1
|
Padhye BD, Nawaz U, Hains PG, Reddel RR, Robinson PJ, Zhong Q, Poulos RC. Proteomic insights into paediatric cancer: Unravelling molecular signatures and therapeutic opportunities. Pediatr Blood Cancer 2024; 71:e30980. [PMID: 38556739 DOI: 10.1002/pbc.30980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Survival rates in some paediatric cancers have improved greatly over recent decades, in part due to the identification of diagnostic, prognostic and predictive molecular signatures, and the development of risk-directed therapies. However, other paediatric cancers have proved difficult to treat, and there is an urgent need to identify novel biomarkers that reveal therapeutic opportunities. The proteome is the total set of expressed proteins present in a cell or tissue at a point in time, and is vastly more dynamic than the genome. Proteomics holds significant promise for cancer research, as proteins are ultimately responsible for cellular phenotype and are the target of most anticancer drugs. Here, we review the discoveries, opportunities and challenges of proteomic analyses in paediatric cancer, with a focus on mass spectrometry (MS)-based approaches. Accelerating incorporation of proteomics into paediatric precision medicine has the potential to improve survival and quality of life for children with cancer.
Collapse
Affiliation(s)
- Bhavna D Padhye
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Kids Research, Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Urwah Nawaz
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Roger R Reddel
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Qing Zhong
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Rebecca C Poulos
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
2
|
Sun KH(M, Wong YT(H, Cheung KM(C, Yuen C(M, Chan YT(T, Lai WY(J, Chao C(D, Fan WS(K, Chow YK(K, Law MF, Tam HC(T. Update on Molecular Diagnosis in Extranodal NK/T-Cell Lymphoma and Its Role in the Era of Personalized Medicine. Diagnostics (Basel) 2022; 12:diagnostics12020409. [PMID: 35204500 PMCID: PMC8871212 DOI: 10.3390/diagnostics12020409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK)/T-cell lymphoma (NKTCL) is an aggressive malignancy with unique epidemiological, histological, molecular, and clinical characteristics. It occurs in two pathological forms, namely, extranodal NKTCL (ENKTCL) and aggressive NK leukemia, according to the latest World Health Organization (WHO) classification. Epstein–Barr virus (EBV) infection has long been proposed as the major etiology of lymphomagenesis. The adoption of high-throughput sequencing has allowed us to gain more insight into the molecular mechanisms of ENKTCL, which largely involve chromosome deletion and aberrations in Janus kinase (JAK)-signal transducer and activator of transcription (STAT), programmed cell death protein-1 (PD-1)/PD-ligand 1 (PD-L1) pathways, as well as mutations in tumor suppressor genes. The molecular findings could potentially influence the traditional chemoradiotherapy approach, which is known to be associated with significant toxicity. This article will review the latest molecular findings in NKTCL and recent advances in the field of molecular diagnosis in NKTCL. Issues of quality control and technical difficulties will also be discussed, along with future prospects in the molecular diagnosis and treatment of NKTCL.
Collapse
Affiliation(s)
- Ka-Hei (Murphy) Sun
- Division of Hematopathology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Hong Kong; (K.-H.S.); (C.Y.)
| | | | - Ka-Man (Carmen) Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Carmen (Michelle) Yuen
- Division of Hematopathology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Hong Kong; (K.-H.S.); (C.Y.)
