1
|
Loiola RA, Hachani J, Duban-Deweer S, Sevin E, Bugno P, Kowalska A, Rizzi E, Shimizu F, Kanda T, Mysiorek C, Mazurek M, Gosselet F. Secretome of brain microvascular endothelial cells promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Mol Med 2024; 30:132. [PMID: 39187765 PMCID: PMC11348522 DOI: 10.1186/s10020-024-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cell-based therapeutic strategies have been proposed as an alternative for brain and blood vessels repair after stroke, but their clinical application is hampered by potential adverse effects. We therefore tested the hypothesis that secretome of these cells might be used instead to still focus on cell-based therapeutic strategies. We therefore characterized the composition and the effect of the secretome of brain microvascular endothelial cells (BMECs) on primary in vitro human models of angiogenesis and vascular barrier. Two different secretome batches produced in high scale (scHSP) were analysed by mass spectrometry. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used as well as in vitro models of EC monolayer (CMECs) and blood-brain barrier (BBB). Cells were also exposed to oxygen-glucose deprivation (OGD) conditions and treated with scHSP during reoxygenation. Protein yield and composition of scHSP batches showed good reproducibility. scHSP increased CD34+-EC proliferation, tubulogenesis, and migration. Proteomic analysis of scHSP revealed the presence of growth factors and proteins modulating cell metabolism and inflammatory pathways. scHSP improved the integrity of CMECs, and upregulated the expression of junctional proteins. Such effects were mediated through the activation of the interferon pathway and downregulation of Wnt signalling. Furthermore, OGD altered the permeability of both CMECs and BBB, while scHSP prevented the OGD-induced vascular leakage in both models. These effects were mediated through upregulation of junctional proteins and regulation of MAPK/VEGFR2. Finally, our results highlight the possibility of using secretome from BMECs as a therapeutic alternative to promote brain angiogenesis and to protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Sophie Duban-Deweer
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Emmanuel Sevin
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Eleonora Rizzi
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | | | - Fabien Gosselet
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France.
| |
Collapse
|
2
|
Kucherova KS, Koroleva ES, Alifirova VM. The role of matrix metalloproteinases in the pathogenetic mechanisms of ischemic stroke. RUSSIAN NEUROLOGICAL JOURNAL 2024; 29:5-15. [DOI: 10.30629/2658-7947-2024-29-3-5-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Modern understanding of the mechanisms of the pathogenesis of ischemic stroke has expanded due to the study of neuroinfl ammation processes, in which matrix metalloproteinases (MMPs) play an important role. This literature review describes the main types of MMPs and provides current data on the pathophysiological role of this group of proteases in acute cerebral ischemia, which have multidirectional eff ects depending on the stage of the disease. Clinical studies assessing the role of MMPs in ischemic stroke are in most cases based on experimental models, and their results are ambiguous, which is determined by the versatility of their actions. MMPs are an important regulator of infl ammatory processes, the permeability of the blood-brain barrier and, as a consequence, cerebral edema. However, the positive eff ect of MMPs in the processes of angiogenesis, neurogenesis and neuroplasticity has been proven. Thus, further study of MMPs is relevant from the point of view of their role in functional recovery after ischemic stroke.
Collapse
|
3
|
Liu Y, Liu X, Zhang Y, Cao Y, Luo B, Wang Z, Pei R. Interpenetrating Polymer Network HA/Alg-RGD Hydrogel: An Equilibrium of Macroscopic Stability and Microscopic Adaptability for 3D Cell Growth and Vascularization. Biomacromolecules 2023; 24:5977-5988. [PMID: 37939799 DOI: 10.1021/acs.biomac.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Two-dimensional (2D) cell culture methods dominate the current research. However, the inherent responsiveness of cells to their native three-dimensional (3D) microenvironment necessitates a paradigm shift toward the development of advanced hydrogels that faithfully mimic the intricacies of the extracellular matrix (ECM) and enable continuous cell-ECM interactions. To address the constraints of traditional static hydrogel networks that impede effective cell-matrix and cell-cell interactions, and to tackle the inherent stability issues associated with dynamically cross-linked hydrogels, which have become a pressing concern. Herein, we present an interpenetrating polymer network (IPN) hydrogel (HA/Alg-RGD hydrogel) that combines a physically cross-linked network between alginate and calcium ions (Alg-Ca2+) for the enhanced cell growth adaptability with a chemically cross-linked hyaluronic acid (HA) network to ensure macroscopic stability during cell culture. The incorporation of arginine-glycine-aspartic peptide modified alginate (Alg-RGD) further facilitates cell adhesion and improves the cell-hydrogel interaction. Notably, this IPN hydrogel demonstrates mechanical stability and enables cell spreading and growth within its structural framework. Leveraging the reversible characteristics of the ionically cross-linked Alg-Ca2+ network within IPN hydrogels, we demonstrate the feasibility of the gelatin sacrificial solution for 3D printing purposes within the hydrogel matrix. Subsequent UV-induced covalent cross-linking enables the fabrication of vascularized microfluidic channels within the resulting construct. Our results demonstrate endothelial cell spreading and spontaneous cell sprouting within the hydrogel matrix, thus highlighting the efficacy of this IPN hydrogel system in facilitating 3D cell growth. Additionally, our study emphasizes the potential of 3D printed constructs as a promising approach for vascularization in tissue engineering. The importance of RGD peptides in promoting favorable cell-hydrogel scaffold interactions is also highlighted, emphasizing their critical role in optimizing biomaterial-cell interfaces.
