1
|
Hou R, Yu Y, Jiang J. Prostaglandin E2 in neuroblastoma: Targeting synthesis or signaling? Biomed Pharmacother 2022; 156:113966. [DOI: 10.1016/j.biopha.2022.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
2
|
Liu Y, Wu M, Sun Z, Li Q, Jiang R, Meng F, Liu J, Wang W, Dai J, Li C, Jiang S. Effect of PPM1F in dorsal raphe 5-HT neurons in regulating methamphetamine-induced conditioned place preference performance in mice. Brain Res Bull 2021; 179:36-48. [PMID: 34871711 DOI: 10.1016/j.brainresbull.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Methamphetamine (METH), a synthetically produced central nervous system stimulant, is one of the most illicit and addictive drugs worldwide. Protein phosphatase Mg2 + /Mn2 + -dependent 1F F (PPM1F) has been reported to exert multiple biological and cellular functions. Nevertheless, the effects of PPM1F and its neuronal substrates on METH addiction remain unclear. Herein, we first established a METH-induced conditioned place preference (CPP) mouse model. We showed that PPM1F is widely distributed in 5-HT neurons of the dorsal raphe nucleus (DRN), and METH treatment decreased the expression of PPM1F in DRN, which was negatively correlated with METH-induced CPP behaviors. Knockout of PPM1F mediated by adeno-associated virus (AAV) in DRN produced enhanced susceptibility to METH-induced CPP, whereas the overexpression of PPM1F in DRN attenuated METH-induced CPP phenotypes. The expression levels of Tryptophan hydroxylase2 (TPH2) and serotonin transporter (SERT) were down-regulated with a concurrent reduction in 5-hydroxytryptamine (5-HT), tryptophan hydroxylase2 (TPH2)-immunoreactivity neurons and 5-HT levels in DRN of PPM1F knockout mice. In the end, decreased expression levels of PPM1F were found in the blood of METH abusers and METH-taking mice. These results suggest that PPM1F in DRN 5-HT neurons regulates METH-induced CPP behaviors by modulating the key components of the 5-HT neurotransmitter system, which might be an important pathological gene and diagnostic marker for METH-induced addiction.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Binzhou Medical University, Shandong, China; Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Zongyue Sun
- Department of Physiology, Binzhou Medical University, Shandong, China.
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China.
| | - Fantao Meng
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Jing Liu
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wentao Wang
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Juanjuan Dai
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China.
| |
Collapse
|
3
|
Xie J, Luo FX, Shi CY, Jiang WW, Qian YY, Yang MR, Song S, Dai TY, Peng L, Gao XY, Tao L, Tian Y, Sheng J. Moringa oleifera Alkaloids Inhibited PC3 Cells Growth and Migration Through the COX-2 Mediated Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2020; 11:523962. [PMID: 33343339 PMCID: PMC7741610 DOI: 10.3389/fphar.2020.523962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023] Open
Abstract
Moringa oleifera Lam. (M. oleifera) is valuable plant distributed in many tropical and subtropical countries. It has a number of medicinal uses and is highly nutritious. M. oleifera has been shown to inhibit tumor cell growth, but this effect has not been demonstrated on prostate cancer cells. In this study, we evaluated the inhibitory effect of M. oleifera alkaloids (MOA) on proliferation and migration of PC3 human prostate cancer cells in vitro and in vivo. Furthermore, we elucidated the mechanism of these effects. The results showed that MOA inhibited proliferation of PC3 cells and induced apoptosis and cell cycle arrest. Furthermore, MOA suppressed PC3 cell migration and