| | - Yun-Tat (Ted) Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Wing-Yan (Jennifer) Lai
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Chun (David) Chao
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Wing-Sum (Katie) Fan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Yuen-Kiu (Karen) Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Man-Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
- Correspondence:
| | - Ho-Chi (Tommy) Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| |
Collapse
|
3
|
Neumann E, Schreeck F, Herberg J, Jacqz Aigrain E, Maitland-van der Zee AH, Pérez-Martínez A, Hawcutt DB, Schaeffeler E, Rane A, de Wildt SN, Schwab M. How paediatric drug development and use could benefit from OMICs: a c4c expert group white paper. Br J Clin Pharmacol 2022; 88:5017-5033. [PMID: 34997627 DOI: 10.1111/bcp.15216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
The safety and efficacy of pharmacotherapy in children, particularly preterms, neonates, and infants, is limited by a paucity of good quality data from prospective clinical drug trials. A specific challenge is the establishment of valid biomarkers. OMICs technologies may support these efforts, by complementary information about targeted and non-targeted molecules through systematic characterization and quantitation of biological samples. OMICs technologies comprise at least genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics in addition to the patient's phenotype. OMICs technologies are in part hypothesis-generating allowing an in depth understanding of disease pathophysiology and pharmacological mechanisms. Application of OMICs technologies in paediatrics faces major challenges before routine adoption. First, developmental processes need to be considered, including a sub-division into specific age groups as developmental changes clearly impact OMICs data. Second, compared to the adult population, the number of patients is limited as well as type and amount of necessary biomaterial, especially in neonates and preterms. Thus, advanced trial designs and biostatistical methods, non-invasive biomarkers, innovative biobanking concepts including data and samples from healthy children, as well as analytical approaches (e.g. liquid biopsies) should be addressed to overcome these obstacles. The ultimate goal is to link OMICs technologies with innovative analysis tools, like artificial intelligence at an early stage. The use of OMICs data based on a feasible approach will contribute to identify complex phenotypes and subpopulations of patients to improve development of medicines for children with potential economic advantages.
Collapse
Affiliation(s)
- Eva Neumann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Filippa Schreeck
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Jethro Herberg
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Evelyne Jacqz Aigrain
- Pediatric Pharmacology and Pharmacogenetics, Hopital Universitaire Saint-Louis, Paris, France.,Clinical Investigation Center CIC1426, Hôpital Robert Debre, Paris, France.,Pharmacology, University of Paris, Paris, France
| | | | - Antonio Pérez-Martínez
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, UK.,NIHR Alder Hey Clinical Research Facility, Alder Hey Children's Hospital, Liverpool, UK
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany.,Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Fasih Ramandi N, Soleimani Mashhadi I, Sharif A, Saeedi N, Ashabi MA, Faranoush M, Ghassempour A, Aboul-Enein HY. Study of Glutathione S-transferase-P1 in cancer blood plasma after extraction by affinity magnetic nanoparticles and monitoring by MALDI-TOF, IM-Q-TOF and LC-ESI-Q-TOF MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1190:123091. [PMID: 34979454 DOI: 10.1016/j.jchromb.2021.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Glutathione S-transferase P1 (GST-P1) is considered as a detoxification enzyme and can be upregulated in several cancers. Therefore, qualification and/or quantification of GST-P1 in biological fluids can be noteworthy in cancer diagnostic and/or prognostic methods. Whereas costly immunoassays methods are routinely used for clinical analysis, long analysis time per sample is still considered as their disadvantages. To create a fast, efficient, and economical GST-P1 qualification and/or quantification technique, we developed an affinity magnetic nanoparticle-MS method. In proposed method there is no need for any pretreatment for reducing the complexity of sample and depletion of high abundant proteins that are used in routinely immunoassays methods. After enrichment of GST-P1 from blood plasma samples by affinity magnetic nanoparticle (without any pretreatment), the final eluent was analyzed using MALDI-TOF, IM-Q-TOF and LC-ESI-Q-TOF MS. For the first time this study demonstrates the suitability of affinity magnetic nanoparticle-MS method for qualification/quantification of GST-P1 from acute lymphoblastic leukemia blood plasma samples with the limit-of-detection 0.0094 ppm in less than 5 h. Our finding showed that in these blood plasma samples the level of GST-P1 can be up to six times more than healthy children.