Collapse
Affiliation(s)
- Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Bingqing Luo
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
4
|
González-Callejo P, Gener P, Díaz-Riascos ZV, Conti S, Cámara-Sánchez P, Riera R, Mancilla S, García-Gabilondo M, Peg V, Arango D, Rosell A, Labernadie A, Trepat X, Albertazzi L, Schwartz S, Seras-Franzoso J, Abasolo I. Extracellular vesicles secreted by triple-negative breast cancer stem cells trigger premetastatic niche remodeling and metastatic growth in the lungs. Int J Cancer 2023; 152:2153-2165. [PMID: 36705298 DOI: 10.1002/ijc.34447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/28/2023]
Abstract
Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.
Collapse
Affiliation(s)
- Patricia González-Callejo
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Petra Gener
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Zamira V Díaz-Riascos
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Functional Validation & Preclinical Research (FVPR), Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Sefora Conti
- Integrative Cell and Tissue Dynamics Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Patricia Cámara-Sánchez
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Functional Validation & Preclinical Research (FVPR), Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Roger Riera
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Mancilla
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Functional Validation & Preclinical Research (FVPR), Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Miguel García-Gabilondo
- Neurovascular Research Laboratory, Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron, Barcelona, Spain
| | - Vicente Peg
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Arango
- Department of Molecular Oncology, Biomedical Research Institute of Lleida, Lleida, Spain.,Biomedical Research in Digestive Tract Tumors, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron, Barcelona, Spain
| | - Anna Labernadie
- Integrative Cell and Tissue Dynamics Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Xavier Trepat
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Integrative Cell and Tissue Dynamics Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Simó Schwartz
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Functional Validation & Preclinical Research (FVPR), Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
5
|
Yang AL, Zhou HJ, Tang T, Luo JK, Cui HJ. Temporal profile of angiogenesis and expression of extracellular matrix-related genes in rat brains following experimental intracerebral hemorrhage. Sci Prog 2022; 105:368504221115509. [PMID: 35899308 PMCID: PMC10450485 DOI: 10.1177/00368504221115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Angiogenesis is essential for the repair process after intracerebral hemorrhage (ICH). METHODS Given the importance of the extracellular matrix (ECM) in angiogenesis, we analysed the temporal profile of angiogenesis in rat brains on days 4, 7, and 21 after ICH. To this end, we compared the expression of ECM-related genes between ICH-induced and sham-operated groups using a complementary DNA (cDNA) array. We further measured protein expression using western blot and immunohistochemistry assays. Fluorescein isothiocyanate (FITC)-dextran was injected into the tail vein to examine the angioarchitecture in the perihematomal region. RESULTS Among the 88 ECM-related genes, we identified 42, 50, and 38 genes that were significantly upregulated on days 4, 7, and 21 after ICH, respectively (P < 0.05). Particularly, collagens, integrins, and matrix metalloproteinases (MMPs) were significantly increased on day 4 post-ICH and continued to increase at the other time points. Western blot and immunohistochemistry analyses showed a comparable trend in the upregulation of MMPs. Compared to the sham group, FITC-dextran labelling demonstrated decreased perfusion and increased vascular permeability in the perihematomal region in the ICH group. Doxycycline, an MMP inhibitor, significantly reduced angiogenesis (P < 0.05). CONCLUSIONS The results of this study indicate that MMPs are involved in modulating angiogenesis following ICH.
Collapse
Affiliation(s)
- A-Li Yang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hua-Jun Zhou
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Tao Tang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Han-Jin Cui
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
6
|
Catalpol Enhances Random-Pattern Skin Flap Survival by Activating SIRT1-Mediated Enhancement of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5668226. [PMID: 35620575 PMCID: PMC9129999 DOI: 10.1155/2022/5668226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Random-pattern skin flap necrosis limits its application in the clinic. It is still a challenge for plastic surgeons. Catalpol is an effective ingredient extracted from Rehmannia glutinosa, which is reported to promote angiogenesis and protect against ischemic cerebral disease. The aim of our experiment is to assess whether catalpol can facilitate random flap survival and the underlying mechanisms. Male “McFarlane flap” rat models were employed to explore the protective effects of catalpol. The range of necrosis in the flap was calculated 7 days after the models were established. The flap specimens were harvested for further experiments, including angiogenesis, apoptosis, oxidative stress, and autophagy evaluation. Catalpol-treated group promoted the average survival area of the flap than that in the control group. Based on immunohistochemical staining, Western blotting, and ROS detection, we found that catalpol significantly reduces oxidative stress and apoptosis and increases angiogenesis. Hematoxylin and eosin (H&E) staining and laser Doppler images further clarified the enhancement of angiogenesis after catalpol treatment. The impact of catalpol in flap was switched by using 3-methyladenine (3MA), proving the important role of autophagy in curative effect of catalpol on skin flaps. Importantly, the ability of catalpol to regulate autophagy is mediated by the activation of sirtuin 1 (SIRT1) based on its high affinity for SIRT1. Our findings revealed that catalpol improved the viability of random skin flaps by activating SIRT1-mediated autophagy pathway.
