C family of lipid rafts proteins, but it has never been studied in exosomes except for extracellular vesicles (EVs) originating from blood cells. Here we first show the presence of stomatin in exosomes produced by epithelial cancer cells (non-small cell lung cancer, breast, and ovarian cancer cells) as well as in EVs from biological fluids, including blood plasma, ascitic fluids, and uterine flushings. A high abundance of stomatin in EVs of various origins and its enrichment in exosomes make stomatin a promising exosomal marker. Comparison with other lipid raft proteins and exosomal markers showed that the level of stomatin protein in exosomes from different sources corresponds well to that of CD9, while it differs essentially from flotillin-1 and flotillin-2 homologs, which in turn are present in exosomes in nearly equal proportions. In contrast, the level of vesicular caveolin-1 as well as its EV-to-cellular ratio vary drastically depending on cell type.
Collapse
Affiliation(s)
- Gleb O Skryabin
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Andrei V Komelkov
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Sergey A Galetsky
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Dmitry V Bagrov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeniy G Evtushenko
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Igor I Nikishin
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill I Zhordaniia
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Elizaveta E Savelyeva
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Maria E Akselrod
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Iulia G Paianidi
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Elena M Tchevkina
- Oncogene Regulation Department of Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
14
|
Li W, Wang Q, Qi X, Guo Y, Lu H, Chen Y, Lu Z, Yan Q, Zhu X, Jung JU, Tosato G, Gao SJ, Lu C. Viral interleukin-6 encoded by an oncogenic virus promotes angiogenesis and cellular transformation by enhancing STAT3-mediated epigenetic silencing of caveolin 1. Oncogene 2020; 39:4603-4618. [PMID: 32393833 PMCID: PMC7970339 DOI: 10.1038/s41388-020-1317-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022]
Abstract
Kaposi's sarcoma (KS) caused by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly angiogenic and invasive vascular tumor and the most common AIDS-associated cancer. KSHV-encoded viral interleukin-6 (vIL-6) is implicated in the development of KSHV-induced malignancies; however, the mechanisms underlying vIL-6-induced angiogenesis and tumorigenesis remain undefined. Here, we show that vIL-6 promotes angiogenesis, cell proliferation, and invasion by downregulating caveolin 1 (CAV1) that plays a pivotal and versatile role in multiple cancer-associated processes. Mechanistically, vIL-6 signaling led to the phosphorylation and acetylation of STAT3 that targeted DNA methyltransferase 1 (DNMT1) in a sequential manner. Specifically, the vIL-6-induced phosphorylated form of STAT3 transcriptionally activated DNMT1 expression. Furthermore, vIL-6-induced acetylated form of STAT3 interacted with DNMT1 to form a transcription factor complex that bound to and methylated the CAV1 promoter, leading to CAV1 expression silencing. In fact, downregulation of CAV1 expression resulted in the activation of AKT signaling, promoting cell invasion, and growth transformation induced by KSHV. Finally, genetic deletion of vIL-6 from the KSHV genome abolished KSHV-induced cellular transformation and impaired angiogenesis. Our results reveal that vIL-6 epigenetically silences CAV1 expression to promote angiogenesis and tumorigenesis by regulating the formation of STAT3-DNMT1 complex. These novel findings define a mechanism by which KSHV inhibits the CAV1 pathway and establish the scientific basis for targeting this pathway to treat KSHV-associated cancers.
Collapse
Affiliation(s)
- Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210029, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qingxia Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaoyu Qi
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yuanyuan Guo
- The College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Hongmei Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, PR China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Zhongmou Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaofei Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giovanna Tosato
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-1906, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
15
|
Skryabin GO, Komelkov AV, Savelyeva EE, Tchevkina EM. Lipid Rafts in Exosome Biogenesis. BIOCHEMISTRY (MOSCOW) 2020; 85:177-191. [PMID: 32093594 DOI: 10.1134/s0006297920020054] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exosomes (secreted extracellular vesicles formed in the intracellular vesicular transport system) play a crucial role in distant cell-cell communication. Exosomes transfer active forms of various biomolecules; the molecular composition of the exosomal cargo is a result of targeted selection and depends on the type of producer cells. The mechanisms underlying exosome formation and cargo selection are poorly understood. It is believed that there are several pathways for exosome biogenesis, although the questions about their independence and simultaneous coexistence in the cell still remain open. The least studied topic is the recently discovered mechanism of exosome formation associated with lipid rafts, or membrane lipid microdomains. Here, we present modern concepts and basic hypotheses on the mechanisms of exosome biogenesis and secretion and summarize current data on the involvement of lipid rafts and their constituent molecules in these processes. Special attention is paid to the analysis of possible role in the exosome formation of raft-forming proteins of the SPFH family, components of planar rafts, and caveolin, the main component of caveolae.
Collapse
Affiliation(s)
- G O Skryabin
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - A V Komelkov
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| | - E E Savelyeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - E M Tchevkina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
16
|
Kato K, Miyazawa H, Kobayashi H, Noguchi N, Lambert D, Kawashiri S. Caveolin-1 Expression at Metastatic Lymph Nodes Predicts Unfavorable Outcome in Patients with Oral Squamous Cell Carcinoma. Pathol Oncol Res 2020; 26:2105-2113. [PMID: 31907776 DOI: 10.1007/s12253-019-00791-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
We evaluated the clinical and prognostic value of the protein expression of caveolin-1 (CAV1) and p16 at the primary site and metastatic lymph nodes of oral squamous cell carcinoma (OSCC). Primary site specimens from 80 OSCC cases were randomly selected and lymph node specimens from 15 preserved metastatic lymph nodes from among those patients were selected for examination. We evaluated the CAV1 and p16 expression at both the primary site and metastatic lymph nodes, and analyzed the patients' clinicopathological data in relation to CAV1 and p16 expression. Our analysis revealed significant positive correlations between CAV1 expression at the primary site and pathological metastasis, cell differentiation, and mode of invasion (p = 0.019, p = 0.002, p = 0.015, respectively), but p16 expression was not associated with any clinicopathological factors. Patients with high CAV1 expression at the primary sites showed significantly worse prognoses than those with low or negative CAV1 expression (p = 0.002), and multivariate analysis showed that the T classification and CAV1 expression were independent OSCC prognostic factors. CAV1 expression was also present in the metastatic lymph nodes of the OSCC cases with particularly poor differentiation and high invasive grade, and patients with CAV1-positive metastatic lymph nodes showed significantly worse prognoses than those with CAV1-negative metastatic lymph nodes (p = 0.018). CAV1 may activate metastaticity and the invasive capacity of OSCC cells. CAV1 expression, particularly at metastatic lymph nodes, predicts a worse outcome for OSCC, suggesting that CAV1 could be used as a prognostic marker for OSCC.