Collapse
Affiliation(s)
- Negin Fasih Ramandi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | | | - Amirreza Sharif
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Negar Saeedi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Mohammad Ali Ashabi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
5
|
Krayem M, Aftimos P, Najem A, van den Hooven T, van den Berg A, Hovestad-Bijl L, de Wijn R, Hilhorst R, Ruijtenbeek R, Sabbah M, Kerger J, Awada A, Journe F, Ghanem GE. Kinome Profiling to Predict Sensitivity to MAPK Inhibition in Melanoma and to Provide New Insights into Intrinsic and Acquired Mechanism of Resistance. Cancers (Basel) 2020; 12:E512. [PMID: 32098410 PMCID: PMC7072684 DOI: 10.3390/cancers12020512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) inhibition with the combination of BRAF (Rapidly Accelerated Fibrosarcoma) and MEK (Mitogen-activated protein kinase kinase) inhibitors has become the standard of first-line therapy of metastatic melanoma harbouring BRAF V600 mutations. However, about half of the patients present with primary resistance while the remaining develop secondary resistance under prolonged treatment. Thus, there is a need for predictive biomarkers for sensitivity and/or resistance to further refine the patient population likely to benefit from MAPK inhibitors. In this study, we explored a top-down approach using a multiplex kinase assay, first, to discover a kinome signature predicting sensitivity, intrinsic and acquired resistance to MAPK inhibitors in melanoma, and second, to understand the mechanism of resistance using cell lines. Pre-dose tissues from patients (four responders and three non-responders to BRAFi monotherapy) were profiled for phosphotyrosine kinase (PTK) and serine-threonine kinase (STK) activities on a PamChip® peptide microarray in the presence and absence of ex vivo BRAFi. In addition, molecular studies were conducted on four sensitive parental lines, their offspring with acquired resistance to BRAFi and two lines with intrinsic resistance. PTK and STK activities in cell lysates were measured in the presence and absence of ex vivo BRAFi and/or MEKi. In tissue lysates, concentration-dependent ex vivo inhibition of STK and PTK activities with dabrafenib was stronger in responders than in non-responders. This difference was confirmed in cell lines comparing sensitive and resistant ones. Interestingly, common features of resistance were increased activity of receptor tyrosine kinases, Proto-oncogene tyrosine-protein kinase Src (Src) family kinases and protein kinase B (PKB, AKT) signalling. These latter results were confirmed by Western blots. While dabrafenib alone showed an inhibition of STK and PTK activities in both tissues and cell lines, the combination of dabrafenib and trametinib showed an antagonism on the STK activities and a synergism on PTK activities, resulting in stronger inhibitions of overall tyrosine kinase activities. Altogether; these data reveal that resistance of tumours and cell lines to MAPK inhibitors can be predicted using a multiplex kinase assay and is associated with an increase in specific tyrosine kinase activities and globally to AKT signalling in the patient's tissue. Thus, such a predictive kinome signature would help to identify patients with innate resistance to MAPK double inhibition in order to propose other therapies.
Collapse
Affiliation(s)
- Mohamad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| | - Philippe Aftimos
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (P.A.); (J.K.)
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| | - Tim van den Hooven
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Adriënne van den Berg
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Liesbeth Hovestad-Bijl
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Rik de Wijn
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Riet Hilhorst
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Rob Ruijtenbeek
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| | - Joseph Kerger
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (P.A.); (J.K.)
| | - Ahmad Awada
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (P.A.); (J.K.)
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| |
Collapse
|
6
|
Aberuyi N, Rahgozar S, Ghodousi ES, Ghaedi K. Drug Resistance Biomarkers and Their Clinical Applications in Childhood Acute Lymphoblastic Leukemia. Front Oncol 2020; 9:1496. [PMID: 32010613 PMCID: PMC6978753 DOI: 10.3389/fonc.2019.01496] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Biomarkers are biological molecules found in body fluids or tissues, which can be considered as indications of a normal or abnormal process, or of a condition or disease. There are various types of biomarkers based on their application and molecular alterations. Treatment-sensitivity or drug resistance biomarkers include prognostic and predictive molecules with utmost importance in selecting appropriate treatment protocols and improving survival rates. Acute lymphoblastic leukemia (ALL) is the most prevalent hematological malignancy diagnosed in children with nearly 80% cure rate. Despite the favorable survival rates of childhood ALL (chALL), resistance to chemotherapeutic agents and, as a consequence, a dismal prognosis develops in a significant number of patients. Therefore, there are urgent needs to have robust, sensitive, and disease-specific molecular prognostic and predictive biomarkers, which could allow better risk classification and then better clinical results. In this article, we review the currently known drug resistance biomarkers, including somatic or germ line nucleic acids, epigenetic alterations, protein expressions and metabolic variations. Moreover, biomarkers with potential clinical applications are discussed.