Collapse
|
7
|
Loiola RA, García-Gabilondo M, Grayston A, Bugno P, Kowalska A, Duban-Deweer S, Rizzi E, Hachani J, Sano Y, Shimizu F, Kanda T, Mysiorek C, Mazurek MP, Rosell A, Gosselet F. Secretome of endothelial progenitor cells from stroke patients promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Stem Cell Res Ther 2021; 12:552. [PMID: 34702368 PMCID: PMC8549346 DOI: 10.1186/s13287-021-02608-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cell-based therapeutic strategies have been proposed as an alternative for brain repair after stroke, but their clinical application has been hampered by potential adverse effects in the long term. The present study was designed to test the effect of the secretome of endothelial progenitor cells (EPCs) from stroke patients (scCM) on in vitro human models of angiogenesis and vascular barrier. METHODS Two different scCM batches were analysed by mass spectrometry and a proteome profiler. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used for designing angiogenesis studies (proliferation, migration, and tubulogenesis) or in vitro models of EC monolayer (confluent monolayer ECs-CMECs) and blood-brain barrier (BBB; brain-like ECs-BLECs). Cells were treated with scCM (5 μg/mL) or protein-free endothelial basal medium (scEBM-control). CMECs or BLECs were exposed (6 h) to oxygen-glucose deprivation (OGD) conditions (1% oxygen and glucose-free medium) or normoxia (control-5% oxygen, 1 g/L of glucose) and treated with scCM or scEBM during reoxygenation (24 h). RESULTS The analysis of different scCM batches showed a good reproducibility in terms of protein yield and composition. scCM increased CD34+-EC proliferation, tubulogenesis, and migration compared to the control (scEBM). The proteomic analysis of scCM revealed the presence of growth factors and molecules modulating cell metabolism and inflammatory pathways. Further, scCM decreased the permeability of CMECs and upregulated the expression of the junctional proteins such as occludin, VE-cadherin, and ZO-1. Such effects were possibly mediated through the activation of the interferon pathway and a moderate downregulation of Wnt signalling. Furthermore, OGD increased the permeability of both CMECs and BLECs, while scCM prevented the OGD-induced vascular leakage in both models. These effects were possibly mediated through the upregulation of junctional proteins and the regulation of MAPK/VEGFR2 activity. CONCLUSION Our results suggest that scCM promotes angiogenesis and the maturation of newly formed vessels while restoring the BBB function in ischemic conditions. In conclusion, our results highlight the possibility of using EPC-secretome as a therapeutic alternative to promote brain angiogenesis and protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
| | - Miguel García-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Sophie Duban-Deweer
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Eleonora Rizzi
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France
| | | | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035, Barcelona, Catalonia, Spain
| | - Fabien Gosselet
- UR 2465, Blood-Brain Barrier Laboratory (LBHE), Univ. Artois, 62300, Lens, France.
- Laboratory of the Blood-Brain Barrier, Sciences Faculty Jean Perrin, Artois University, Lens, France.
| |
Collapse
|
8
|
Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 2021; 24:823-842. [PMID: 34046769 PMCID: PMC8487886 DOI: 10.1007/s10456-021-09796-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Pericytes play essential roles in blood-brain barrier integrity and their dysfunction is implicated in neurological disorders such as stroke although the underlying mechanisms remain unknown. Hypoxia-inducible factor-1 (HIF-1), a master regulator of injury responses, has divergent roles in different cells especially during stress scenarios. On one hand HIF-1 is neuroprotective but on the other it induces vascular permeability. Since pericytes are critical for barrier stability, we asked if pericyte HIF-1 signaling impacts barrier integrity and injury severity in a mouse model of ischemic stroke. We show that pericyte HIF-1 loss of function (LoF) diminishes ischemic damage and barrier permeability at 3 days reperfusion. HIF-1 deficiency preserved barrier integrity by reducing pericyte death thereby maintaining vessel coverage and junctional protein organization, and suppressing vascular remodeling. Importantly, considerable improvements in sensorimotor function were observed in HIF-1 LoF mice indicating that better vascular functionality post stroke improves outcome. Thus, boosting vascular integrity by inhibiting pericytic HIF-1 activation and/or increasing pericyte survival may be a lucrative option to accelerate recovery after severe brain injury.
Collapse
|
9
|
Nguyen QL, Okuno N, Hamashima T, Dang ST, Fujikawa M, Ishii Y, Enomoto A, Maki T, Nguyen HN, Nguyen VT, Fujimori T, Mori H, Andrae J, Betsholtz C, Takao K, Yamamoto S, Sasahara M. Vascular PDGFR-alpha protects against BBB dysfunction after stroke in mice. Angiogenesis 2021; 24:35-46. [PMID: 32918673 DOI: 10.1007/s10456-020-09742-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) dysfunction underlies the pathogenesis of many neurological diseases. Platelet-derived growth factor receptor-alpha (PDGFRα) induces hemorrhagic transformation (HT) downstream of tissue plasminogen activator in thrombolytic therapy of acute stroke. Thus, PDGFs are attractive therapeutic targets for BBB dysfunction. In the present study, we examined the role of PDGF signaling in the process of tissue remodeling after middle cerebral arterial occlusion (MCAO) in mice. Firstly, we found that imatinib increased lesion size after permanent MCAO in wild-type mice. Moreover, imatinib-induced HT only when administrated in the subacute phase of MCAO, but not in the acute phase. Secondly, we generated genetically mutated mice (C-KO mice) that showed decreased expression of perivascular PDGFRα. Additionally, transient MCAO experiments were performed in these mice. We found that the ischemic lesion size was not affected; however, the recruitment of PDGFRα/type I collagen-expressing perivascular cells was significantly downregulated, and HT and IgG leakage was augmented only in the subacute phase of stroke in C-KO mice. In both experiments, we found that the expression of tight junction proteins and PDGFRβ-expressing pericyte coverage was not significantly affected in imatinib-treated mice and in C-KO mice. The specific implication of PDGFRα signaling was suggestive of protective effects against BBB dysfunction during the subacute phase of stroke. Vascular TGF-β1 expression was downregulated in both imatinib-treated and C-KO mice, along with sustained levels of MMP9. Therefore, PDGFRα effects may be mediated by TGF-β1 which exerts potent protective effects in the BBB.