inhibited the expression of matrix metalloproteinases (MMP)-9. In addition, MOA significantly downregulated the expression of cyclooxygenase 2 (COX-2), β-catenin, phosphorylated glycogen synthase 3β, and vascular endothelial growth factor, and suppressed production of prostaglandin E2 (PGE2). Furthermore, FH535 (β-catenin inhibitor) and MOA reversed PGE2-induced PC3 cell proliferation and migration, and the effects of MOA and FH535 were not additive. In vivo experiments showed that MOA (150 mg/kg) significantly inhibited growth of xenograft tumors in mice, and significantly reduced the protein expression levels of COX-2 and β-catenin in tumor tissues. These results indicate that MOA inhibits the proliferation and migration, and induces apoptosis and cell cycle arrest of PC3 cells. Additionally, MOA inhibits the proliferation and migration of PC3 cells through suppression of the COX-2 mediated Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Feng-Xian Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Chong-Ying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Wei-Wei Jiang
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Ying-Yan Qian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Province Engineering Research Center of Functional Food of Homologous of Drug and Food, Yunnan Agricultural University, Kunming, China
| | - Ming-Rong Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Province Engineering Research Center of Functional Food of Homologous of Drug and Food, Yunnan Agricultural University, Kunming, China
| | - Shuang Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Tian-Yi Dai
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lei Peng
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Xiao-Yu Gao
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Zhao X, Li D, Yang F, Lian H, Wang J, Wang X, Fang E, Song H, Hu A, Guo Y, Liu Y, Li H, Chen Y, Huang K, Zheng L, Tong Q. Long Noncoding RNA NHEG1 Drives β-Catenin Transactivation and Neuroblastoma Progression through Interacting with DDX5. Mol Ther 2020; 28:946-962. [PMID: 31982037 DOI: 10.1016/j.ymthe.2019.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that long noncoding RNAs (lncRNAs) play essential roles in tumor progression. However, the functional roles and underlying mechanisms of lncRNAs in neuroblastoma (NB), the most common malignant solid tumor in pediatric population, still remain elusive. Herein, through integrating analysis of a public RNA sequencing dataset, neuroblastoma highly expressed 1 (NHEG1) was identified as a risk-associated lncRNA, contributing to an unfavorable outcome of NB. Depletion of NHEG1 led to facilitated differentiation and decreased growth and aggressiveness of NB cells. Mechanistically, NHEG1 bound to and stabilized DEAD-box helicase 5 (DDX5) protein through repressing proteasome-mediated degradation, resulting in β-catenin transactivation that altered target gene expression associated with NB progression. We further determined a lymphoid enhancer binding factor 1 (LEF1)/transcription factor 7-like 2 (TCF7L2)/NHEG1/DDX5/β-catenin axis with a positive feedback loop and demonstrated that NHEG1 harbored oncogenic properties via its interplay with DDX5. Administration of small interfering RNAs against NHEG1 or DDX5 reduced tumor growth and prolonged survival of nude mice bearing xenografts. High NHEG1 or DDX5 expression was associated with poor survival of NB patients. These results indicate that lncRNA NHEG1 exhibits oncogenic activity that affects NB progression via stabilizing the DDX5 protein, which might serve as a potential therapeutic target for NB.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Heng Lian
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China.