Collapse
Affiliation(s)
- Koroku Kato
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Hiroki Miyazawa
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hisano Kobayashi
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Natsuyo Noguchi
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Daniel Lambert
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
17
|
Wang H, Zhang Z, Xu K, Wei S, Li L, Wang L. Exploration of estrogen receptor-associated hub genes and potential molecular mechanisms in non-smoking females with lung adenocarcinoma using integrated bioinformatics analysis. Oncol Lett 2019; 18:4605-4612. [PMID: 31611968 PMCID: PMC6781748 DOI: 10.3892/ol.2019.10845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore important estrogen receptor-associated genes and to determine the potential pathogenic and prognostic factors for lung adenocarcinoma in non-smoking females. The gene expression profiles of the two datasets (GSE32863 and GSE75037) were downloaded from the Gene Expression Omnibus (GEO) database. Data for non-smoking female patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database were also downloaded. The Linear Models for Microarray Data package in R was used to explore the differentially expressed genes (DEGs) between samples from non-smoking female patients with lung adenocarcinoma and samples of adjacent non-cancerous lung tissue. The Database for Annotation, Visualization and Integrated Discovery was used for functional enrichment of the DEGs. The Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape software were used to obtain a protein-protein interaction (PPI) network and to identify the hub genes. In addition, the network between the estrogen receptor and the DEGs was constructed. A Kaplan-Meier survival plot was used to analyze the overall survival (OS). In total, 248 DEGs were identified in the GEO database, and 2,362 DEGs were identified in TCGA database. The intersection of the two datasets (DEGs in GEO and TCGA) revealed 170 DEGs, and these were selected for further investigation. Gene Ontology was used to group the 170 DEGs into biological process, molecular function and cellular component categories. Kyoto Encyclopedia of Genes and Genomes pathway analysis was subsequently performed. A total of 27 hub genes, including caveolin 1 (CAV1), matrix metallopeptidase 9 (MMP9), secreted phosphoprotein 1 (SPP1) and collagen type I α 1 chain (COL1A1), were closely associated with the estrogen receptor. CAV1 and SPP1 were associated with the OS. However, MMP9 and COL1A1 did not have any significant effect on OS. In summary, the identification of CAV1, MMP9, SPP1 and COL1A1 may provide novel insights into the molecular mechanism of lung adenocarcinoma in non-smoking female patients, and the results obtained in the current study may guide future clinical studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Zhihong Zhang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Ke Xu
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Song Wei
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lailing Li
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lijun Wang
- Department of Respiratory Disease, Tongling People's Hospital, Tongling, Anhui 244000, P.R. China
| |
Collapse
|
18
|
Zhou J, Du Y, Lu Y, Luan B, Xu C, Yu Y, Zhao H. CD44 Expression Predicts Prognosis of Ovarian Cancer Patients Through Promoting Epithelial-Mesenchymal Transition (EMT) by Regulating Snail, ZEB1, and Caveolin-1. Front Oncol 2019; 9:802. [PMID: 31497537 PMCID: PMC6712994 DOI: 10.3389/fonc.2019.00802] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives: CD44, a transmembrane glycoprotein, is involved in the generation of a stem cell niche and maintaining stem cell quiescence. The aim of this study was to evaluate its contribution to ovarian cancer prognosis and progression, as well as explore the possible mechanisms. Materials and Methods: The expression of CD44 in tissue microarray of 90 ovarian cancer patients was detected by immunohistochemistry. Kaplan-Meier method and Cox proportional hazard model were used to evaluate the factors associated with 5-year overall survival and disease-free survival. CD44 was knocked down by small interfering RNA, the expression of Snail, ZEB1, and Caveolin-1 in a stable Snail-expressing ovarian cancer cell line HO8910PM-Snail (HOPM-Snail) and its control cell line HO8910PM-vector (HOPM) was detected by western blotting analysis. Cell clone formation, migration, and invasion of HOPM-Snail and HOPM cells with CD44 silencing were examined by 3-D culture assay, wound healing assay, and transwell assay, respectively. Results: Over-expression of CD44 was associated with advanced histological grade (p = 0.014) and FIGO stage (p = 0.001). Multivariate analysis showed that CD44 expression was an independent prognostic factor to predict both overall survival (p = 0.004) and disease-free survival (p = 0.025) of ovarian cancer patients. Down-regulation of CD44 expression by small silencing RNA abrogated both basal Snail expression and TGF-β1-induced Snail expression in HOPM and HOPM-Snail cells. In addition, CD44 knockdown caused a decrease in ZEB1 expression. RPPA data indicated that Caveolin-1 may be another regulative target of CD44, and western blotting analysis confirmed that CD44 knockdown caused an increase in Caveolin-1 expression. However, there was no noticeable reciprocal regulation among ZEB1, Caveolin-1, and Snail. Moreover, CD44 knockdown caused a decrease in cell clone formation, migration, and invasion of HOPM and HOPM-Snail cells. Conclusions: As both Snail and ZEB1 are crucial inducers of epithelial-to-mesenchymal transition (EMT), our data suggested that CD44 may be crucial for the EMT process of ovarian cancer. Therefore, CD44 may be a potential prognostic marker as well as treatment target for ovarian cancer.
Collapse
Affiliation(s)
- Jiayi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Baoxin Luan
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yinhua Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongbo Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
19
|
Cell Intrinsic and Extrinsic Mechanisms of Caveolin-1-Enhanced Metastasis. Biomolecules 2019; 9:biom9080314. [PMID: 31362353 PMCID: PMC6723107 DOI: 10.3390/biom9080314] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Caveolin-1 (CAV1) is a scaffolding protein with a controversial role in cancer. This review will initially discuss earlier studies focused on the role as a tumor suppressor before elaborating subsequently on those relating to function of the protein as a promoter of metastasis. Different mechanisms are summarized illustrating how CAV1 promotes such traits upon expression in cancer cells (intrinsic mechanisms). More recently, it has become apparent that CAV1 is also a secreted protein that can be included into exosomes where it plays a significant role in determining cargo composition. Thus, we will also discuss how CAV1 containing exosomes from metastatic cells promote malignant traits in more benign recipient cells (extrinsic mechanisms). This ability appears, at least in part, attributable to the transfer of specific cargos present due to CAV1 rather than the transfer of CAV1 itself. The evolution of how our perception of CAV1 function has changed since its discovery is summarized graphically in a time line figure.