Collapse
Affiliation(s)
- Quang Linh Nguyen
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
- Stroke Center, The 108 Military Central Hospital, Ha Noi, Vietnam
| | - Noriko Okuno
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takeru Hamashima
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Son Tung Dang
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Miwa Fujikawa
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoko Ishii
- Department of Health Science, Faculty of Health and Human Development, The University of Nagano, Nagano, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Van Tuyen Nguyen
- Stroke Center, The 108 Military Central Hospital, Ha Noi, Vietnam
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Seiji Yamamoto
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
10
|
Alwjwaj M, Kadir RRA, Bayraktutan U. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke. Neural Regen Res 2021; 16:1483-1489. [PMID: 33433461 PMCID: PMC8323700 DOI: 10.4103/1673-5374.303012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as the only pharmacological therapy for stroke patients. However, due to short therapeutic window (4.5 hours of stroke onset) and increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke patients receive this therapy which necessitate the discovery of safe and efficacious therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence indicates that endothelial progenitor cells (EPCs), equipped with an inherent capacity to migrate, proliferate and differentiate, may be one such therapeutics. However, the limited availability of EPCs in peripheral blood and early senescence of few isolated cells in culture conditions adversely affect their application as effective therapeutics. Given that much of the EPC-mediated reparative effects on neurovasculature is realized by a wide range of biologically active substances released by these cells, it is possible that EPC-secretome may serve as an important therapeutic after an ischemic stroke. In light of this assumption, this review paper firstly discusses the main constituents of EPC-secretome that may exert the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant literature that focuses on its therapeutic capacity.
Collapse
Affiliation(s)
- Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
11
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
12
|
Sadanandan N, Di Santo S, Widmer HR. Another win for endothelial progenitor cells: Endothelial progenitor cell-derived conditioned medium promotes proliferation and exerts neuroprotection in cultured neuronal progenitor cells. Brain Circ 2019; 5:106-111. [PMID: 31620656 PMCID: PMC6785943 DOI: 10.4103/bc.bc_41_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Progress in stem cell research demonstrates stem cells' potential for treating neurodegenerative diseases. Stem cells have proliferative/differentiative properties and produce a variety of paracrine factors that can potentially be used to regenerate nervous tissue. Previous studies have shown the positive regenerative effects of endothelial progenitor cells (EPCs), and thus, they may be used as a tool for regeneration. A study by Di Santo et al. explored whether EPC-derived conditioned medium (EPC-CM) promotes the survival of cultured striatal progenitor cells and attempted to find the paracrine factors and signaling pathways involved with EPC-CM's effects. The neuronal progenitor cells that were cultured with EPC-CM had much higher densities of GABA-immunoreactive (GABA-ir) neurons. It was shown that phosphatidylinositol-3-kinase/AKT and mitogen-activated protein kinase/ERK signaling pathways are involved in the proliferation of GABAergic neurons, as inhibition of these pathways decreased GABAergic densities. In addition, the results suggest that paracrine factors from EPC, both proteinaceous and lipidic, significantly elevated the viability and/or differentiation in the cultures. Importantly, it was found that EPC-CM provided neuroprotection against toxins from 3-nitropropionic acid. In sum, EPC-CM engendered proliferation and regeneration of the cultured striatal cells through paracrine factors and imparted neuroprotection. Furthermore, the effects of EPC-CM may generate a cell-free therapeutic strategy to address neurodegeneration.
Collapse
Affiliation(s)
- Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
14
|
Santo SD, Seiler S, Andres R, Widmer HR. Endothelial Progenitor Cells Conditioned Medium Supports Number of GABAergic Neurons and Exerts Neuroprotection in Cultured Striatal Neuronal Progenitor Cells. Cell Transplant 2019; 28:367-378. [PMID: 31017468 PMCID: PMC6628568 DOI: 10.1177/0963689719835192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is growing evidence that stem and progenitor cells exert regenerative actions by means of paracrine factors. In line with these notions, we recently demonstrated that endothelial progenitor cell (EPC)-derived conditioned medium (EPC-CM) substantially increased viability of brain microvascular cells. In the present study, we aimed at investigating whether EPC-CM supports cell survival of cultured striatal progenitor cells. For that purpose, primary cultures from fetal rat embryonic (E14) ganglionic eminence were prepared and grown for 7 days in vitro (DIV). EPC-CM was administered from DIV5–7. Treatment of the striatal cultures with EPC-CM resulted in significantly increased densities of GABA-immunoreactive (-ir) neurons. Inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-kinase, but not of the ROCK pathway, significantly attenuated the EPC-CM induced increase in GABA-ir cell densities. Similar results were observed when EPC-CM was subjected to proteolytic digestion and lipid extraction. Furthermore, inhibition of translation abolished the EPC-CM induced effects. Importantly, EPC-CM displayed neuroprotection against 3-nitropropionic acid induced toxicity. These findings demonstrate that EPC-derived paracrine factors substantially promote survival and/or differentiation of cultured striatal progenitor cells involving both proteinaceous factors and lipidic factors. In sum, EPC-CM constituents might lead to a novel cell-free therapeutic strategy to challenge neuronal degeneration.