| |
Collapse
|
5
|
El-Shazly SS, Hassan NM, Abdellateif MS, El Taweel MA, Abd-Elwahab N, Ebeid EN. The role of β-catenin and paired-like homeobox 2B (PHOX2B) expression in neuroblastoma patients; predictive and prognostic value. Exp Mol Pathol 2019; 110:104272. [PMID: 31220430 DOI: 10.1016/j.yexmp.2019.104272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The expression of β-catenin and paired-like homeobox 2B (PHOX2B) expression were assessed in Neuroblastoma (NB) patients as a diagnostic, prognostic and/or predictive markers. METHODS Bone marrow (BM) samples of 52 NB patients were assessed for the expression of β-catenin by immunohistochemistry (IHC), and PHOX2B by real time PCR (RT-PCR), compared to 12 healthy normal controls (NC). The data were correlated to the clinic-pathological features of the patients, response to treatment and disease relapse. RESULTS β-catenin was expressed in 40 (76.92%) patients (P < .001). While PHOX2B was expressed in 32/52 (61.5%) patients, with a fold change of 0.29 (0.01-40.0, P = .096). β-catenin expression associated significantly with advanced tumor stage, high risk, positive results by MIBG and bone scan (P = .002, P < .001, P = .006, P = .013; respectively). Also it associated significantly with synaptophysin expression in the BM biopsy (P < .001), with a significant concordance (K = 0.519, P < .001). The expression of β-catenin associated significantly with PHOX2B gene expression [28/32 (87.5%), P = .04], and its fold change (P = .027), with a significant measure of agreement (K = 0.297, P = .022). The fold change of PHOX2B gene expression associated significantly with the high risk of the patients (P = .04). Poor response to treatment associated significantly with the expression of neuron specific enolase (NSE), β-catenin and PHOX2B in NB patients (P = .021, P = .019 and P = .040; respectively). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of synaptophysin for the diagnosis of BM metastasis in NB patients were (69%, 65.2%, 71.4%, 62.5%; respectively, P = .024). While with β-catenin (93.1%, 43.5%, 67.5%, 83.3%; respectively, P = .003), and PHOX2B expression (65.5%, 34.5%, 59.4%, 50%; respectively, P = .574). CONCLUSION β-Catenin could be used as a sensitive and reliable marker for detection of BM metastasis and also a good predictor for resistance to treatment in NB patients. While, PHOX2B gene expression in BM aspirate could be a marker for high risk patients and poor response to treatment.
Collapse
Affiliation(s)
- Samar S El-Shazly
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt.
| | - Maha A El Taweel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Nahed Abd-Elwahab
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Emad N Ebeid
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| |
Collapse
|
6
|
Chang JHM, Lin CH, Shibu MA, Chou YC, Liu JY, Chou YH, Shen CY, Yeh YL, Viswanadha VP, Huang CY. Cryptotanshinone (Dsh-003) from Salvia miltiorrhiza Bunge inhibits prostaglandin E2-induced survival and invasion effects in HA22T hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:1254-1260. [PMID: 30208247 DOI: 10.1002/tox.22633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/16/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Human hepatocellular carcinoma (HCC) is currently the second most common cancer and one of the leading causes of cancer-related mortality in Taiwan. Previous reports show that the expression of (E-type prostaglandin 2) EP2 and (E-type prostaglandin 4) EP4 are elevated in HCC and further demonstrate that Prostaglandin E2 (PGE2) induces HA22T cell proliferation and metastasis through EP2 and EP4 receptor. Danshen (root of Salvia miltiorrhiza Bunge) is a very important and popular traditional Chinese herbal medicine which is widely and successfully used against breast cancer, leukemia, pancreatic cancer, and head and neck squamous carcinoma cells. In this study, we used Cryptotansinone (Dsh-003) (MW 269.14) from Danshen to investigate their effect and corresponding mechanism of action in PGE2-treated HA22T cells. Dsh-003 inhibited HA22T cell viability and further induced cell apoptosis in PGE2-treated HA22T cells. Furthermore, Dsh-003 inhibited EP2, EP4, and their downstream effector such as p-PI3K and p-Akt expression in HA22T hepatocellular carcinoma cells. We also observed that Dsh-003 blocked PGE2-induced cell migration by down-regulating PGE2-induced β-catenin expression and by up-regulating E-cadherin and GSK3-β expression. All these findings suggest that Dsh-003 inhibit human HCC cell lines and could potentially be used as a novel drug for HCC treatment.
