1
|
Yan R, Qiu X, Dai Y, Jiang Y, Gu H, Jiang Y, Ding L, Cheng S, Meng X, Wang Y, Zhao X, Li H, Wang Y, Li Z. Association between PPAR γ polymorphisms and neurological functional disability of ischemic stroke. J Cereb Blood Flow Metab 2024:271678X241274681. [PMID: 39161254 PMCID: PMC11572223 DOI: 10.1177/0271678x241274681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/04/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) plays a protective role against brain injury after stroke in mice. However, the relationship between PPARγ gene polymorphisms and the functional outcome of acute ischemic stroke (AIS) remains unknown. 8822 patients from The Third China National Stroke Registry (CNSR-III) after whole-genome sequencing, two functional single nucleotide polymorphisms(SNPs) in PPARγ, rs1801282 C > G and rs3856806 C > T, were further analysed. The primary outcome was neurological functional disability at three months. Of the 8822 patients, 968 (11.0%) and 3497 (39.6%) were carriers of rs1801282 and rs3856806, respectively. Carriers of rs3856806 showed reduced risks for three-month neurological functional disability (OR, 0.84; 95% CI, 0.73-0.98; p = 0.02) and reduced risks for higher infarct volume (OR 0.90, 95% CI, 0.81-0.99, p = 0.04). They also had a reduced risk of neurological functional disability only in case of lower baseline IL-6 levels (OR 0.64, 95% CI 0.48-0.84, Pinteraction = 0.01). Carriers of rs1801282 had a reduced risk for three-month neurological functional disability (OR 0.77, 95% CI, 0.61-0.99, p = 0.04). Our study suggested that PPARγ polymorphisms are associated with a reduced risk for neurological functional disability and higher infarct volume in AIS. Therefore, PPARγ can be a potential therapeutic target in AIS.
Collapse
Affiliation(s)
- Ran Yan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Qiu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yalun Dai
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yingyu Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lingling Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Si Cheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, China
- Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
2
|
Wu W, Chen Z, Han J, Qian L, Wang W, Lei J, Wang H. Endocrine, genetic, and microbiome nexus of obesity and potential role of postbiotics: a narrative review. Eat Weight Disord 2023; 28:84. [PMID: 37861729 PMCID: PMC10589153 DOI: 10.1007/s40519-023-01593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and developing countries. According to the WHO's latest report on obesity, 39% of adults of age 18 and above are obese, with an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multiple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer use of postbiotics against obesity in the future.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Zhengfang Chen
- Department of Endocrinology, Changshu First People's Hospital, Changshu, 215501, Jiangsu, People's Republic of China.
| | - Jiani Han
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Lingling Qian
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Wanqiu Wang
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Jiacai Lei
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Huaguan Wang
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Jang EJ, Lee DH, Im SS, Yee J, Gwak HS. Correlation between PPARG Pro12Ala Polymorphism and Therapeutic Responses to Thiazolidinediones in Patients with Type 2 Diabetes: A Meta-Analysis. Pharmaceutics 2023; 15:1778. [PMID: 37376225 PMCID: PMC10303709 DOI: 10.3390/pharmaceutics15061778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Thiazolidinediones (TZDs) are a type of oral drug that are utilized for the treatment of type 2 diabetes mellitus (T2DM). They function by acting as agonists for a nuclear transcription factor known as peroxisome proliferator-activated receptor-gamma (PPAR-γ). TZDs, such as pioglitazone and rosiglitazone, help enhance the regulation of metabolism in individuals with T2DM by improving their sensitivity to insulin. Previous studies have suggested a relationship between the therapeutic efficacy of TZDs and the PPARG Pro12Ala polymorphism (C > G, rs1801282). However, the small sample sizes of these studies may limit their applicability in clinical settings. To address this limitation, we conducted a meta-analysis assessing the influence of the PPARG Pro12Ala polymorphism on the responsiveness of TZDs. Method: We registered our study protocol with PROSPERO, number CRD42022354577. We conducted a comprehensive search of the PubMed, Web of Science, and Embase databases, including studies published up to August 2022. We examined studies investigating the association between the PPARG Pro12Ala polymorphism and metabolic parameters such as hemoglobin A1C (HbA1C), fasting plasma glucose (FPG), triglyceride (TG), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and total cholesterol (TC). The mean difference (MD) and 95% confidence intervals (CIs) between pre- and post-drug administration were evaluated. The quality of the studies included in the meta-analysis was assessed by using the Newcastle-Ottawa Scale (NOS) tool for cohort studies. Heterogeneity across studies was assessed by using the I2 value. An I2 value greater than 50% indicated substantial heterogeneity, and a random-effects model was used for meta-analysis. If the I2 value was below 50%, a fixed-effects model was employed instead. Both Begg's rank correlation test and Egger's regression test were performed to detect publication bias, using R Studio software. Results: Our meta-analysis incorporated 6 studies with 777 patients for blood glucose levels and 5 studies with 747 patients for lipid levels. The included studies were published between 2003 and 2016, with the majority involving Asian populations. Five of the six studies utilized pioglitazone, while the remaining study employed rosiglitazone. The quality scores, as assessed with the NOS, ranged from 8 to 9. Patients carrying the G allele exhibited a significantly greater reduction in HbA1C (MD = -0.3; 95% CI = -0.55 to -0.05; p = 0.02) and FPG (MD = -10.91; 95% CI = -19.82 to -2.01; p = 0.02) levels compared to those with the CC genotype. Furthermore, individuals with the G allele experienced a significantly larger decrease in TG levels than those with the CC genotype (MD = -26.88; 95% CI = -41.30 to -12.46; p = 0.0003). No statistically significant differences were observed in LDL (MD = 6.69; 95% CI = -0.90 to 14.29; p = 0.08), HDL (MD = 0.31; 95% CI = -1.62 to 2.23; p = 0.75), and TC (MD = 6.4; 95% CI = -0.05 to 12.84; p = 0.05) levels. No evidence of publication bias was detected based on Begg's test and Egger's test results. Conclusions: This meta-analysis reveals that patients with the Ala12 variant in the PPARG Pro12Ala polymorphism are more likely to exhibit positive responses to TZD treatment in terms of HbA1C, FPG, and TG levels compared to those with the Pro12/Pro12 genotype. These findings suggest that genotyping the PPARG Pro12Ala in diabetic patients may be advantageous for devising personalized treatment strategies, particularly for identifying individuals who are likely to respond favorably to TZDs.
Collapse
Affiliation(s)
- Eun Jeong Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; (E.J.J.); (D.H.L.); (J.Y.)
| | - Da Hoon Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; (E.J.J.); (D.H.L.); (J.Y.)
| | - Sae-Seul Im
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; (E.J.J.); (D.H.L.); (J.Y.)
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; (E.J.J.); (D.H.L.); (J.Y.)
| |
Collapse
|
4
|
Muntean C, Sasaran MO, Crisan A, Banescu C. Effects of PPARG and PPARGC1A gene polymorphisms on obesity markers. Front Public Health 2022; 10:962852. [PMID: 36466447 PMCID: PMC9709282 DOI: 10.3389/fpubh.2022.962852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric obesity presents a multifactorial etiology, which involves genetic traits as well, including single nucleotide polymorphisms. The aim of the study is to investigate the contribution of PPARG gene polymorphisms (namely Pro12Ala rs1801282, His447His rs3856806, and Pro115Gln rs1800571) and PPARGC1A rs8192678 SNP on the anthropometric and metabolic parameters in a population of Romanian children. We conducted a cross-sectional study of 295 Caucasian children, divided according to the body mass index (BMI) z-score into the study (obese and overweight) group of 130 children and the control (normoponderal) group of 165 children. Anthropometric parameters were greater in the obese and overweight population as opposed to controls, with significant differences (p < 0.01) found for the weight (2.77 ± 1.54 SD vs. -0.04 ± 1.15 SD), body mass index (BMI) (2.28 ± 0.97 SD vs. -0.18 ± 1.19 SD), mid-upper arm circumference (MUAC) (4.59 ± 2.28 SD vs. 0.28 ± 3.45 SD), tricipital skin-fold (TSF) (3.31 ± 3.09 SD vs. 0.62 ± 7.28 SD) and waist-to-height ratio (WHtR) (0.61 ± 1.51 SD vs. -0.35 ± 1.35 SD) z-scores. Moreover, triglyceride values were higher in the study group (118.70 ± 71.99 SD vs. 77.09 ± 37.39 SD). No significant difference in the allele and genotype distribution of investigates gene polymorphisms was observed between the studied groups (p > 0.05). PPARG (rs1801282, rs3856806, and rs1800571) were not associated with demographic, anthropometric, and laboratory parameters. However, PPARGC1A rs8192678 CC genotype was associated with TSF z-score (p = 0.03), whereas total and LDL cholesterol levels were significantly higher among TT homozygotes (p < 0.01). Our data suggest that PPARG (rs1801282, rs3856806, and rs1800571) and PPARGC1A (rs8192678) gene polymorphisms were not associated with childhood and adolescence overweight and obesity. The present study identified a significant increase in fasting glucose levels, triglyceride, albumin, and ALT levels in children with excess weight, as well as expected important upward variation of anthropometric parameters (BMI, MUAC, TSF z-scores).