Collapse
Affiliation(s)
- Stefano Di Santo
- 1 Department of Neurosurgery, Bern University Hospital, Switzerland
| | - Stefanie Seiler
- 1 Department of Neurosurgery, Bern University Hospital, Switzerland
| | - Robert Andres
- 1 Department of Neurosurgery, Bern University Hospital, Switzerland
| | | |
Collapse
|
15
|
Wang C, Qu Y, Suo R, Zhu Y. Long non-coding RNA MALAT1 regulates angiogenesis following oxygen-glucose deprivation/reoxygenation. J Cell Mol Med 2019; 23:2970-2983. [PMID: 30784209 PMCID: PMC6433728 DOI: 10.1111/jcmm.14204] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been identified as playing critical roles in multiple diseases. However, little is known regarding their roles and mechanisms in post-stroke angiogenesis. Our studies focused on deciphering the functional roles and the underlying mechanisms of the lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the process of angiogenesis following oxygen-glucose deprivation/reoxygenation (OGD/R). We characterized the up-regulation of MALAT1 expression in the process of angiogenesis after hypoxic injury in vivo and in vitro. We further showed that compared with the empty vector, MALAT1 knockdown had significantly reduced the capacity for angiogenesis, which was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT), scratching, cell cycle and immunofluorescent staining. Thus, our findings suggest that MALAT1 may mediate proangiogenic function in OGD/R. To further explore the potential mechanisms, we used lentiviruses expressing shMALAT1 and empty vector; the results revealed that shMALAT1 reduced the expression of 15-lipoxygenase 1 (15-LOX1), vascular endothelial growth factor (VEGF) and the phosphorylation of signal transducers and activators of transcription 3 (pSTAT3). Taken together, our results are the first to propose that MALAT1 may regulate angiogenesis through the 15-LOX1/STAT3 signalling pathway, and they may provide a critical target for the treatment of hypoxic injury and an avenue for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Chengya Wang
- Department of NeurologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Youyang Qu
- Department of NeurologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Rui Suo
- Department of NeurologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yulan Zhu
- Department of NeurologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
16
|
Kasimanickam V, Kasimanickam R. A Method to Isolate CD34+ Mononuclear Cells from Canine Peripheral Blood. ACTA ACUST UNITED AC 2019; 49:e84. [PMID: 30901513 DOI: 10.1002/cpsc.84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Embryonic stem cells are pluripotent whereas adult stem cells are multipotent in nature. In recent years, evidence suggests that adult stem cells not only differentiate into specific cell lineages but also transdifferentiate into multiple cell lineages. Progenitor cells are found in adult bone marrow, blood, and other organs and differentiate into numerous cell lineages regardless of origin. Identifying a subset that can differentiate into mature endothelial cells is essential. This article describes peripheral blood collection in adult beagle dogs, isolation of peripheral blood mononuclear cells (PBMNCs) from the cell fraction, separation of a subset of CD34+ cells using immunomagnetic principles, characterization of PBMNCs and CD34+ cells using flow cytometry, and evaluation of gene expression of CD34, KDR, and CD133 in CD34+ fractions. Efficient methods of isolation of endothelial progenitor cells (EPCs) will promote the ex vivo expansion and transplantation of EPCs in ischemic injury to enable neovascularization. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Vanmathy Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Ramanathan Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
17
|
Hu C, Dong ZL. MicroRNA-212 promotes the recovery function and vascular regeneration of endothelial progenitor cells in mice with ischemic stroke through inactivation of the notch signaling pathway via downregulating MMP9 expression. J Cell Physiol 2018; 234:7090-7103. [PMID: 30552827 DOI: 10.1002/jcp.27463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a refractory disease caused by cerebral ischemic injury, which results in brain dysfunction. This study intends to investigate the effects of microRNA-212 (miR-212) on the recovery function and vascular regeneration of endothelial progenitor cells (EPCs) by inactivation of the Notch signaling pathway by binding to matrix metallopeptidase 9 (MMP9) in mice with ischemic stroke. According to the results of database retrieval systems and data analysis, MMP9 was predicted as a gene related to ischemic stroke and miR-212 is a potential regulating mRNA of MMP9. All 72 healthy adult C57BL6 mice were selected for middle cerebral artery occlusion (MCAO) establishment. Cerebral infarction was observed under triphenyltetrazolium chloride staining. A series of inhibitors, activators, and siRNAs were introduced to the verified regulatory functions for miR-212 governing MMP9 in ischemic stroke. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and tube-forming ability by tubule formation test. Reverse transcription quantitative polymerase chain reaction and Western blot analysis were used to detect the expressions of miR-212, MMP9, Hes-1, and Notch-1. The corresponding results demonstrated that the area of cerebral infarction and the number of neuronal necrosis increased in the MCAO group in contrast to the sham group. Meanwhile, upregulation of miR-212 or downregulation of MMP9 decreases the expressions of MMP9, Hes-1 Notch-1, increases cell proliferation and tube-forming ability and improves the pathological conditions of EPCs. Our study suggests that miR-212 promotes recovery function and vascular regeneration of EPCs through negative regulation of the Notch signaling pathway via downregulating expression of MMP9, thus provides a clinical theoretical basis for ischemic stroke therapy.
Collapse
Affiliation(s)
- Chen Hu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Zhi-Ling Dong
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
18
|
Abstract
Cardiovascular disease is cited as the underlying cause of death in one out of every three deaths within the United States; this burden on the health care system percolates down to affect patients on an individual level. In part, the problem arises from the low regenerative capacity of cardiovascular system cells, for example, cardiac myocytes, and from oxidative stressors to the human body. Endothelial progenitor cells (EPCs) are a type of stem cell, and various clinical conditions including hypertension and renal failure underlie their dysfunction. EPCs are classified as either early or late outgrowth endothelial progenitor cells depending on the time they appear in circulation and at the site of injury after an inciting event. Their function is paracrine through the release of cytokines, growth factors and chemokines such as interleukin-6 and vascular endothelial growth factor, and they are involved in transdifferentiation into vascular smooth muscle cells and potentially cardiac myocytes. They are beneficial to the modification of cardiovascular cell apoptosis, fibrosis, and contractility. In times of stress, the normal function of endothelial progenitor cells is altered; this creates a maladaptive cycle where stress and failed coping mechanisms enhance each other toward the culmination of cardiovascular disease. The development of the cardiovascular system follows gastrulation in the embryonic period, and the cells that form the system are derived from the mesoderm; being mesoderm, the vascular cells exhibit heterogeneity in their origin and function. The need to understand the molecular and cellular regulatory pathways during development can amalgamate efforts of endothelial cell and cardiovascular system pathophysiology for the advancement of patient cardiovascular reserve and function.