Collapse
Affiliation(s)
| | - Chih-Hsueh Lin
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yung-Chen Chou
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yen-Hong Chou
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | | | - Chih-Yang Huang
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, China
- Department of Biological Science, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Tong D, Liu Q, Wang LA, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W, Jiang J. The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev 2018; 37:355-368. [DOI: 10.1007/s10555-018-9752-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
9
|
Jansen SR, Poppinga WJ, de Jager W, Lezoualc'h F, Cheng X, Wieland T, Yarwood SJ, Gosens R, Schmidt M. Epac1 links prostaglandin E2 to β-catenin-dependent transcription during epithelial-to-mesenchymal transition. Oncotarget 2018; 7:46354-46370. [PMID: 27344171 PMCID: PMC5216803 DOI: 10.18632/oncotarget.10128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023] Open
Abstract
In epithelial cells, β-catenin is localized at cell-cell junctions where it stabilizes adherens junctions. When these junctions are disrupted, β-catenin can translocate to the nucleus where it functions as a transcriptional cofactor. Recent research has indicated that PGE2 enhances the nuclear function of β-catenin through cyclic AMP. Here, we aim to study the role of the cyclic AMP effector Epac in β-catenin activation by PGE2 in non-small cell lung carcinoma cells. We show that PGE2 induces a down-regulation of E-cadherin, promotes cell migration and enhances β-catenin translocation to the nucleus. This results in β-catenin-dependent gene transcription. We also observed increased expression of Epac1. Inhibition of Epac1 activity using the CE3F4 compound or Epac1 siRNA abolished the effects of PGE2 on β-catenin. Further, we observed that Epac1 and β-catenin associate together. Expression of an Epac1 mutant with a deletion in the nuclear pore localization sequence prevents this association. Furthermore, the scaffold protein Ezrin was shown to be required to link Epac1 to β-catenin. This study indicates a novel role for Epac1 in PGE2-induced EMT and subsequent activation of β-catenin.
Collapse
Affiliation(s)
- Sepp R Jansen
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.,Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wilfred J Poppinga
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Wim de Jager
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III, Toulouse, France
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas, Houston, TX, USA
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Stephen J Yarwood
- School of Life Sciences, Heriot-Watt University, Edinburgh, Scotland
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Zins K, Schäfer R, Paulus P, Dobler S, Fakhari N, Sioud M, Aharinejad S, Abraham D. Frizzled2 signaling regulates growth of high-risk neuroblastomas by interfering with β-catenin-dependent and β-catenin-independent signaling pathways. Oncotarget 2018; 7:46187-46202. [PMID: 27323822 PMCID: PMC5216790 DOI: 10.18632/oncotarget.10070] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Frizzled2 (FZD2) is a receptor for Wnts and may activate both canonical and non-canonical Wnt signaling pathways in cancer. However, no studies have reported an association between FZD2 signaling and high-risk NB so far. Here we report that FZD2 signaling pathways are critical to NB growth in MYCN-single copy SK-N-AS and MYCN-amplified SK-N-DZ high-risk NB cells. We demonstrate that stimulation of FZD2 by Wnt3a and Wnt5a regulates β-catenin-dependent and -independent Wnt signaling factors. FZD2 blockade suppressed β-catenin-dependent signaling activity and increased phosphorylation of PKC, AKT and ERK in vitro, consistent with upregulation of β-catenin-independent signaling activity. Finally, FZD2 small interfering RNA knockdown suppressed tumor growth in murine NB xenograft models associated with suppressed β-catenin-dependent signaling and a less vascularized phenotype in both NB xenografts. Together, our study suggests a role for FZD2 in high-risk NB cell growth and provides a potential candidate for therapeutic inhibition in FZD2-expressing NB patients.