Collapse
|
20
|
Yan C, Sun C, Ding X, Rizeq FK, Ren M, Yang F, Chen Y, Wang B. Association of CAV1 polymorphisms with the risks of breast cancer: A systematic review and meta-analysis. Pathol Res Pract 2019; 215:152518. [PMID: 31303379 DOI: 10.1016/j.prp.2019.152518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Caveolin-1 (CAV1) polymorphisms have been shown to correlated with breast cancer risk in previous studies. However, the role of CAV1 polymorphisms still remained indecisive, and dual functions of CAV1 was demonstrated in breast cancer development. Consequently, a meta-analysis to evaluate and summarize the association of the CAV1 polymorphisms with breast cancer susceptibility. MATERIAL AND METHODS Extensive search was performed in PubMed, Web of Science, Google scholar, EMBASE.com, CNKI and Wanfang searching platform up to March 2019. The Newcastle-Ottawa Scale (NOS) were used to evaluate the quality of each study. The Odds ratios (ORs) and the 95% confidence intervals (CIs) were analyzed to evaluate the strength of the associations in five genetic models. Inter-study heterogeneity was quantified using the I-squared (I2) test. In addition, the Egger's test and Begg's test were applied to evaluate the publication bias. RESULTS 4 case-control studies with 2115 cases and 2138 controls were enrolled into this analysis. There was a significant association between rs3807987 polymorphism of CAV1 and breast cancer in allele comparison (A vs. G: OR = 1.288, 95%CI = 1.162-1.428, P < 0.001), heterozygote comparison (AG vs. GG: OR= 1.422, 95%CI=1.233-1.639, P < 0.001), and dominant comparison (AA+AG vs. GG: OR=1.395, 95%CI=1.228-1.586, P < 0.001). A significant association of rs3807987 polymorphism in allele comparison (A vs. G: OR=1.238, 95%CI=1.109-1.383, P < 0.001), heterozygote comparison (AG VS. GG: OR=1.466, 95%CI=1.267-1.697, P < 0.05), and dominant comparison (AA+AG vs. GG: OR=1.384, 95%CI=1.209-1.585, P < 0.001) was also founded amongst Chinese population. A significant association between rs7804372 polymorphism and breast cancer amongst Chinese population in recessive comparison (AA vs. AT + TT: OR = 0.730, 95%CI = 0.567-0.940, P = 0.015) was identified. No significant association between breast cancer risk and rs1997623 was found. CONCLUSION CAV1 rs3807987 and rs7804372 polymorphisms are associated with the change of breast cancer risk. More well-designed and large studies in various populations are needed to further elaborate these associations.
Collapse
Affiliation(s)
- Cunye Yan
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL 60657, USA
| | - Xiuxiu Ding
- Lianhua Community Health Service Centre, The Second Affiliated Hospital of Anhui Medical University, 217 Furong Street, Hefei, Anhui, PR China
| | - Feras Kamel Rizeq
- Avalon University School of Medicine, Santa Rosaweg 122-124, Willemstad, Curaçao
| | - Min Ren
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China
| | - Fan Yang
- Maternal and Chile Health Care Hospital of Anhui Province, No.15 Yimin Street, Hefei, 230001, Anhui, PR China
| | - Ying Chen
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China
| | - Benzhong Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China.
| |
Collapse
|
21
|
Zhang Y, Fan W, Wu J, Dong J, Cui Z. Association of caveolin-1 protein expression with hepatocellular carcinoma: a meta-analysis and literature review. Cancer Manag Res 2019; 11:5113-5122. [PMID: 31239768 PMCID: PMC6553953 DOI: 10.2147/cmar.s194033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Aberrant expression of caveolin-1 (CAV-1) is involved in the pathogenesis of hepatocellular carcinoma (HCC); however, the results have been inconsistent due to the small size of sample in the individual study. Methods: We performed a meta-analysis and evaluated the association of CAV-1 protein overexpression and clinicopathological significance by using Review Manager 5.2. Pooled ORs and HR with corresponding CIs were calculated. Results: Nine studies were included in the meta-analysis with 810 HCC and 172 cirrhosis patients. CAV-1 protein overexpression was correlated with the risk of cirrhosis; OR was 3.25, p=0.01. Furthermore, the rate of CAV-1 protein overexpression was significantly higher in HCC with cirrhosis than HCC without cirrhosis, suggesting that the CAV-1 protein overexpression likely initiated carcinogenesis in liver with cirrhosis and subsequently contributed to the progression of HCC. In addition, CAV-1 protein overexpression was strongly associated with poor differentiated HCC and invasion; ORs were 2.61 and 2.71, respectively. CAV-1 protein overexpression was strongly correlated with poor overall survival in patients with HCC; HR was 0.4, p=0.03. Conclusions: In summary, CAV-1 protein overexpression is at risk for liver cirrhosis and HCC derived from cirrhosis, and CAV-1 is also a promising prognostic predictor in HCC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng 475000, People's Republic of China
| | - Wenjuan Fan
- Medical Bioengineering Key Laboratory, Luohe Medical College, Luohe 462002, People's Republic of China
| | - Jiang Wu
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng 475000, People's Republic of China
| | - Jinglong Dong
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng 475000, People's Republic of China
| | - Zhanjun Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
22
|
Okada S, Raja SA, Okerblom J, Boddu A, Horikawa Y, Ray S, Okada H, Kawamura I, Murofushi Y, Murray F, Patel HH. Deletion of caveolin scaffolding domain alters cancer cell migration. Cell Cycle 2019; 18:1268-1280. [PMID: 31116089 DOI: 10.1080/15384101.2019.1618118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caveolin-1 (Cav-1) is an integral membrane protein that plays an important role in proliferative and terminally differentiated cells. As a structural component of Caveolae, Cav-1 interacts with signaling molecules via a caveolin scaffolding domain (CSD) regulating cell signaling. Recent reports have shown that Cav-1 is a negative regulator in tumor metastasis. Therefore, we hypothesize that Cav-1 inhibits cell migration through its CSD. HeLa cells were engineered to overexpress Cav-1 (Cav-1 OE), Cav-1 without a functional CSD (∆CSD), or enhanced green fluorescent protein (EGFP) as a control. HeLa cell migration was suppressed in Cav-1 OE cells while ∆CSD showed increased migration, which corresponded to a decrease in the tight junction protein, zonula occludens (ZO-1). The migration phenotype was confirmed in multiple cancer cell lines. Phosphorylated STAT-3 was decreased in Cav-1 OE cells compared to control and ∆CSD cells; reducing STAT-3 expression alone decreased cell migration. ∆CSD blunted HeLa proliferation by increasing the number of cells in the G2/M phase of the cell cycle. Overexpressing the CSD peptide alone suppressed HeLa cell migration and inhibited pSTAT3. These findings suggest that Cav-1 CSD may be critical in controlling the dynamic phenotype of cancer cells by facilitating the interaction of specific signal transduction pathways, regulating STAT3 and participating in a G2/M checkpoint. Modulating the CSD and targeting specific proteins may offer potential new therapies in the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Sunaho Okada
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Sadaf A Raja
- c Department of Biosciences , COMSATS Institute of Information Technology , Islamabad , Pakistan
| | - Jonathan Okerblom
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Aayush Boddu
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Yousuke Horikawa
- d Department of Pediatrics , Sharp Rees-Stealy Medical Group , San Diego , CA , USA.,e Department of Anesthesiology , Tokushima University , Tokushima , Japan
| | | | - Hideshi Okada
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,g Department of Anesthesiology and Medicine , UCSD School of Medicine , San Diego , CA , USA.,h Department of Emergency and Disaster Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Itta Kawamura
- i Department of Cardiovascular Medicine , Gifu Heart Center , Gifu , Japan
| | - Yoshiteru Murofushi
- g Department of Anesthesiology and Medicine , UCSD School of Medicine , San Diego , CA , USA
| | - Fiona Murray
- j Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen , Scotland
| | - Hemal H Patel
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| |
Collapse
|
23
|