Collapse
Affiliation(s)
- Carmen Muntean
- Department of Paediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania,*Correspondence: Carmen Muntean
| | - Maria Oana Sasaran
- Department of Paediatrics III, “George Emil Palade” University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Adriana Crisan
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Claudia Banescu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|
5
|
Meszaros M, Bikov A. Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspectives in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines 2022; 10:2754. [PMID: 36359273 PMCID: PMC9687681 DOI: 10.3390/biomedicines10112754] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with cardiovascular and metabolic comorbidities, including hypertension, dyslipidaemia, insulin resistance and atherosclerosis. Strong evidence suggests that OSA is associated with an altered lipid profile including elevated levels of triglyceride-rich lipoproteins and decreased levels of high-density lipoprotein (HDL). Intermittent hypoxia; sleep fragmentation; and consequential surges in the sympathetic activity, enhanced oxidative stress and systemic inflammation are the postulated mechanisms leading to metabolic alterations in OSA. Although the exact mechanisms of OSA-associated dyslipidaemia have not been fully elucidated, three main points have been found to be impaired: activated lipolysis in the adipose tissue, decreased lipid clearance from the circulation and accelerated de novo lipid synthesis. This is further complicated by the oxidisation of atherogenic lipoproteins, adipose tissue dysfunction, hormonal changes, and the reduced function of HDL particles in OSA. In this comprehensive review, we summarise and critically evaluate the current evidence about the possible mechanisms involved in OSA-associated dyslipidaemia.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9MT, UK
| |
Collapse
|
6
|
Li S, He C, Nie H, Pang Q, Wang R, Zeng Z, Song Y. G Allele of the rs1801282 Polymorphism in PPARγ Gene Confers an Increased Risk of Obesity and Hypercholesterolemia, While T Allele of the rs3856806 Polymorphism Displays a Protective Role Against Dyslipidemia: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:919087. [PMID: 35846293 PMCID: PMC9276935 DOI: 10.3389/fendo.2022.919087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The relationships between the rs1801282 and rs3856806 polymorphisms in nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) gene and obesity indexes as well as serum lipid levels have been extensively investigated in various studies, but the results were inconsistent and even contradictory. METHODS PubMed, Google Scholar, Embase, Cochrane Library, Web of Science, Wanfang, CNKI and VIP databases were searched for eligible studies. The random-effTPDEects model was used, and standardized mean difference (SMD) with 95% confidence interval (CI) was calculated to estimate the differences in obesity indexes and serum lipid levels between the subjects with different genotypes in a dominant model. Heterogeneity among studies was assessed by Cochran's x2-based Q-statistic test. Publication bias was identified by using Begg's test. RESULTS One hundred and twenty studies (70,317 subjects) and 33 studies (18,353 subjects) were identified in the analyses for the rs1801282 and rs3856806 polymorphisms, respectively. The G allele carriers of the rs1801282 polymorphism had higher levels of body mass index (SMD = 0.08 kg/m2, 95% CI = 0.04 to 0.12 kg/m2, p < 0.001), waist circumference (SMD = 0.12 cm, 95% CI = 0.06 to 0.18 cm, p < 0.001) and total cholesterol (SMD = 0.07 mmol/L, 95% CI = 0.02 to 0.11 mmol/L, p < 0.01) than the CC homozygotes. The T allele carriers of the rs3856806 polymorphism had lower levels of low-density lipoprotein cholesterol (SMD = -0.09 mmol/L, 95% CI = -0.15 to -0.03 mmol/L, p < 0.01) and higher levels of high-density lipoprotein cholesterol (SMD = 0.06 mmol/L, 95% CI = 0.02 to 0.10 mmol/L, p < 0.01) than the CC homozygotes. CONCLUSIONS The meta-analysis suggests that the G allele of the rs1801282 polymorphism confers an increased risk of obesity and hypercholesterolemia, while the T allele of the rs3856806 polymorphism displays a protective role against dyslipidemia, which can partly explain the associations between these polymorphisms and cardiovascular disease. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier [CRD42022319347].