Collapse
Affiliation(s)
- Karin Zins
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | | | - Patrick Paulus
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Silvia Dobler
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Nazak Fakhari
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, N-0310, Norway
| | - Seyedhossein Aharinejad
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Dietmar Abraham
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria.,Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|
11
|
Abstract
Malignant carcinomas are often characterized by metastasis, the movement of carcinoma cells from a primary site to colonize distant organs. For metastasis to occur, carcinoma cells first must adopt a pro-migratory phenotype and move through the surrounding stroma towards a blood or lymphatic vessel. Currently, there are very limited possibilities to target these processes therapeutically. The family of Rho GTPases is an ubiquitously expressed division of GTP-binding proteins involved in the regulation of cytoskeletal dynamics and intracellular signaling. The best characterized members of the Rho family GTPases are RhoA, Rac1 and Cdc42. Abnormalities in Rho GTPase function have major consequences for cancer progression. Rho GTPase activation is driven by cell surface receptors that activate GTP exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this review, we summarize our current knowledge on Rho GTPase function in the regulation of metastasis. We will focus on key discoveries in the regulation of epithelial-mesenchymal-transition (EMT), cell-cell junctions, formation of membrane protrusions, plasticity of cell migration and adaptation to a hypoxic environment. In addition, we will emphasize on crosstalk between Rho GTPase family members and other important oncogenic pathways, such as cyclic AMP-mediated signaling, canonical Wnt/β-catenin, Yes-associated protein (YAP) and hypoxia inducible factor 1α (Hif1α) and provide an overview of the advancements and challenges in developing pharmacological tools to target Rho GTPase and the aforementioned crosstalk in the context of cancer therapeutics.
Collapse
|
12
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
13
|
Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med 2017; 40:587-606. [PMID: 28731148 PMCID: PMC5547940 DOI: 10.3892/ijmm.2017.3071] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Canonical WNT signaling through Frizzled and LRP5/6 receptors is transduced to the WNT/β-catenin and WNT/stabilization of proteins (STOP) signaling cascades to regulate cell fate and proliferation, whereas non-canonical WNT signaling through Frizzled or ROR receptors is transduced to the WNT/planar cell polarity (PCP), WNT/G protein-coupled receptor (GPCR) and WNT/receptor tyrosine kinase (RTK) signaling cascades to regulate cytoskeletal dynamics and directional cell movement. WNT/β-catenin signaling cascade crosstalks with RTK/SRK and GPCR-cAMP-PKA signaling cascades to regulate β-catenin phosphorylation and β-catenin-dependent transcription. Germline mutations in WNT signaling molecules cause hereditary colorectal cancer, bone diseases, exudative vitreoretinopathy, intellectual disability syndrome and PCP-related diseases. APC or CTNNB1 mutations in colorectal, endometrial and prostate cancers activate the WNT/β-catenin signaling cascade. RNF43, ZNRF3, RSPO2 or RSPO3 alterations in breast, colorectal, gastric, pancreatic and other cancers activate the WNT/β-catenin, WNT/STOP and other WNT signaling cascades. ROR1 upregulation in B-cell leukemia and solid tumors and ROR2 upregulation in melanoma induce invasion, metastasis and therapeutic resistance through Rho-ROCK, Rac-JNK, PI3K-AKT and YAP signaling activation. WNT signaling in cancer, stromal and immune cells dynamically orchestrate immune evasion and antitumor immunity in a cell context-dependent manner. Porcupine (PORCN), RSPO3, WNT2B, FZD5, FZD10, ROR1, tankyrase and β-catenin are targets of anti-WNT signaling therapy, and ETC-159, LGK974, OMP-18R5 (vantictumab), OMP-54F28 (ipafricept), OMP-131R10 (rosmantuzumab), PRI-724 and UC-961 (cirmtuzumab) are in clinical trials for cancer patients. Different classes of anti-WNT signaling therapeutics are necessary for the treatment of APC/CTNNB1-, RNF43/ZNRF3/RSPO2/RSPO3- and ROR1-types of human cancers. By contrast, Dickkopf-related protein 1 (DKK1), SOST and glycogen synthase kinase 3β (GSK3β) are targets of pro-WNT signaling therapy, and anti-DKK1 (BHQ880 and DKN-01) and anti-SOST (blosozumab, BPS804 and romosozumab) monoclonal antibodies are being tested in clinical trials for cancer patients and osteoporotic post-menopausal women. WNT-targeting therapeutics have also been applied as reagents for in vitro stem-cell processing in the field of regenerative medicine.