Kruglikov IL, Scherer PE. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. NPJ Regen Med 2019; 4:9. [PMID: 31044089 PMCID: PMC6486604 DOI: 10.1038/s41536-019-0071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Reduced expression of caveolin-1 (Cav-1) is an important pathogenic factor in hypertrophic scarring (HTS). Such a reduction can be found in connection with the main known risk factors for HTS, including dark skin, female gender, young age, burn site and severity of the injury. The degree of overexpression of Cav-1 associated with different therapeutic options for HTS correlates with clinical improvements in HTS. This makes endo- or exogenous induction of Cav-1 not only an important therapeutic target for HTS, but also highlights its use as a preventive target to reduce or avoid HTS formation.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549 USA
| |
Collapse
|
24
|
Gao Y, Li L, Li T, Ma L, Yuan M, Sun W, Cheng HL, Niu L, Du Z, Quan Z, Fan Y, Fan J, Luo C, Wu X. Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1. Int J Oncol 2019; 54:2054-2068. [PMID: 31081050 PMCID: PMC6521936 DOI: 10.3892/ijo.2019.4774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
The failure of androgen deprivation therapy in prostate cancer treatment mainly results from drug resistance to androgen receptor antagonists. Although an aberrant caveolin‑1 (Cav‑1) expression has been reported in multiple tumor cell lines, it is unknown whether it is responsible for the progression of castration‑resistant prostate cancer (CRPC). Thus, the aim of the present study was to determine whether Cav‑1 can be used as a key molecule for the prevention and treatment of CRPC, and to explore its mechanism of action in CRPC. For this purpose, tissue and serum samples from patients with primary prostate cancer and CRPC were analyzed using immunohistochemistry and enzyme‑linked immunosorbent assay, which revealed that Cav‑1 was overexpressed in CRPC. Furthermore, Kaplan‑Meier survival analysis and univariate Cox proportional hazards regression analysis demonstrated that Cav‑1 expression in tumors was an independent risk factor for the occurrence of CRPC and was associated with a shorter recurrence‑free survival time in patients with CRPC. Receiver operating characteristic curves suggested that serum Cav‑1 could be used as a diagnostic biomarker for CRPC (area under the curve, 0.876) using a cut‑off value of 0.68 ng/ml (with a sensitivity of 82.1% and specificity of 80%). In addition, it was determined that Cav‑1 induced the invasion and migration of CRPC cells by the activation of the H‑Ras/phosphoinositide‑specific phospholipase Cε signaling cascade in the cell membrane caveolae. Importantly, simvastatin was able to augment the anticancer effects of androgen receptor antagonists by downregulating the expression of Cav‑1. Collectively, the findings of this study provide evidence that Cav‑1 is a promising predictive biomarker for CRPC and that lowering cholesterol levels with simvastatin or interfering with the expression of Cav‑1 may prove to be a useful strategy with which to prevent and/or treat CRPC.
Collapse
Affiliation(s)
- Yingying Gao
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Luo Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Ting Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lei Ma
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Hong Lin Cheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lingfang Niu
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Yanru Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Jiaxin Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Chunli Luo
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| |
Collapse
|
25
|
Mao X, Tey SK, Ko FCF, Kwong EML, Gao Y, Ng IOL, Cheung ST, Guan XY, Yam JWP. C-terminal truncated HBx protein activates caveolin-1/LRP6/β-catenin/FRMD5 axis in promoting hepatocarcinogenesis. Cancer Lett 2019; 444:60-69. [DOI: 10.1016/j.canlet.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 02/08/2023]
|
26
|
Caveolin-1 as a pathophysiological factor and target in psoriasis. NPJ Aging Mech Dis 2019; 5:4. [PMID: 30729030 PMCID: PMC6363785 DOI: 10.1038/s41514-019-0034-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Low expression of caveolin-1 (Cav-1) is typical in psoriatic lesions and overexpression of Cav-1 leads to a reduction of inflammation and suppression of epidermal hyperproliferation, thus ameliorating these two well-known hallmarks of psoriasis. At the same time, the interfacial layers of the white adipose tissue (WAT) adjacent to psoriatic lesions demonstrate much higher stiffness, which also points to a modification of Cav-1 expression in this tissue. These processes are connected with each other and regulated via exosomal exchange. Here we discuss the role of Cav-1 expression in inflammatory and hyperproliferative processes and analyze the ways to provide spatially different modulation of Cav-1 expression in the skin and WAT. Such modulation can be induced by different pharmacological and physical factors. These include application of mechanical stress and supra-physiological temperatures. Cav-1 should therefore be considered as an important target in treatment of psoriasis.
Collapse
|
27
|
Fan S, Meng J, Zhang L, Zhang X, Liang C. CAV1 polymorphisms rs1049334, rs1049337, rs7804372 might be the potential risk in tumorigenicity of urinary cancer: A systematic review and meta-analysis. Pathol Res Pract 2019; 215:151-158. [DOI: 10.1016/j.prp.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 12/24/2022]
|
28
|
Gheida SF, Neinaa YMEH, Mohammed DAEA. Caveolin-1 expression in hyperproliferative skin disorders: A potential predictive marker of disease severity and progression. DERMATOL SIN 2018. [DOI: 10.1016/j.dsi.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
29
|
Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, Reyes C, Díaz-Valdivia N, Varas-Godoy M, Lobos-González L, Quest AF. Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine (Lond) 2018; 13:2597-2609. [PMID: 30338706 DOI: 10.2217/nnm-2018-0094] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1; possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo.
Collapse
Affiliation(s)
- America Campos
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | - Carlos Salomon
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Exosome Biology Laboratory, UQ Centre for Clinical Research, Brisbane, Australia
| | | | - Jorge Díaz
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | - Samuel Martínez
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | | | | | - Natalia Díaz-Valdivia
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | - Manuel Varas-Godoy
- Department of Clinical Biochemistry & Immunology, Faculty of Pharmacy, University of Concepción, Bío Bío Region, Chile
| | - Lorena Lobos-González
- Fundación Ciencia & Vida, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile.,Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, La Barnechea, Santiago, Chile
| | - Andrew Fg Quest
- Laboratory of Cellular Communication, Center for Studies of Exercise, Metabolism & Cancer (CEMC), Program of Cell & Molecular Biology, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| |
Collapse
|
30
|
Takeda M, Sakaguchi T, Hiraide T, Shibasaki Y, Morita Y, Kikuchi H, Ikegami K, Setou M, Konno H, Takeuchi H. Role of caveolin-1 in hepatocellular carcinoma arising from non-alcoholic fatty liver disease. Cancer Sci 2018; 109:2401-2411. [PMID: 29896915 PMCID: PMC6113505 DOI: 10.1111/cas.13659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
The molecular features of hepatocellular carcinoma arising from non-alcoholic fatty liver disease (NAFLD-HCC) are not well known. In this study, we investigated the mechanism by which NAFLD-HCC survives in a fat-rich environment. We found that caveolin (CAV)-1 was overexpressed in clinical specimens from NAFLD-HCC patients. HepG2, HLE, and HuH-7 HCC cell lines showed decreased proliferation in the presence of the saturated fatty acids palmitic acid and stearic acid, although only HLE cells expressed high levels of CAV-1. HLE cells treated with oleic acid (OA) showed robust proliferation, whereas CAV-null HepG2 cells showed reduced proliferation and increased apoptosis. CAV-1 knockdown in HLE cells attenuated the OA-induced increase in proliferation and enhanced apoptosis. Liquid chromatography-tandem mass spectrometry analysis revealed that the levels of OA-containing ceramide, a pro-apoptotic factor, were higher in HepG2 and CAV-1-deficient HLE cells than in HLE cells, suggesting that CAV-1 inhibits apoptosis by decreasing the level of OA-containing ceramide. These results indicate that CAV-1 is important for NAFLD-HCC survival in fatty acid-rich environments and is a potential therapeutic target.