Collapse
|
19
|
Gabriel-Salazar M, Morancho A, Rodriguez S, Buxó X, García-Rodríguez N, Colell G, Fernandez A, Giralt D, Bustamante A, Montaner J, Rosell A. Importance of Angiogenin and Endothelial Progenitor Cells After Rehabilitation Both in Ischemic Stroke Patients and in a Mouse Model of Cerebral Ischemia. Front Neurol 2018; 9:508. [PMID: 30008694 PMCID: PMC6034071 DOI: 10.3389/fneur.2018.00508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Rehabilitation therapy is the only available treatment for stroke survivors presenting neurological deficits; however, the underlying molecules and mechanisms associated with functional/motor improvement during rehabilitation are poorly understood. Objective: Our aim is to study the modulation of angiogenin and endothelial progenitor cells (EPCs) as repair-associated factors in a cohort of stroke patients and mouse models of rehabilitation after cerebral ischemia. Methods: The clinical study included 18 ischemic strokes admitted to an intensive rehabilitation therapy (IRT) unit, 18 non-ischemic controls and brain samples from three deceased patients. Angiogenin and EPCs were measured in blood obtained before and up to 6 months after IRT together with an extensive evaluation of the motor/functional status. In parallel, C57BL/6 mice underwent middle cerebral artery occlusion, and the pasta matrix reaching-task or treadmill exercises were used as rehabilitation models. Angiogenin RNA expression was measured after 2 or 12 days of treatment together with cell counts from EPCs cultures. Results: Brain angiogenin was identified in both human and mouse tissue, whereas serum levels increased after 1 month of IRT in association with motor/functional improvement. EPC populations were increased after stroke and remained elevated during follow-up after IRT. The mouse model of rehabilitation by the task-specific pasta matrix exercise increased the number of EPCs at 2 days and increased angiogenin expression after 12 days of rehabilitation. Conclusions: Angiogenin and EPCs are modulated by rehabilitation after cerebral ischemia, suggesting that both angiogenin and EPCs could serve as biomarkers of improvement during rehabilitation or future therapeutic targets.
Collapse
Affiliation(s)
- Marina Gabriel-Salazar
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rodriguez
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Xavi Buxó
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Guillem Colell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Fernandez
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Zhao Y, Qiao X, Tan TK, Zhao H, Zhang Y, Liu L, Zhang J, Wang L, Cao Q, Wang Y, Wang Y, Wang YM, Lee VWS, Alexander SI, Harris DCH, Zheng G. Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial-mesenchymal transition. Nephrol Dial Transplant 2018; 32:781-791. [PMID: 27566305 PMCID: PMC5427520 DOI: 10.1093/ndt/gfw308] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/12/2016] [Indexed: 11/28/2022] Open
Abstract
Background: Endothelial cells are known to contribute to kidney fibrosis via endothelial–mesenchymal transition (EndoMT). Matrix metalloproteinase 9 (MMP-9) is known to be profibrotic. However, whether MMP-9 contributes to kidney fibrosis via EndoMT is unknown. Methods: Primary mouse renal peritubular endothelial cells (MRPECs) were isolated and treated by recombinant human transforming growth factor beta 1 (rhTGF-β1) with or without MMP-9 inhibitor or by recombinant human MMP-9 (rhMMP-9) alone. Kidney fibrosis was induced by unilateral ureteral obstruction (UUO) in MMP-9 knockout (KO) and wide-type (WT) control mice. The effects of MMP-9 on EndoMT of MRPECs and kidney fibrosis were examined. Results: We showed that MRPECs underwent EndoMT after rhTGF-β1 treatment or in UUO kidney as evidenced by decreased expression of endothelial markers, vascular endothelial cadherin (VE-cadherin) and CD31, and increased levels of mesenchymal markers, α-smooth muscle actin (α-SMA) and vimentin. The expression of fibrosis markers was also up-regulated significantly after rhTGF-β1 treatment in MRPECs. The EndoMT and fibrosis markers were significantly less in rhTGF-β1-treated MMP-9 KO MRPECs, whereas MMP-9 alone was sufficient to induce EndoMT in MRPECs. UUO kidney of MMP-9 KO mice showed significantly less interstitial fibrosis and EndoMT in MRPECs. Notch signaling shown by Notch intracellular domain (NICD) was increased, while Notch-1 was decreased in rhTGF-β1-treated MRPECs of MMP-9 WT but not MMP-9 KO mice. Inhibition of MMP-9 or Notch signaling prevented rhTGF-β1- or rhMMP-9-induced α-SMA and NICD upregulation in MRPECs. UUO kidney of MMP-9 KO mice had less staining of Notch signaling transcription factor Hey-1 in VE-cadherin-positive MRPECs than WT controls. Conclusions: Our results demonstrate that MMP-9-dependent Notch signaling plays an important role in kidney fibrosis through EndoMT of MRPECs.