Collapse
Affiliation(s)
- Narges Aberuyi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Elaheh Sadat Ghodousi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
8
|
Citalan-Madrid AF, Cabral-Pacheco GA, Martinez-de-Villarreal LE, Villarreal-Martinez L, Ibarra-Ramirez M, Garza-Veloz I, Cardenas-Vargas E, Marino-Martinez I, Martinez-Fierro ML. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:637-650. [PMID: 31514680 DOI: 10.1080/16078454.2019.1664127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a hematological malignancy of immature B-cell precursors, affecting children more often than adults. The etiology of BCP-ALL is still unknown, but environmental factors, sex, race or ethnicity, and genomic alterations influence the development of the disease. Tools based on protein detection, such as flow cytometry, mass spectrometry, mass cytometry and reverse phase protein array, represent an opportunity to investigate BCP-ALL pathogenesis and to identify new biomarkers of disease. This review aims to document the recent advancements with respect to applications of proteomic technologies to study mechanisms of leukemogenesis, how this information could be used in the discovery of biological targets, and finally we describe the challenges of application of proteomic tools for the approach of BCP-ALL.
Collapse
Affiliation(s)
- Alí F Citalan-Madrid
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Griselda A Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | | | - Laura Villarreal-Martinez
- Hematology Service, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Marisol Ibarra-Ramirez
- Departamento de Genetica, Facultad de Medicina, Universidad Autónoma de Nuevo Leon , Monterrey , Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Edith Cardenas-Vargas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Hospital General Zacatecas 'Luz González Cosío' , Zacatecas , Mexico
| | - Ivan Marino-Martinez
- Departamento de Patologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| |
Collapse
|
9
|
Guo L, Ren H, Zeng H, Gong Y, Ma X. Proteomic analysis of cerebrospinal fluid in pediatric acute lymphoblastic leukemia patients: a pilot study. Onco Targets Ther 2019; 12:3859-3868. [PMID: 31190885 PMCID: PMC6527054 DOI: 10.2147/ott.s193616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Involvement of central nervous system in acute lymphoblastic leukemia (CNSL) remains one of the major causes of pediatric acute lymphoblastic leukemia (ALL) treatment failure. However, the current understanding of the pathological process of CNSL is still limited. This study aimed to better understand the protein expression in cerebrospinal fluid (CSF) of ALL and discover valuable prognostic biomarkers. Materials and methods CSF samples were obtained from ALL patients and healthy controls. Comparative proteomic profiling using label-free liquid chromatography-tandem mass spectrometry was performed to detect differentially expressed proteins. Results In the present study, 51 differentially expressed proteins were found. Among them, two core clusters including ten proteins (TIMP1, LGALS3BP, A2M, FN1, AHSG, HRG, ITIH4, CF I, C2, and C4a) might be crucial for tumorigenesis and progression of ALL and can be potentially valuable indicators of CNSL. Conclusion These differentially expressed proteins of ALL children with central nervous system involvement and normal children may work as diagnostic and prognostic factors of ALL patients.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China, .,West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Honghong Ren
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Hao Zeng
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China,
| |
Collapse
|
10
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Aguirre-Guillén WA, Angeles-Floriano T, López-Martínez B, Reyes-Morales H, Zlotnik A, Valle-Rios R. Omics techniques and biobanks to find new biomarkers for the early detection of acute lymphoblastic leukemia in middle-income countries: a perspective from Mexico. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2018; 74:227-232. [PMID: 29382491 DOI: 10.1016/j.bmhimx.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) affects the quality of life of many children in the world and particularly in Mexico, where a high incidence has been reported. With a proper financial investment and with well-organized institutions caring for those patients, together with solid platforms to perform high-throughput analyses, we propose the creation of a Mexican repository system of serum and cells from bone marrow and blood samples derived from tissues of pediatric patients with ALL diagnosis. This resource, in combination with omics technologies, particularly proteomics and metabolomics, would allow longitudinal studies, offering an opportunity to design and apply personalized ALL treatments. Importantly, it would accelerate the development of translational science and will lead us to further discoveries, including the identification of new biomarkers for the early detection of leukemia.