Collapse
Affiliation(s)
- Makoto Takeda
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Cellular and Molecular Anatomy, International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takanori Sakaguchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takanori Hiraide
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Shibasaki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy, International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Pre-eminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
31
|
Lazar I, Clement E, Attane C, Muller C, Nieto L. A new role for extracellular vesicles: how small vesicles can feed tumors' big appetite. J Lipid Res 2018; 59:1793-1804. [PMID: 29678957 DOI: 10.1194/jlr.r083725] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer cells must adapt their metabolism in order to meet the energy requirements for cell proliferation, survival in nutrient-deprived environments, and dissemination. In particular, FA metabolism is emerging as a critical process for tumors. FA metabolism can be modulated through intrinsic changes in gene expression or signaling between tumor cells and also in response to signals from the surrounding microenvironment. Among these signals, extracellular vesicles (EVs) could play an important role in FA metabolism remodeling. In this review, we will present the role of EVs in tumor progression and especially in metabolic reprogramming. Particular attention will be granted to adipocytes. These cells, which are specialized in storing and releasing FAs, are able to shift tumor metabolism toward the use of FAs and, subsequently, increase tumor aggressiveness. Recent work demonstrates the involvement of EVs in this metabolic symbiosis.
Collapse
Affiliation(s)
- Ikrame Lazar
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 31077 Toulouse Cedex, France and Université de Toulouse, UPS, IPBS, F-31077, 31062 Toulouse Cedex, France
| | - Emily Clement
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 31077 Toulouse Cedex, France and Université de Toulouse, UPS, IPBS, F-31077, 31062 Toulouse Cedex, France
| | - Camille Attane
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 31077 Toulouse Cedex, France and Université de Toulouse, UPS, IPBS, F-31077, 31062 Toulouse Cedex, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 31077 Toulouse Cedex, France and Université de Toulouse, UPS, IPBS, F-31077, 31062 Toulouse Cedex, France
| | - Laurence Nieto
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 31077 Toulouse Cedex, France and Université de Toulouse, UPS, IPBS, F-31077, 31062 Toulouse Cedex, France
| |
Collapse
|
32
|
Abstract
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
33
|
ITGB1-dependent upregulation of Caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer. Sci Rep 2018; 8:2338. [PMID: 29402961 PMCID: PMC5799174 DOI: 10.1038/s41598-018-20161-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Caveolin-1 (CAV1) is over-expressed in prostate cancer (PCa) and is associated with adverse prognosis, but the molecular mechanisms linking CAV1 expression to disease progression are poorly understood. Extensive gene expression correlation analysis, quantitative multiplex imaging of clinical samples, and analysis of the CAV1-dependent transcriptome, supported that CAV1 re-programmes TGFβ signalling from tumour suppressive to oncogenic (i.e. induction of SLUG, PAI-1 and suppression of CDH1, DSP, CDKN1A). Supporting such a role, CAV1 knockdown led to growth arrest and inhibition of cell invasion in prostate cancer cell lines. Rationalized RNAi screening and high-content microscopy in search for CAV1 upstream regulators revealed integrin beta1 (ITGB1) and integrin associated proteins as CAV1 regulators. Our work suggests TGFβ signalling and beta1 integrins as potential therapeutic targets in PCa over-expressing CAV1, and contributes to better understand the paradoxical dual role of TGFβ in tumour biology.
Collapse
|
34
|
Liu Z, Yu J, Wu R, Tang S, Cai X, Guo G, Chen S. Rho/ROCK Pathway Regulates Migration and Invasion of Esophageal Squamous Cell Carcinoma by Regulating Caveolin-1. Med Sci Monit 2017; 23:6174-6185. [PMID: 29288243 PMCID: PMC5757863 DOI: 10.12659/msm.905820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/07/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a common cancer with poor prognosis. Caveolin-1 (Cav1) and Rho/ROCK pathway play important roles in tumor metastasis, separately. However, less research was focused on the relationship between Cav1 and Rho/ROCK in ECSS metastasis. Therefore, we investigated the relationship between Cav1 and Rho/ROCK pathway in ESCC metastasis. MATERIAL AND METHODS Cav1 and phosphorylated Cav1 (PY14Cav1) were examined in ESCC and in adjacent and non-tumorous tissues from ESCC patients by immunohistochemistry (IHC). Small interfering RNA (siRNA) targeting Cav1 or Rho/ROCK inhibitor was used to treat EC109, Eca109, TE1, and TE13 cells. Western blotting (WB) was used to detect Cav1 and PY14Cav1 expression. The wound healing scratch test and transwell assays were used to assess migration and invasion. RESULTS Cav1 and PY14Cav1 were gradually expressed at higher levels in ECSS than in adjacent and non-tumor tissues as ESCC stage and lymphatic metastasis increased, and this difference was significant (P<0.05). Cav1 was expressed at higher levels in TE1 and TE13 than in EC109 and Eca109, while PY14Cav1 was enhanced in TE1 and TE13 cells but not in EC109 and Eca109, and the difference was significant (P<0.05). TE1 and TE13 had significantly (P<0.05) stronger motility, migratory, and invasion abilities than EC109 and Eca109 cells. Silencing Cav1 decreased PY14Cav1 expression in TE1 and TE13 cells, as well as suppressing the migration and invasion of all ECSS cells, and these differences were significant (P<0.05). Suppressing the Rho/ROCK pathway obviously inhibited Cav1 and PY14Cav1 expressions, as well as significantly (P<0.05) decreasing migration and invasion of ESCC cells. CONCLUSIONS Cav1 and PY14Cav1 were positively correlated with ESCC lymphatic metastasis and cancer stages. Rho/ROCK pathway activation promoted ESCC metastasis by regulating Cav1.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Jing Yu
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ruinuan Wu
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Shengxin Tang
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Xiaoman Cai
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Guanghua Guo
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
- Corresponding Authors: Guanghua Guo, e-mail: , Suzuan Chen, e-mail:
| | - Suzuan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
- Corresponding Authors: Guanghua Guo, e-mail: , Suzuan Chen, e-mail:
| |
Collapse
|
35
|
Cui Y, Zhu T, Song X, Liu J, Liu S, Zhao R. Downregulation of caveolin-1 increased EGFR-TKIs sensitivity in lung adenocarcinoma cell line with EGFR mutation. Biochem Biophys Res Commun 2017; 495:733-739. [PMID: 29137977 DOI: 10.1016/j.bbrc.2017.11.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022]
Abstract
Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib and erlotinib, have shown notable effects in lung adenocarcinoma patients harboring EGFR mutations, there are significant differences between individual patients in the degree of benefits provided by EGFR-TKIs. Some evidence supports a role for caveolin-1 (Cav-1) in modulating drug sensitivity. This study aimed to investigate whether Cav-1 plays an important role in sensitivity to EGFR-TKIs in lung adenocarcinoma cells. Downregulation of Cav-1 in PC-9 cells were performed to investigate changes in sensitivity to EGFR-TKIs in vitro and in vivo. Knockdown of Cav-1 dramatically enhanced sensitivity to EGFR-TKIs by down-regulating phosphorylation of EGFR. These results suggest that Cav-1 may be a predictor of the poor efficacy of EGFR-TKIs treatment in lung adenocarcinoma with EGFR mutations.