Collapse
Affiliation(s)
- Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Haiyan Nie
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Qianyin Pang
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Ruixia Wang
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zhifu Zeng
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Yongyan Song,
| |
Collapse
|
7
|
Matsunaga T, Naito M, Yin G, Hishida A, Okada R, Kawai S, Sasakabe T, Kadomatsu Y, Tsukamoto M, Kubo Y, Tamura T, Takeuchi K, Mori A, Hamajima N, Wakai K. Associations between peroxisome proliferator-activated receptor γ (PPAR-γ) polymorphisms and serum lipids: Two cross-sectional studies of community-dwelling adults. Gene 2020; 762:145019. [PMID: 32755657 DOI: 10.1016/j.gene.2020.145019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Dyslipidemia is a well-established risk factor for cardiovascular disease. Experimental studies have reported that peroxisome proliferator-activated receptor γ (PPAR-γ) regulates adipocyte differentiation, lipid storage, and glucose metabolism. Therefore, we examined the associations between PPAR-γ polymorphisms (rs1801282, rs3856806, rs12497191, rs1151999, and rs1152003) and serum lipids in two cross-sectional studies. In the Shizuoka area of the Japan Multi-Institutional Collaborative Cohort Study, we examined 4,952 participants (3,356 men and 1,596 women) in a baseline survey and 2,245 participants (1,550 men and 695 women) in a second survey 5 years later. Outcome measures were the prevalence of dyslipidemia (low-density lipoprotein-cholesterol [LDL-C] ≥ 140 mg/dl, high-density lipoprotein-cholesterol < 40 mg/dl, triglycerides ≥ 150 mg/dl, and/or use of cholesterol-lowering drugs) and the prevalence of high LDL-C (LDL-C ≥ 140 mg/dl and/or use of cholesterol-lowering drugs). Multivariate odds ratios (ORs) were estimated by using unconditional logistic regression models. A total of 2,114 and 1,431 individuals (42.7% and 28.9%) had dyslipidemia and high LDL-C in the baseline survey, respectively, as did 933 and 716 (41.6% and 31.9%), respectively, in the second survey. In the baseline study, compared with major allele homozygotes, minor allele homozygotes of rs3856806 and rs12497191 had a 42% (OR, 0.58; 95% confidence interval (CI), 0.39-0.85) and 23% (OR, 0.77; 95% CI, 0.60-0.99) lower risk of dyslipidemia, respectively, after adjustment for potential confounding factors. In addition, minor allele homozygotes of rs3856806 had a 45% (OR, 0.55; 95% CI, 0.35-0.86) lower risk of high LDL-C. Similar risk reductions were found in the second survey. In conclusion, rs3856806 and rs12497191 polymorphisms may be related to a lower risk of dyslipidemia and high LDL-C.