Collapse
Affiliation(s)
- Ye Zhao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The School of Biomedical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xi Qiao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, People's Republic of China
| | - Thian Kui Tan
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Hong Zhao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yun Zhang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Experimental Centre of Science and Research, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Lixin Liu
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Experimental Centre of Science and Research, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianlin Zhang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, People's Republic of China
| | - Qi Cao
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ya Wang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Vincent W S Lee
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol 2016; 83:10-6. [DOI: 10.1016/j.vph.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 11/23/2022]
|
22
|
Matrix metalloproteinase-13 participates in neuroprotection and neurorepair after cerebral ischemia in mice. Neurobiol Dis 2016; 91:236-46. [DOI: 10.1016/j.nbd.2016.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022] Open
|
23
|
A leading role for NADPH oxidase in an in-vitro study of experimental autoimmune encephalomyelitis. Mol Immunol 2016; 72:19-27. [DOI: 10.1016/j.molimm.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/09/2016] [Accepted: 02/12/2016] [Indexed: 01/24/2023]
|
24
|
Di Santo S, Fuchs AL, Periasamy R, Seiler S, Widmer HR. The Cytoprotective Effects of Human Endothelial Progenitor Cell-Conditioned Medium Against an Ischemic Insult Are Not Dependent on VEGF and IL-8. Cell Transplant 2016; 25:735-47. [PMID: 26776768 DOI: 10.3727/096368916x690458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endothelial progenitor cells (EPCs) promote revascularization and tissue repair mainly by paracrine actions. In the present study, we investigated whether EPC-secreted factors in the form of conditioned medium (EPC-CM) can protect cultured brain microvascular endothelial cells against an ischemic insult. Furthermore, we addressed the type of factors that are involved in the EPC-CM-mediated functions. For that purpose, rat brain-derived endothelial cells (rBCEC4 cell line) were exposed to EPC-CM pretreated with proteolytic digestion, heat inactivation, and lipid extraction. Moreover, the involvement of VEGF and IL-8, as canonical angiogenic factors, was investigated by means of neutralizing antibodies. We demonstrated that EPC-CM significantly protected the rBCEC4 cells against an ischemic insult mimicked by induced oxygen-glucose deprivation followed by reoxygenation. The cytoprotective effect was displayed by higher viable cell numbers and reduced caspase 3/7 activity. Heat inactivation, proteolytic digestion, and lipid extraction resulted in a significantly reduced EPC-CM-dependent increase in rBCEC4 viability, tube formation, and survival following the ischemic challenge. Notably, VEGF and IL-8 neutralization did not affect the actions of EPC-CM on rBCEC4 under both standard and ischemic conditions. In summary, our findings show that paracrine factors released by EPCs activate an angiogenic and cytoprotective response on brain microvascular cells and that the activity of EPC-CM relies on the concerted action of nonproteinaceous and proteinaceous factors but do not directly involve VEGF and IL-8.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia. J Cereb Blood Flow Metab 2015; 35. [PMID: 26219597 PMCID: PMC4640313 DOI: 10.1038/jcbfm.2015.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endothelial progenitor cells (EPCs) are being investigated for advanced therapies, and matrix metalloproteinase 9 (MMP9) has an important role in stroke recovery. Our aim was to determine whether tissue MMP9 influences the EPC-induced angiogenesis after ischemia. Wild-type (WT) and MMP9-deficient mice (MMP9/KO) were subjected to cerebral ischemia and treated with vehicle or outgrowth EPCs. After 3 weeks, we observed an increase in the peri-infarct vessel density in WT animals but not in MMP9/KO mice; no differences were found in the vehicle-treated groups. Our data suggest that tissue MMP9 has a crucial role in EPC-induced vascular remodeling after stroke.
Collapse
|
26
|
Ma F, Morancho A, Montaner J, Rosell A. Endothelial progenitor cells and revascularization following stroke. Brain Res 2015; 1623:150-9. [DOI: 10.1016/j.brainres.2015.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/02/2023]
|
27
|
Cai H, Mu Z, Jiang Z, Wang Y, Yang GY, Zhang Z. Hypoxia-controlled matrix metalloproteinase-9 hyperexpression promotes behavioral recovery after ischemia. Neurosci Bull 2015; 31:550-60. [PMID: 25975730 DOI: 10.1007/s12264-015-1533-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/17/2015] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a beneficial role in the sub-acute phase after ischemic stroke. However, unrestrained MMP-9 may disrupt the blood-brain barrier (BBB), which has limited its use for the treatment of brain ischemia. In the present study, we constructed lentivirus mediated hypoxia-controlled MMP-9 expression and explored its role after stroke. Hypoxia response element (HRE) was used to confine MMP-9 expression only to the hypoxic region of mouse brain after 120-min transient middle cerebral artery occlusion. Lentiviruses were injected into the peri-infarct area on day 7 after transient ischemia. We found hyperexpression of exogenous HRE-MMP-9 under the control of hypoxia, and its expression was mainly located in neurons and astrocytes without aggravation of BBB damage compared to the CMV group. Furthermore, mice in the HRE-MMP-9 group showed the best behavioral recovery compared with the normal saline, GFP, and SB-3CT groups. Therefore, hypoxia-controlled MMP-9 hyperexpression during the sub-acute phase of ischemia may provide a novel promising approach of gene therapy for stroke.