Collapse
Affiliation(s)
- Yujie Cui
- Department of Oncology, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Oncology, Hebei Genenral Hospital, Shijiazhuang 050051, Hebei, China
| | - Tienian Zhu
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang 050017, Hebei, China; Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China.
| | - Xuejing Song
- Department of Oncology, The First Hospital of Shijiazhuang, 050011 Hebei, China
| | - Jiankun Liu
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China
| | - Shuang Liu
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China
| | - Ruijing Zhao
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang 050017, Hebei, China.
| |
Collapse
|
36
|
EFHD2 promotes epithelial-to-mesenchymal transition and correlates with postsurgical recurrence of stage I lung adenocarcinoma. Sci Rep 2017; 7:14617. [PMID: 29097801 PMCID: PMC5668280 DOI: 10.1038/s41598-017-15186-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
Surgery is the only curative treatment for early-stage non-small cell lung cancer (NSCLC) patients. However, approximately one-third of these patients develop recurrence, which remains the main cause of mortality in the postsurgical treatment of NSCLC. Many molecular markers have been proposed to predict recurrence of early-stage disease, but no marker has demonstrated sufficient reliability for clinical application. In the present study, the novel protein EF-hand domain-containing protein D2 (EFHD2) was identified as expressed in highly metastatic tumor cells. EFHD2 increased the formation of protrusive invadopodia structures and cell migration and invasion abilities and promoted the epithelial-to-mesenchymal transition (EMT) character of lung adenocarcinoma cells. We demonstrated that the mechanism of EFHD2 in enhancing EMT occurs partly through inhibition of caveolin-1 (CAV1) for cancer progression. The expression of EFHD2 was significantly correlated with postsurgical recurrence of patients with stage I lung adenocarcinoma in the Kaplan-Meier-plotter cancer database search and our retrospective cohort study (HR, 6.14; 95% CI, 2.40-15.74; P < 0.001). Multivariate Cox regression analysis revealed that EFHD2 expression was an independent clinical predictor for this disease. We conclude that EFHD2 expression is associated with increased metastasis and EMT and could serve as an independent marker to predict postsurgical recurrence of patients with stage I lung adenocarcinoma.
Collapse
|
37
|
Fang X, Li X, Yin Z, Xia L, Quan X, Zhao Y, Zhou B. Genetic variation at the microRNA binding site of CAV1 gene is associated with lung cancer susceptibility. Oncotarget 2017; 8:92943-92954. [PMID: 29190968 PMCID: PMC5696234 DOI: 10.18632/oncotarget.21687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Single nucleotide polymorphism (SNP) may influence the genesis and development of cancer in a variety of ways depending on their location. Here we conducted a study in Chinese female non-smokers to investigate the relationship between rs1049337, rs926198 and the risk or survival of lung cancer. Further, we explored whether rs1049337 could alter the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. Finally, we evaluated the relationship between expression level of CAV1 and prognosis of lung cancer. The results showed that the rs1049337-C allele and rs926198-C allele were the protective alleles of lung cancer risk. Haplotype analysis indicated that the C-C haplotype (constructed by rs1049337 and rs926198) was a protective haplotype for lung cancer risk. The result of luciferase reporter assay showed that rs1049337 can affect the binding affinity of CAV1 mRNA to the corresponding microRNAs both in A549 cell line and H1299 cell line. Compared with C allele, T allele had a relatively decreased luciferase activity. Compared with paired normal adjacent tissue or normal lung tissue, lung cancer tissue showed a relatively low level of CAV1. Refer to those patients at early stage of lung cancer, the expression level of CAV1 in patients at late stage of lung cancer was relatively low. In conclusion, the results indicated that rs1049337, it's a SNP located at 3′UTR region of CAV1 may affect lung cancer risk by altering the binding affinity between the mRNA of CAV1 and the corresponding microRNAs.
Collapse
Affiliation(s)
- Xue Fang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China.,Department of Epidemiology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Lingzi Xia
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Yuxia Zhao
- Department of Radiotherapy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| |
Collapse
|
38
|
Li L, Zhang K, Lu C, Sun Q, Zhao S, Jiao L, Han R, Lin C, Jiang J, Zhao M, He Y. Caveolin-1-mediated STAT3 activation determines electrotaxis of human lung cancer cells. Oncotarget 2017; 8:95741-95754. [PMID: 29221162 PMCID: PMC5707056 DOI: 10.18632/oncotarget.21306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/26/2017] [Indexed: 12/28/2022] Open
Abstract
Migration of cancer cells leads to the invasion of distant organs by primary tumors. Further, endogenous electric fields (EFs) in the tumor microenvironment direct the migration of lung cancer cells by a process referred to as electrotaxis – although the precise mechanism remains unclear. Caveolin-1 (Cav-1) is a multifunctional scaffolding protein that is associated with directional cell migration and lung cancer invasion; however, its precise role in lung cancer electrotaxis is unknown. In the present study, we first detected outward electric currents on the tumor body surface in lung cancer xenografts using a highly-sensitive vibrating probe. Next, we found that highly-metastatic H1650-M3 cells migrated directionally to the cathode. In addition, reversal of the EF polarity reversed the direction of migration. Mechanistically, EFs activated Cav-1 and the downstream signaling molecule STAT3. RNA interference of Cav-1 reduced directional cell migration, which was accompanied by dampened STAT3 activation. Furthermore, pharmacological inhibition of STAT3 significantly reduced the electrotactic response, while rescue of STAT3 activation in Cav-1 knock-down cells restored electrotaxis. Taken together, these results suggest that endogenous EFs in the tumor micro-environment might play an important role in lung cancer metastasis by guiding cell migration through a Cav-1/STAT3-mediated signaling pathway.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Kejun Zhang
- Department of Clinical Laboratory, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qin Sun
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Lin Jiao
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, CA 95817, USA
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
39
|
Annabi B, Zgheib A, Annabi B. Cavin-2 Functions as a Suppressive Regulator in TNF-induced Mesenchymal Stromal Cell Inflammation and Angiogenic Phenotypes. Int J Stem Cells 2017; 10:103-113. [PMID: 28024316 PMCID: PMC5488782 DOI: 10.15283/ijsc16032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Tumour necrosis factor (TNF)-α activation of mesenchymal stromal cells (MSC) enhances their tumour-suppressive properties and tumour-homing ability. The molecular actors involved are unknown. We found that TNF induced MSC migration and tubulogenesis which correlated with a dose-dependent increase in Cavin-1 and Cavin-3 transcript levels. TNF triggered cyclooxygenase (COX)-2 expression, whereas specific siRNA-mediated gene silencing of Cavin-2 resulted in an amplified COX-2 expression, tubulogenesis, and migratory response partially due to a rapid and sustained increase in NF-κB phosphorylation status. Our results highlight a suppressive role for the caveolar component Cavin-2 in the angiogenic and inflammatory regulation of TNF-activated MSC.