Collapse
Affiliation(s)
- Takashi Matsunaga
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Guang Yin
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Nutritional Sciences, Faculty of Health and Welfare, Seinan Jo Gakuin University, 1-3-5 Ibori, Kokura Kita-ku, Kitakyushu, Fukuoka 803-0835, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Public Health, Aichi Medical University, Nagakute 480-1195, Japan
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Public Health, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yuka Kadomatsu
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mineko Tsukamoto
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoko Kubo
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsuyoshi Mori
- Seirei Preventive Health Care Center, 3453-1 Mikatahara-cho, Kita-ku, Hamamatsu 433-8558, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
8
|
Dhaini HR, Daher Z. Genetic polymorphisms of PPAR genes and human cancers: evidence for gene-environment interactions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:146-179. [PMID: 31045458 DOI: 10.1080/10590501.2019.1593011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that play a role in lipid metabolism, cell proliferation, terminal differentiation, apoptosis, and inflammation. Although several cancer models have been suggested to explain PPARs' involvement in tumorigenesis, however, their role is still unclear. In this review, we examined associations of the different PPARs, polymorphisms and various types of cancer with a focus on gene-environment interactions. Reviewed evidence suggests that functional genetic variants of the different PPARs may modulate the relationship between environmental exposure and cancer risk. In addition, this report unveils the scarcity of reliable quantitative environmental exposure data when examining these interactions, and the current gaps in studying gene-environment interactions in many types of cancer, particularly colorectal, prostate, and bladder cancers.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Department of Environmental Health, American University of Beirut , Lebanon
| | - Zeina Daher
- b Faculty of Public Health I, Lebanese University , Beirut , Lebanon
| |
Collapse
|
9
|
Koohdani F, Sotoudeh G, Kalantar Z, Mansoori A. PPARγ Pro12Ala Polymorphism Influences the Relationship between Dietary Fat Intake, Adiposity and Lipid Profile in Patients with Type 2 Diabetes. INT J VITAM NUTR RES 2018; 88:263-269. [DOI: 10.1024/0300-9831/a000595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract. Background: Peroxisome proliferator-activated receptor γ (PPARγ) Pro12Ala polymorphism (rs1801282) has been associated with metabolic syndrome components in some studies. Moreover, the PPARγ gene may mediate the physiological response to dietary fat intake in a ligand-dependent manner. Methods: Metabolic syndrome components (body mass index, waist circumference, and lipid profile) were determined in 290 type 2 diabetes mellitus patients in a cross-sectional study. DNA genotyping for determining PPARγ Pro12Ala polymorphism was conducted using the polymerase chain reaction-restriction length polymorphism method. A semi-quantitative food frequency questionnaire was used to assess the participants’ dietary intakes in the previous year. Results: There were significant differences between the two genotype groups of PPARγ Pro12Ala polymorphism, Ala carriers (Pro/Ala + Ala/Ala) versus non-Ala carriers (Pro/Pro), in terms of mean body mass index (p = 0.04) and waist circumference (p = 0.02). Below the median percentage of energy from monounsaturated and polyunsaturated fatty acids, Ala carriers had a higher body mass index (p = 0.01) compared to non-Ala carriers. Furthermore, a significant interaction between this single-nucleotide polymorphism and polyunsaturated fatty acids intake on serum triglyceride levels (p = 0.01) was seen, and in higher polyunsaturated fatty acids intake (≥ median) Ala carriers had lower triglyceride levels than non-Ala carriers (p = 0.007). Conclusions: The findings of the current study support a significant association between PPARγ Pro12Ala polymorphism and metabolic syndrome components, and they suggest that this polymorphism can modulate the biological response of dietary fat intake on body mass index and triglyceride levels.
Collapse
Affiliation(s)
- Fariba Koohdani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Gity Sotoudeh
- Community Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Kalantar
- Cellular and Molecular Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Mansoori
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Iran
| |
Collapse
|
10
|
Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine 2018; 31:150-156. [PMID: 29703528 PMCID: PMC6013782 DOI: 10.1016/j.ebiom.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Modulation of genetic variants on the effect of omega-3 fatty acid supplements on blood lipids is still unclear. METHODS In a double-blind randomized controlled trial, 150 patients with type 2 diabetes (T2D) were randomized into omega-3 fatty acid group (n = 56 for fish oil and 44 for flaxseed oil) and control group (n = 50) for 180 days. All patients were genotyped for genetic variants at CD36 (rs1527483), NOS3 (rs1799983) and PPARG (rs1801282). Linear regression was used to examine the interaction between omega-3 fatty acid intervention and CD36, NOS3 or PPARG variants for blood lipids. FINDINGS Significant interaction with omega-3 fatty acid supplements was observed for CD36 on triglycerides (p-interaction = 0.042) and PPAGR on low-density lipoprotein-cholesterol (p-interaction = 0.02). We also found a significant interaction between change in erythrocyte phospholipid omega-3 fatty acid composition and NOS3 genotype on triglycerides (p-interaction = 0.042), total cholesterol (p-interaction = 0.013) and ratio of total cholesterol to high-density lipoprotein cholesterol (p-interaction = 0.015). The T2D patients of CD36-G allele, PPARG-G allele and NOS3-A allele tended to respond better to omega-3 fatty acids in improving lipid profiles. The interaction results of the omega-3 fatty acid group were mainly attributed to the fish oil supplements. INTERPRETATION This study suggests that T2D patients with different genotypes at CD36, NOS3 and PPARG respond differentially to intervention of omega-3 supplements in blood lipid profiles.