Collapse
Affiliation(s)
- William Alejandro Aguirre-Guillén
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Unidad Biológica y de Ciencias de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Tania Angeles-Floriano
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida López-Martínez
- Sub-Dirección de Diagnóstico Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Hortensia Reyes-Morales
- Departamento de Investigación, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Albert Zlotnik
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Ricardo Valle-Rios
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Unidad de investigación Escuela de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
12
|
Dehghan-Nayeri N, Eshghi P, Pour KG, Rezaei-Tavirani M, Omrani MD, Gharehbaghian A. Differential expression pattern of protein markers for predicting chemosensitivity of dexamethasone-based chemotherapy of B cell acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2017; 80:177-185. [PMID: 28585036 DOI: 10.1007/s00280-017-3347-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/29/2017] [Indexed: 02/06/2023]
Abstract
Dexamethasone is considered as a direct chemotherapeutic agent in the treatment of pediatric acute lymphoblastic leukemia (ALL). Beside the advantages of the drug, some problems arising from the dose-related side effects are challenging issues during the treatment. Accordingly, the classification of patients to dexamethasone sensitive and resistance groups can help to select optimizing the therapeutic dose with the lowest adverse effects particularly in sensitive cases. For this purpose, we investigated inhibited proliferation and induced cytotoxicity in NALM-6 cells, as sensitive cells, after dexamethasone treatment. In addition, comparative protein expression analysis using the 2DE-MALDI-TOF MS technique was performed to identify the specific altered proteins. In addition, we evaluated mRNA expression levels of the identified proteins in bone-marrow samples from pediatric ALL patients using the real-time q-PCR method. Eventually, proteomic analysis revealed a combination of biomarkers, including capping proteins (CAPZA1 and CAPZB), chloride channel (CLIC1), purine nucleoside phosphorylase (PNP), and proteasome activator (PSME1), in response to the dexamethasone treatment. In addition, our results indicated low expression of identified proteins at both the mRNA and protein expression levels after drug treatment. Moreover, quantitative real-time PCR data analysis indicated that independent of the molecular subtypes of the leukemia, CAPZA1, CAPZB, CLIC1, and PNP expression levels were lower in ALL samples than normal samples, although PSME1 expression level was higher in ALL samples than normal samples. Furthermore, the expression level of all proteins (except PSME1) was different between high-risk and standard-risk patients that suggesting the prognostic value of them. In conclusion, our study suggests a panel of biomarkers comprising CAPZA1, CAPZB, CLIC1, PNP, and PSME1 as early diagnosis and treatment evaluation markers that may differentiate cancer cells which are presumably to benefit from dexamethasone-based chemotherapy and may facilitate the prediction of clinical outcome.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/pharmacology
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Child
- Child, Preschool
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Infant
- Male
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Prognosis
- Proteomics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Nasrin Dehghan-Nayeri
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kourosh Goudarzi Pour
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Wang L, Zhu B, Zhang M, Wang X. Roles of immune microenvironment heterogeneity in therapy-associated biomarkers in lung cancer. Semin Cell Dev Biol 2017; 64:90-97. [DOI: 10.1016/j.semcdb.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
|
14
|
Stewart A, Banerji U. Utilizing the Luminex Magnetic Bead-Based Suspension Array for Rapid Multiplexed Phosphoprotein Quantification. Methods Mol Biol 2017; 1636:119-131. [PMID: 28730477 DOI: 10.1007/978-1-4939-7154-1_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study of protein phosphorylation is critical for the advancement of our understanding of cellular responses to external and internal stimuli. Phosphorylation, the addition of phosphate groups, most often occurs on serine, threonine, or tyrosine residues due to the action of protein kinases. This structural change causes the protein to become activated (or deactivated) and enables it in turn to initiate the phosphorylation of other proteins in a cascade, eventually causing cell-wide changes such as apoptosis, cell differentiation, and growth (among others). Cellular phosphoprotein pathway dysregulation by mutation or chromosomal instability can often give the cell a selective advantage and lead to cancer. Obviously the understanding of these systems is of huge importance to the field of oncology.This chapter aims to provide a "how to" manual for one such technology, the 96-well plate-based xMAP® platform from Luminex. The system utilizes antibody-bound free-floating magnetic spheres which can easily be removed from suspension via magnetization. There are 100 unique bead sets (moving up to 500 bead sets for the most recent system) identified by the ratio of two dyes coating the microsphere. Each bead set is conjugated to a specific antibody which allows targeted protein extraction from low-concentration lysate solution. Biotinylated secondary antibodies/streptavidin-R-phycoerythrin (SAPE) complexes provide the quantification mechanism for the phosphoprotein of interest.