Collapse
Affiliation(s)
- Bayader Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Quebec, Canada.,Département de Physiologie Moléculaire et Intégrative, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Alain Zgheib
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Quebec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Quebec, Canada
| |
Collapse
|
40
|
Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, Li G, Zhou M. The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. Oncotarget 2017; 8:57813-57825. [PMID: 28915713 PMCID: PMC5593685 DOI: 10.18632/oncotarget.18175] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Although survival outcomes of cancer patients have been improved dramatically via conventional chemotherapy and targeted therapy over the last decades, there are still some tough clinical challenges that badly needs to be overcome, such as anticancer drug resistance, inevitable recurrences, cancer progression and metastasis. Simultaneously, accumulated evidence demonstrates that aberrant glucose metabolism termed ‘the Warburg effect’ in cancer cell is closely associated with malignant phenotypes. In 2009, a novel ‘two-compartment metabolic coupling’ model, also named ‘the reverse Warburg effect’, was proposed and attracted lots of attention. Based on this new model, we consider whether this new viewpoint can be exploited for improving the existent anti-cancer therapeutic strategies. Our review focuses on the paradigm shift from ‘the Warburg effect’ to ‘the reverse Warburg effect’, the features and molecular mechanisms of ‘the reverse Warburg effect’, and then we discuss its significance in fundamental researches and clinical practice.
Collapse
Affiliation(s)
- Yaojie Fu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China.,Medical School of Xiangya, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shanshan Liu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China.,Medical School of Xiangya, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shanghelin Yin
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China.,Medical School of Xiangya, Central South University, Changsha, Hunan 410013, P. R. China
| | - Weihong Niu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China
| |
Collapse
|
41
|
Nguyen KCT, Cho KA. Versatile Functions of Caveolin-1 in Aging-related Diseases. Chonnam Med J 2017; 53:28-36. [PMID: 28184336 PMCID: PMC5299127 DOI: 10.4068/cmj.2017.53.1.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) is a trans-membrane protein that is a major component of the caveolae structure on the plasma membrane. Cav-1 is involved in the regulation of various cellular processes, including cell growth, differentiation, endocytosis, and in particular it has been implied in cellular senescence. Here we review current knowledge about Cav-1 in cellular signaling and discuss the role of Cav-1 in aging-related diseases.
Collapse
Affiliation(s)
- Kim Cuc Thi Nguyen
- Deparment of Life Science, ThaiNguyen University of Science, TanThinh Ward, ThaiNguyen, VietNam
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
42
|
Identification of Caveolin-1 as an Invasion-Associated Gene in Liver Cancer Cells Using Dendron-Coated DNA Microarrays. Appl Biochem Biotechnol 2017; 182:1276-1289. [DOI: 10.1007/s12010-017-2398-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/02/2017] [Indexed: 01/11/2023]
|
43
|
Shimizu K, Kirita K, Aokage K, Kojima M, Hishida T, Kuwata T, Fujii S, Ochiai A, Funai K, Yoshida J, Tsuboi M, Ishii G. Clinicopathological significance of caveolin-1 expression by cancer-associated fibroblasts in lung adenocarcinoma. J Cancer Res Clin Oncol 2016; 143:321-328. [DOI: 10.1007/s00432-016-2285-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
|
44
|
Jung AC, Ray AM, Ramolu L, Macabre C, Simon F, Noulet F, Blandin AF, Renner G, Lehmann M, Choulier L, Kessler H, Abecassis J, Dontenwill M, Martin S. Caveolin-1-negative head and neck squamous cell carcinoma primary tumors display increased epithelial to mesenchymal transition and prometastatic properties. Oncotarget 2016; 6:41884-901. [PMID: 26474461 PMCID: PMC4747196 DOI: 10.18632/oncotarget.6099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Distant metastases arise in 20-30% of patients with squamous cell carcinoma of the head and neck (HNSCC) in the 2 years following treatment. Therapeutic options are limited and the outcome of the patients is poor. The identification of predictive biomarkers of patient at risk for distant metastasis and therapies are urgently needed. We previously identified a clinical subgroup, called "R1" characterized by high propensity for rapid distant metastasis. Here, we showed that "R1" patients do not or at very low level express caveolin-1 (Cav1). Low or no expression of Cav1 is of bad prognosis. Disappearance of Cav1 enables cells to undergo epithelial-mesenchymal transition (EMT). EMT is associated with enhanced migration and invasion. Our study uncovered a new target, α5β1 integrin. Targeting α5β1 integrins might not only prevent metastasis of HNSCC but also delay the development of the primary tumor by reducing tumor cell viability. Cav1 detection might be taken into consideration in the future in the clinic not only to identify patients at high risk of metastasis but also to select patient who might benefit from an anti-integrin therapy.
Collapse
Affiliation(s)
- Alain C Jung
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Anne-Marie Ray
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | - Ludivine Ramolu
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Christine Macabre
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Florian Simon
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | - Fanny Noulet
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | | | | | - Maxime Lehmann
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | | | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Department Chemie, Garching, Germany
| | - Joseph Abecassis
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | | | - Sophie Martin
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| |
Collapse
|
45
|
Mahmood J, Zaveri SR, Murti SC, Alexander AA, Connors CQ, Shukla HD, Vujaskovic Z. Caveolin-1: a novel prognostic biomarker of radioresistance in cancer. Int J Radiat Biol 2016; 92:747-753. [PMID: 27623870 DOI: 10.1080/09553002.2016.1222096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Caveolin-1 is a membrane protein highly expressed in many tumors and plays an important role in tumor progression and metastasis. This review describes the structure of the Caveolin-1 protein and its pre-clinical and clinical significance, demonstrating that Caveolin-1 is a novel biomarker for radioresistance which has the promising potential to improve the clinical outcome of cancer patients undergoing radiation treatment. SUMMARY Targeted radiation therapy has shown immense benefits for cancer treatment. However, one of the major challenges for effective clinical outcome of radiation therapy for cancer patients is the development of radioresistance during radiation treatment. As a consequence, radiation therapy becomes a less effective modality for successful clinical outcome. Furthermore, a radioresistant tumor has the ability to repair its genome, and therefore becomes more aggressive and metastasizes. The plausible mechanisms for tumor radioresistance include the rapid DNA repair, somatic mutations in tumor oncogenes, aberrant activation of kinase pathways, and changes in the tumor microenvironment including tumor hypoxia, tumor vasculature, and cancer stem cells. Caveolin-1 is significantly upregulated in certain cancer cells and aberrantly mediates downstream signaling mechanisms. Notably, numerous recent research reports have shown the role of Caveolin-1 in tumor radioresistance and poor treatment outcome. Thus, Caveolin-1 could be a novel prognostic biomarker to monitor tumor radioresistance in cancer patients undergoing radiation therapy. CONCLUSIONS Caveolin-1 has the promising potential to become a novel prognostic biomarker to monitor tumor radioresistance and radiation response specifically in the prostate, pancreas, and lung cancer.