Collapse
|
11
|
Saeidi S, Chamaie-Nejad F, Ebrahimi A, Najafi F, Rahimi Z, Vaisi-Raygani A, Shakiba E, Rahimi Z. PPARγ Pro12Ala and C161T polymorphisms in patients with acne vulgaris: Contribution to lipid and lipoprotein profile. Adv Med Sci 2018; 63:147-151. [PMID: 29120856 DOI: 10.1016/j.advms.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/26/2017] [Accepted: 09/26/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE The aim of present study was to clarify the role of peroxisome proliferator-activated receptor γ (PPARγ) Pro12Ala and C161T variants in the pathogenesis of acne vulgaris (AV) and their influence on lipid and lipoprotein profile. METHODS The present case-control study consisted of 393 individuals including 198 patients with AV (mild-, moderate-, and severe-AV) and 195 unrelated age-matched healthy individuals from Western Iran. The PPARγ Pro12Ala and C161T polymorphisms were identified using polymerase chain reaction-restriction length polymorphism method. Also, serum lipid and lipoprotein profile and fasting blood sugar (FBS) were detected in studied individuals. RESULTS In women patients with AV significantly higher serum levels of FBS, total cholesterol, low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol compared to healthy women were detected. Neither PPARγ Pro12Ala nor C161T polymorphism was associated with the risk of AV but the Pro allele was a risk factor for AV among all men and women patients ≥20years. The variant genotype of PPARγ CG (Pro/Ala) was associated with significantly higher levels of total cholesterol and triglycerides compared to CC (Pro/Pro) genotype. We detected a significantly lower level of FBS in the presence of CT+TT genotype of PPARγ C161T compared to CC genotype. Also, carriers of PPARγ TT genotype had significantly lower serum level of total cholesterol and LDL-C compared to CC genotype. CONCLUSIONS Our results demonstrated the association of PPARγ Pro allele with susceptibility to AV in patients ≥20years and the influence of PPARγ Pro12Ala and C161T polymorphisms on the lipid and lipoprotein profile.
Collapse
|
12
|
Alves MC, de Morais CC, Augusto EM, Abdalla DSP, Horst MA, Cominetti C. Polymorphisms in PPARG and APOE: relationships with lipid profile of adolescents with cardiovascular risk factors. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41110-017-0037-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Amrita J, Mahajan M, Bhanwer A, Mohan G, Matharoo K. Peroxisome Proliferator Activated Receptor Gamma (PPARγ) Pro12Ala Gene Polymorphism and Oxidative Stress in Menopausal Women with Cardiovascular Disease from North Indian Population of Punjab. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1317106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jyot Amrita
- Department of Biochemistry, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar 143 006, Punjab, India
| | - Mridula Mahajan
- Department of Biochemistry, Government Medical College, Amritsar 143 001, Punjab, India
| | - A.J.S. Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143 005, Punjab, India
| | - Gurinder Mohan
- Department of Medicine, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar 143 006, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143 005, Punjab, India
| |
Collapse
|
14
|
Heit C, Marshall S, Singh S, Yu X, Charkoftaki G, Zhao H, Orlicky DJ, Fritz KS, Thompson DC, Vasiliou V. Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med 2017; 103:48-56. [PMID: 27939935 PMCID: PMC5513671 DOI: 10.1016/j.freeradbiomed.2016.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/02/2016] [Accepted: 12/07/2016] [Indexed: 01/22/2023]
Abstract
Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat-/-) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat-/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat-/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation.