Collapse
Affiliation(s)
- Adam Stewart
- The Institute of Cancer Research, London, UK
- The Royal Marsden, Sycamore House, Downs Road, Sutton, London, SM2 5PT, UK
| | - Udai Banerji
- The Institute of Cancer Research, London, UK.
- The Royal Marsden, Sycamore House, Downs Road, Sutton, London, SM2 5PT, UK.
- Drug Development Unit, Sycamore House, London, UK.
| |
Collapse
|
15
|
Niu F, Wang DC, Lu J, Wu W, Wang X. Potentials of single-cell biology in identification and validation of disease biomarkers. J Cell Mol Med 2016; 20:1789-95. [PMID: 27113384 PMCID: PMC4988278 DOI: 10.1111/jcmm.12868] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/10/2016] [Indexed: 12/23/2022] Open
Abstract
Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers.
Collapse
Affiliation(s)
- Furong Niu
- Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Diane C Wang
- Department of Pulmonary Medicine, The First affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiapei Lu
- Department of Pulmonary Medicine, The First affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Wu
- Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| | - Xiangdong Wang
- Huzhou Central Hospital, Huzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Hao L, Zhou X, Liu S, Sun M, Song Y, Du S, Sun B, Guo C, Gong L, Hu J, Guan H, Shao S. Elevated GAPDH expression is associated with the proliferation and invasion of lung and esophageal squamous cell carcinomas. Proteomics 2015; 15:3087-100. [PMID: 25944651 DOI: 10.1002/pmic.201400577] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 01/01/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase, is one of the most investigated housekeeping genes and widely used as an internal control in analysis of gene expression levels. The present study was designed to assess whether GAPDH is associated with cancer cell growth and progression and, therefore may not be a good internal control in cancer research. Our results from clinical tissue studies showed that the levels of GAPDH protein were significantly up-regulated in lung squamous cell carcinoma tissues, compared with the adjacent normal lung tissues, and this was confirmed by western blotting and immunohistochemistry. GAPDH knockdown by siRNA resulted in significant reductions in proliferation, migration, and invasion of lung squamous carcinoma cells in vitro. In a nude mouse cancer xenograft model, GAPDH knockdown significantly inhibited the cell proliferation and migration/invasion in vivo. In summary, GAPDH may not be an appropriate internal control for gene expression studies, especially in cancer research. The role of GAPDH in cancer development and progression should be further examined in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Lihong Hao
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Xin Zhou
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Shuqing Liu
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Mingzhong Sun
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Yang Song
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Sha Du
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Bing Sun
- Department of Chest Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Chunmei Guo
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Linlin Gong
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Jun Hu
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Hongwei Guan
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Shujuan Shao
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, P. R. China
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, P. R. China
| |
Collapse
|
17
|
López Villar E, Madero L, A López-Pascual J, C Cho W. Study of phosphorylation events for cancer diagnoses and treatment. Clin Transl Med 2015; 4:59. [PMID: 26055493 PMCID: PMC4460185 DOI: 10.1186/s40169-015-0059-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023] Open
Abstract
The activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth, proliferation and survival, is orchestrated by protein kinases via phosphorylation. A critical issue is the study of the mechanisms of cancer cells for the development of more effective drugs. With the application of the new proteomic technologies, together with the advancement in the sequencing of the human proteome, patients will therefore be benefited by the discovery of novel therapeutic and/or diagnostic protein targets. Furthermore, the advances in proteomic approaches and the Human Proteome Organization (HUPO) have opened a new door which is helpful in the identification of patients at risk and towards improving current therapies. Modification of the signaling-networks via mutations or abnormal protein expression underlies the cause or consequence of many diseases including cancer. Resulting data is used to reveal connections between genes proteins and compounds and the related molecular pathways for underlining disease states. As a delegate of HUPO, for human proteome on children assays and studies, we, at Hospital Universitario Niño Jesús, are seeking to support the human proteome in this context. Clinical goals have to be clearly established and proteomics experts have to set up the appropriate proteomic strategy, which coupled to bioinformatics will make it possible to achieve new therapies for patients with poor prognosis. We envision to combine our up-coming data to the HUPO organization in order to support international efforts to advance the cure of cancer disease.