Collapse
Affiliation(s)
- Hongxia Cai
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhihao Mu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
28
|
Angiogenesis induced by prenatal ischemia predisposes to periventricular hemorrhage during postnatal mechanical ventilation. Pediatr Res 2015; 77:663-73. [PMID: 25665055 PMCID: PMC4405433 DOI: 10.1038/pr.2015.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Three risk factors are associated with hemorrhagic forms of encephalopathy of prematurity (EP): (i) prematurity, (ii) in utero ischemia (IUI) or perinatal ischemia, and (iii) mechanical ventilation. We hypothesized that IUI would induce an angiogenic response marked by activation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), the latter degrading vascular basement membrane and increasing vulnerability to raised intravenous pressure during positive pressure mechanical ventilation. METHODS We studied a rat model of hemorrhagic-EP characterized by periventricular hemorrhages in which a 20-min episode of IUI is induced at E19, pups are born naturally at E21-22, and on P0, are subjected to a 20-min episode of positive pressure mechanical ventilation. Tissues were studied by H&E staining, immunolabeling, immunoblot, and zymography. RESULTS Mechanical ventilation of rat pups 2-3 d after 20-min IUI caused widespread hemorrhages in periventricular tissues. IUI resulted in upregulation of VEGF and MMP-9. Zymography confirmed significantly elevated gelatinase activity. MMP-9 activation was accompanied by severe loss of MMP-9 substrates, collagen IV and laminin, in microvessels in periventricular areas. CONCLUSION Our findings are consistent with the hypothesis that positive pressure mechanical ventilation of the newborn in the context of recent prenatal ischemia/hypoxia can predispose to periventricular hemorrhages.
Collapse
|
29
|
Jolivel V, Bicker F, Binamé F, Ploen R, Keller S, Gollan R, Jurek B, Birkenstock J, Poisa-Beiro L, Bruttger J, Opitz V, Thal SC, Waisman A, Bäuerle T, Schäfer MK, Zipp F, Schmidt MHH. Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol 2015; 129:279-95. [PMID: 25500713 DOI: 10.1007/s00401-014-1372-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022]
Abstract
The contribution of microglia to ischemic cortical stroke is of particular therapeutic interest because of the impact on the survival of brain tissue in the ischemic penumbra, a region that is potentially salvable upon a brain infarct. Whether or not tissue in the penumbra survives critically depends on blood flow and vessel perfusion. To study the role of microglia in cortical stroke and blood vessel stability, CX3CR1(+/GFP) mice were subjected to transient middle cerebral artery occlusion and then microglia were investigated using time-lapse two-photon microscopy in vivo. Soon after reperfusion, microglia became activated in the stroke penumbra and started to expand cellular protrusions towards adjacent blood vessels. All microglia in the penumbra were found associated with blood vessels within 24 h post reperfusion and partially fully engulfed them. In the same time frame blood vessels became permissive for blood serum components. Migration assays in vitro showed that blood serum proteins leaking into the tissue provided molecular cues leading to the recruitment of microglia to blood vessels and to their activation. Subsequently, these perivascular microglia started to eat up endothelial cells by phagocytosis, which caused an activation of the local endothelium and contributed to the disintegration of blood vessels with an eventual break down of the blood brain barrier. Loss-of-microglia-function studies using CX3CR1(GFP/GFP) mice displayed a decrease in stroke size and a reduction in the extravasation of contrast agent into the brain penumbra as measured by MRI. Potentially, medication directed at inhibiting microglia activation within the first day after stroke could stabilize blood vessels in the penumbra, increase blood flow, and serve as a valuable treatment for patients suffering from ischemic stroke.
Collapse
Affiliation(s)
- Valérie Jolivel
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), Johannes Gutenberg University, University Medical Center, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen C, Lin X, Wang J, Tang G, Mu Z, Chen X, Xu J, Wang Y, Zhang Z, Yang GY. Effect of HMGB1 on the Paracrine Action of EPC Promotes Post-Ischemic Neovascularization in Mice. Stem Cells 2014; 32:2679-89. [PMID: 24888319 DOI: 10.1002/stem.1754] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/21/2014] [Accepted: 05/10/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Chao Chen
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Xiaojie Lin
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Jixian Wang
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Guanghui Tang
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
| | - Zhihao Mu
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Xiaoyan Chen
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Jin Xu
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yongting Wang
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
- Neuroscience and Neuroengineering Center; Med-X Research Institute Shanghai Jiao Tong University; Shanghai People's Republic of China
| |
Collapse
|
31
|
Hou H, Zhang G, Wang H, Gong H, Wang C, Zhang X. High matrix metalloproteinase-9 expression induces angiogenesis and basement membrane degradation in stroke-prone spontaneously hypertensive rats after cerebral infarction. Neural Regen Res 2014; 9:1154-62. [PMID: 25206775 PMCID: PMC4146104 DOI: 10.4103/1673-5374.135318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
Basement membrane degradation and blood-brain barrier damage appear after cerebral infarction, severely impacting neuronal and brain functioning; however, the underlying pathogenetic mechanisms remain poorly understood. In this study, we induced cerebral infarction in stroke-prone spontaneously hypertensive rats by intragastric administration of high-sodium water (1.3% NaCl) for 7 consecutive weeks. Immunohistochemical and immunofluorescence assays demonstrated that, compared with the non-infarcted contralateral hemisphere, stroke-prone spontaneously hypertensive rats on normal sodium intake and Wistar-Kyoto rats, matrix metalloproteinase-9 expression, the number of blood vessels with discontinuous collagen IV expression and microvessel density were significantly higher, and the number of continuous collagen IV-positive blood vessels was lower in the infarct border zones of stroke-prone spontaneously hypertensive rats given high-sodium water. Linear correlation analysis showed matrix metalloproteinase-9 expression was positively correlated with the number of discontinuously collagen IV-labeled blood vessels and microvessel density in cerebral infarcts of stroke-prone spontaneously hypertensive rats. These results suggest that matrix metalloproteinase-9 upregulation is associated with increased regional angiogenesis and degradation of collagen IV, the major component of the basal lamina, in stroke-prone spontaneously hypertensive rats with high-sodium water-induced focal cerebral infarction.
Collapse
Affiliation(s)
- Huilian Hou
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guanjun Zhang
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hongyan Wang
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Huilin Gong
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chunbao Wang
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xuebin Zhang
- Department of Pathology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|