Collapse
Affiliation(s)
- Claire Heit
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Stephanie Marshall
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Surrendra Singh
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven CT 06520, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven CT 06520, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - David C Thompson
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA.
| |
Collapse
|
15
|
Zahri MK, Emilia A, Rawi RIM, Taib WRW, Sani AI, Baig AA. Contribution of the Pro12Ala polymorphism of peroxisome proliferator-activated receptor Ɣ2 gene in relation to obesity. Meta Gene 2016. [DOI: 10.1016/j.mgene.2016.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Butt H, Shabana, Hasnain S. The C1431T polymorphism of peroxisome proliferator activated receptor γ (PPARγ) is associated with low risk of diabetes in a Pakistani cohort. Diabetol Metab Syndr 2016; 8:67. [PMID: 27625707 PMCID: PMC5020519 DOI: 10.1186/s13098-016-0183-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diabetes is a socioeconomic burden in Pakistan. International diabetes federation reported 6.9 million cases of diabetes and 87,548 deaths due to diabetes in Pakistan in 2014. Peroxisome proliferators-activated receptors are transcription factors, regulating several physiological processes. AIM The aim of the current study was to determine the prevalence of silent variant C1431T in exon 6 of PPAR-y and analyze its effect on various anthropometric and biochemical parameters in a Pakistani cohort. METHODS We collected 926 samples, 500 healthy controls (fasting blood sugar <99 mg/dL, random blood sugar <126 mg/dL) and 426 cases with diabetes (fasting blood sugar >99 mg/dL, random blood sugar >126 mg/dL). The genotyping was done by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and serum biochemical parameters were determined by commercially available kits. RESULTS The genotyping results by RLFP showed allelic frequency C = 61.2 % and T = 38.8 % in controls while C = 74.5 % and T = 25.5 % in cases (OR 0.536, CI 0.439-0.655, p = 8.2 × 10(-10)) and genotypic frequency CC = 38.8 %, CT = 44.7 %, TT = 16.5 % in controls. While CC = 53.6 %, CT = 41.4 %, TT = 5.1 % in cases (OR 0.544, CI 0.408-0.726, p = 2.3 × 10(-10)). The rare T allele appeared to be a protective allele i.e., the presence of rare allele lowered the risk of diabetes in the studied cohort. The biochemical and anthropometric parameters were analyzed for any significant association with the SNP showing that C1431T variant has an association with BMI, weight, fasting glucose and LDLC. However, no significant association was found with age, gender, height, HDLC, TC, triglycerides and leptin. CONCLUSION In conclusion, the presence of minor allele lowers the risk of diabetes and the effect may involve modulating certain serum parameters.
Collapse
Affiliation(s)
- Huma Butt
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Shabana
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Shahida Hasnain
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- The Women University Multan, Multan, Pakistan
| |
Collapse
|
17
|
Is the Mouse a Good Model of Human PPARγ-Related Metabolic Diseases? Int J Mol Sci 2016; 17:ijms17081236. [PMID: 27483259 PMCID: PMC5000634 DOI: 10.3390/ijms17081236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
With the increasing number of patients affected with metabolic diseases such as type 2 diabetes, obesity, atherosclerosis and insulin resistance, academic researchers and pharmaceutical companies are eager to better understand metabolic syndrome and develop new drugs for its treatment. Many studies have focused on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which plays a crucial role in adipogenesis and lipid metabolism. These studies have been able to connect this transcription factor to several human metabolic diseases. Due to obvious limitations concerning experimentation in humans, animal models—mainly mouse models—have been generated to investigate the role of PPARγ in different tissues. This review focuses on the metabolic features of human and mouse PPARγ-related diseases and the utility of the mouse as a model.