Collapse
Affiliation(s)
- Javed Mahmood
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Sarthak R Zaveri
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Stephanie C Murti
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Allen A Alexander
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Caroline Q Connors
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Hem D Shukla
- b Department of Pharmaceutical Sciences , School of Pharmacy, University of Maryland , Baltimore , MD , USA
| | - Zeljko Vujaskovic
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| |
Collapse
|
46
|
Anwar SL, Wahyono A, Aryandono T, Haryono SJ. Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways. Asian Pac J Cancer Prev 2016; 16:6803-12. [PMID: 26514450 DOI: 10.7314/apjcp.2015.16.16.6803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, TGFβ, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia E-mail :
| | | | | | | |
Collapse
|
47
|
Senetta R, Mellai M, Manini C, Castellano I, Bertero L, Pittaro A, Schiffer D, Boldorini R, Cassoni P. Mesenchymal/radioresistant traits in granular astrocytomas: evidence from a combined clinical and molecular approach. Histopathology 2016; 69:329-37. [PMID: 26845757 DOI: 10.1111/his.12944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 01/18/2023]
Abstract
AIMS Granular-cell astrocytomas (GCAs) are morphologically characterized by a prominent component of granular periodic acid-Schiff-positive cells, and show increased aggressiveness as compared with 'ordinary' astrocytomas. The aim of this study was to investigate, in a small series of three GCAs, the expression of mesenchymal/radioresistance-associated biomarkers [such as chitinase-3-like protein 1 (YKL-40), hepatocyte growth factor receptor (c-Met), and caveolin 1 (Cav1)] that could contribute to the poor outcome associated with this glioma subgroup. METHODS AND RESULTS Our results show that GCAs, according to the new molecular glioma classifications, consistently show a prognostically negative molecular trait (IDH1wt-ATRX noloss-1p/19q nocodeletion). Furthermore, GCAs significantly differed from a control series of 33 'conventional' astrocytomas, because of diffuse and strong immunohistochemical coexpression of YKL-40, c-Met, and Cav1. CONCLUSIONS Our findings show that specific morphological traits, such as a granular-cell component, could represent useful features in guiding the search for prognostic and predictive biomarkers that could eventually be therapy-targetable (e.g. Met inhibitors aimed at reducing radioresistance).
Collapse
Affiliation(s)
- Rebecca Senetta
- Department of Medical Sciences, University of Turin, Turin, Italy.,IRCCS Candiolo, Turin, Italy
| | - Marta Mellai
- Neuro-Bio-Oncology Centre/Policlinico di Monza Foundation, Vercelli, Italy
| | - Claudia Manini
- Division of Pathology, Giovanni Bosco Hospital, Turin, Italy
| | | | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Davide Schiffer
- Neuro-Bio-Oncology Centre/Policlinico di Monza Foundation, Vercelli, Italy
| | - Renzo Boldorini
- Unit of Pathology, Department of Health Sciences, University of Eastern Piedmont 'Amedeo Avogadro', Novara, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
48
|
Xia P, Chen HY, Chen SF, Wang L, Strappe PM, Yang HL, Zhou CH, Zhang X, Zhang YX, Ma LL, Wang L. The stimulatory effects of eNOS/F92A-Cav1 on NO production and angiogenesis in BMSCs. Biomed Pharmacother 2016; 77:7-13. [DOI: 10.1016/j.biopha.2015.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022] Open
|
49
|
Zhang S, Cao W, Yue M, Zheng N, Hu T, Yang S, Dong Z, Lu S, Mo S. Caveolin-1 affects tumor drug resistance in esophageal squamous cell carcinoma by regulating expressions of P-gp and MRP1. Tumour Biol 2016; 37:9189-96. [PMID: 26768616 DOI: 10.1007/s13277-015-4778-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common cancer in China, and multidrug resistance (MDR) remains one of the biggest problems in ESCC chemotherapy. In this study, we aimed to investigate the mechanism of Caveolin-1, an integral membrane protein, on regulating ESCC MDR. First, immunohistochemistry was used to check the protein expression of Caveolin-1, MDR-related protein of P-glycoprotein (P-gp), and multidrug resistance protein 1 (MRP1) in 84 pathologically characterized ESCC tissues, matched adjacent tumor, and adjacent normal-looking tissues. The results showed that Caveolin-1 expression level was elevated in ESCC tissues than that of matched adjacent tumor and adjacent normal-looking tissues (P < 0.05), and the expression of Caveolin-1 has close correlation with P-gp and MRP1 during tumor genesis of ESCC (P = 0.034, P = 0.009, respectively). Then, Caveolin-1 overexpression and knockdown were used to investigate its effect on expressions of P-gp and MRP1 in ESCC cell line Ec9706. The messenger RNA (mRNA) and protein expression levels of P-gp and MRP1 were checked by real-time quantitative reverse transcription-PCR (qRT-PCR) and Western blot (WB). The results showed that Caveolin-1 overexpression significantly promotes the mRNA and protein expression of MRP1 (P < 0.05), while almost has no effect on the mRNA and protein expression of P-gp (P > 0.05); Cavoelin-1 knockdown inhibits the mRNA and protein expressions of both P-gp and MRP1 (P < 0.05). The similar result was found in another ESCC cell line Eca109. So, it is concluded that Caveolin-1 affects ESCC MDR by regulating the expressions of P-gp and MRP1; therefore, it can be taken as a significant marker and target in tumor therapy.
Collapse
Affiliation(s)
- Song Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenbo Cao
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
| | - Mingjin Yue
- Henan Tianxing Education and Media Company, Limited, Zhengzhou, Henan Province, 450002, China
| | - Naigang Zheng
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
| | - Tao Hu
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
| | - Shengli Yang
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan Province, 450001, China
| | - Ziming Dong
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan Province, 450001, China
| | - Shixin Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Saijun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan Province, 450001, China.
| |
Collapse
|
50
|
Padavano J, Henkhaus RS, Chen H, Skovan BA, Cui H, Ignatenko NA. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways. CANCER GROWTH AND METASTASIS 2015; 8:95-113. [PMID: 26512205 PMCID: PMC4612127 DOI: 10.4137/cgm.s29407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RAS (G12C) oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Julianna Padavano
- Department of Biochemistry and Molecular Biophysics, Undergraduate Biology Research Program, University of Arizona, Tucson, Arizona, USA
| | - Rebecca S Henkhaus
- Cancer Biology Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Hwudaurw Chen
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Bethany A Skovan
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Haiyan Cui
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Natalia A Ignatenko
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|