Collapse
Affiliation(s)
- Elena López Villar
- Oncohematology of Children Department, Hospital Universitario Infantil Niño Jesús, Av. Menéndez Pelayo 65, Madrid, Spain,
| | | | | | | |
Collapse
|
18
|
López-Villar E, Martos-Moreno GÁ, Chowen JA, Okada S, Kopchick JJ, Argente J. A proteomic approach to obesity and type 2 diabetes. J Cell Mol Med 2015; 19:1455-70. [PMID: 25960181 PMCID: PMC4511345 DOI: 10.1111/jcmm.12600] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
The incidence of obesity and type diabetes 2 has increased dramatically resulting in an increased interest in its biomedical relevance. However, the mechanisms that trigger the development of diabetes type 2 in obese patients remain largely unknown. Scientific, clinical and pharmaceutical communities are dedicating vast resources to unravel this issue by applying different omics tools. During the last decade, the advances in proteomic approaches and the Human Proteome Organization have opened and are opening a new door that may be helpful in the identification of patients at risk and to improve current therapies. Here, we briefly review some of the advances in our understanding of type 2 diabetes that have occurred through the application of proteomics. We also review, in detail, the current improvements in proteomic methodologies and new strategies that could be employed to further advance our understanding of this pathology. By applying these new proteomic advances, novel therapeutic and/or diagnostic protein targets will be discovered in the obesity/Type 2 diabetes area.
Collapse
Affiliation(s)
- Elena López-Villar
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Oncohematology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Konneker Research Laboratories, Athens, OH, USA.,Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Konneker Research Laboratories, Athens, OH, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jesús Argente
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
López Villar E, Wang X, Madero L, Cho WC. Application of oncoproteomics to aberrant signalling networks in changing the treatment paradigm in acute lymphoblastic leukaemia. J Cell Mol Med 2015; 19:46-52. [PMID: 25537633 PMCID: PMC4288348 DOI: 10.1111/jcmm.12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022] Open
Abstract
Oncoproteomics is an important innovation in the early diagnosis, management and development of personalized treatment of acute lymphoblastic leukaemia (ALL). As inherent factors are not completely known - e.g. age or family history, radiation exposure, benzene chemical exposure, certain viral exposures such as infection with the human T-cell lymphoma/leukaemia virus-1, as well as some inherited syndromes may raise the risk of ALL - each ALL patient may modify the susceptibility of therapy. Indeed, we consider these unknown inherent factors could be explained via coupling cytogenetics plus proteomics, especially when proteins are the ones which play function within cells. Innovative proteomics to ALL therapy may help to understand the mechanism of drug resistance and toxicities, which in turn will provide some leads to improve ALL management. Most important of these are shotgun proteomic strategies to unravel ALL aberrant signalling networks. Some shotgun proteomic innovations and bioinformatic tools for ALL therapies will be discussed. As network proteins are distinctive characteristics for ALL patients, unrevealed by cytogenetics, those network proteins are currently an important source of novel therapeutic targets that emerge from shotgun proteomics. Indeed, ALL evolution can be studied for each individual patient via oncoproteomics.
Collapse
Affiliation(s)
- Elena López Villar
- Department of Oncohematology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de MadridMadrid, Spain
| | - Xiangdong Wang
- Biomedical Research Centre, Fudan University Zhongshan HospitalShanghai, China
- Department of Respiratory Medicine, Zhongshan Hospital Fudan University School of Medicine, Shanghai Respiratory Research InstituteShanghai, China
| | - Luis Madero
- Department of Oncohematology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de MadridMadrid, Spain
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth HospitalHong Kong
| |
Collapse
|