Collapse
|
18
|
Wei WM, Wu XY, Li ST, Shen Q. PPARG gene C161T CT/TT associated with lower blood lipid levels and ischemic stroke from large-artery atherosclerosis in a Han population in Guangdong. Neurol Res 2016; 38:620-4. [PMID: 27264718 DOI: 10.1080/01616412.2016.1189056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Peroxisome proliferator-activated receptor gamma (PPARG) is a transcription factor involved in atherosclerosis and related diseases. In this study, we aimed to investigate whether PPARG C161T was associated with lipid levels and large-artery atherosclerosis (LAA) ischemic stroke in a Han Chinese population in Guangdong province. METHODS The genotype PPARG C161T in 149 LAA ischemic stroke patients and 125 healthy controls was examined by polymerase chain reaction-restriction fragment length polymorphism (RFLP) assay. Associations with LAA ischemic stroke were analyzed for PPARG C161T genotype, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), and a logistic regression analysis was performed to identify risk factors for LAA ischemic stroke. RESULTS The frequency of CC was higher than that of CT + TT and was significantly associated with LAA ischemic stroke. In both the LAA and control groups, TC and LDL-C levels were significantly higher in the CC type than the CT + TT, but TG and HDL-C levels were comparable. The only verified independent risk factors for LAA ischemic stroke were ischemic heart disease (OR: 2.784, 95% CI: 1.377-5.632; p = 0.004) and systolic blood pressure (OR: 1.014, 95% CI: 1.001-1.026; p = 0.029); the PPARG C161T allele was not independently associated with an increased risk of LAA ischemic stroke (OR = 0.697, 95% CI: 0.372-1.305; p = 0.260). CONCLUSION In this Han population, PPARG C161T CT/TT was associated with LAA ischemic stroke and lower levels of blood TC and LDL-C, but was not an independent risk factor for LAA ischemic stroke.
Collapse
Affiliation(s)
- Wei-Min Wei
- a Department of Neurology , The Zengcheng People's Hospital (Boji-Affiliated Hospital of Sun Yat-sen University) , Guangzhou , China
| | - Xiao-Yan Wu
- a Department of Neurology , The Zengcheng People's Hospital (Boji-Affiliated Hospital of Sun Yat-sen University) , Guangzhou , China
| | - Shu-Ting Li
- a Department of Neurology , The Zengcheng People's Hospital (Boji-Affiliated Hospital of Sun Yat-sen University) , Guangzhou , China
| | - QingYu Shen
- a Department of Neurology , The Zengcheng People's Hospital (Boji-Affiliated Hospital of Sun Yat-sen University) , Guangzhou , China
| |
Collapse
|
19
|
Lu Y, Habtetsion TG, Li Y, Zhang H, Qiao Y, Yu M, Tang Y, Zhen Q, Cheng Y, Liu Y. Association of NCOA2 gene polymorphisms with obesity and dyslipidemia in the Chinese Han population. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7341-9. [PMID: 26261634 PMCID: PMC4525968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Nuclear receptor coactivator 2 (NCOA2) gene plays an important role in adipogenesis and lipid metabolism. NCOA2 gene null mice exhibited less fat accumulation and lower serum lipid levels, and were protected against obesity. Few studies are known to have analyzed the association of NCOA2 gene single nucleotide polymorphisms with obesity and serum lipid profile. Our study aimed to evaluate the association of NCOA2 gene polymorphisms with the risk of obesity and dyslipidemia in the Chinese Han population. METHODS Two NCOA2 gene polymorphisms (rs41391448 and rs10504473) were selected and genotyped in a Chinese Han cohort with 529 participants. The effect of different genotypes on BMI and serum lipid levels (TG, TC, LDL-C and HDL-C) was performed by the analysis of covariance. Association of NCOA2 polymorphisms with obesity and dyslipidemia was assessed by odds ratios (OR) and 95% confidence intervals (CI) under the unconditional logistic regression analysis. RESULTS Significant association was observed between rs10504473 polymorphism and obesity under the recessive model (OR = 1.88, 95% CI 1.02-3.45, P = 0.047; adjusted OR = 1.87, 95% CI 1.02-3.44, P = 0.048). However, no association remained significant after Bonferroni correction. CONCLUSION Our study suggests a possible association between NCOA2 rs10504473 polymorphism and obesity, and this SNP may influence the susceptibility of obesity in the Chinese Han population.
Collapse
Affiliation(s)
- Yuping Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | | | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Huiping Zhang
- Department of Psychiatry, Yale University School of Medicine, VA Medical Center/116A2950 Campbell Avenue, West Haven, CT 06516, USA
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Mingxi Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Yuan Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Qing Zhen
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| | - Yi Cheng
- The Cardiovascular Center, The First Hospital of Jilin UniversityChangchun 130021, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin UniversityChangchun 130021, China
| |
Collapse
|