Collapse
Affiliation(s)
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
14
|
Ranjbarnejad T, Saidijam M, Moradkhani S, Najafi R. Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Prostaglandins Other Lipid Mediat 2017; 131:1-8. [PMID: 28549801 DOI: 10.1016/j.prostaglandins.2017.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/30/2017] [Accepted: 05/17/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common cancer. A proper method to reduce mortality of CRC is chemoprevention to prevent initiation and promotion of intestinal tumorgenesis. One of the promising and developing chemopreventive agents is natural compounds found in plants. Frankincense, the resin extract from the Boswellia specious, has been used in traditional and modern medicine for treating various diseases with very minimal side effects. In the current study, we investigated the anti-cancer activity of methanolic extract of Boswellia serrata (B. serrata) on HT-29 human colon cancer cells. METHODS HT-29 cells were treated with different concentrations of B. serrata and cell viability was assessed by MTT assay. mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), MMP-9 and hypoxia-inducible factor-1 (HIF-1) were examined by quantitative real-time PCR. Apoptosis was evaluated by the proportion of sub-G1 cells. Prostaglandin E2 (PGE2) level and caspase 3 activity were determined by ELISA assay. Tube formation potential and HT-29 cells migration were assessed using three-dimensional vessel formation assay and scratch test. RESULTS B. serrata extract considerably decreased the expression of mPGES-1, VEGF, CXCR4, MMP-2, MMP-9 and HIF-1. The caspase 3 activity and percent of cells in sub-G1 phase were increased by B. serrata extract. Cell viability, PGE2 generation, in vitro tube formation and cell migration were decreased significantly in B. serrata-treated HT-29 compared to the control group. CONCLUSION Our findings suggest that B. serrata extract inhibits proliferation, angiogenesis and migration and induces apoptosis in HT-29 cells by inhibiting of mPGES-1 and decreasing the PGE2 level and its downstream targets.
Collapse
Affiliation(s)
- Tayebeh Ranjbarnejad
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Depatment of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Abstract
Wnt (Wingless-related integration site)-signaling orchestrates self-renewal programs in normal somatic stem cells as well as in cancer stem cells. Aberrant Wnt signaling is associated with a wide variety of malignancies and diseases. Although our understanding has increased tremendously over the past decade, therapeutic targeting of the dysregulated Wnt pathway remains a challenge. Here we review recent preclinical and clinical therapeutic approaches to target the Wnt pathway.
Collapse
|
16
|
Li T, Zhong J, Dong X, Xiu P, Wang F, Wei H, Wang X, Xu Z, Liu F, Sun X, Li J. Meloxicam suppresses hepatocellular carcinoma cell proliferation and migration by targeting COX-2/PGE2-regulated activation of the β-catenin signaling pathway. Oncol Rep 2016; 35:3614-22. [PMID: 27109804 DOI: 10.3892/or.2016.4764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/17/2016] [Indexed: 11/05/2022] Open
Abstract
Recurrence and metastasis are the two leading causes of poor prognosis of hepatocellular carcinoma (HCC) patients. Cyclooxygenase (COX)-2 is overexpressed in many types of cancers including HCC and promotes its metastasis. Meloxicam is a selective COX-2 inhibitor that has been reported to exert an anti-proliferation and invasion/migration response in various tumors. In this study, we examined the role of meloxicam on HCC cell proliferation and migration and explored the molecular mechanisms underlying this effect. We found that meloxicam inhibited HCC cell proliferation and had a cell cycle arrest effect in human HCC cells. Furthermore, meloxicam suppressed the ability of HCC cells expressing higher levels of COX-2 and prostaglandin E2 (PGE2) to migration via potentiating expression of E-cadherin and alleviating expression of matrix metalloproteinase (MMP)-2 and -9. COX-2/PGE2 has been considered to activate the β-catenin signaling pathway which promotes cancer cell migration. We found that treatment with PGE2 significantly enhanced nuclear accumulation of β-catenin and the activation of GSK3β which could be reversed by meloxicam in HCC cells. We also observed that HCC cell migration and upregulation of the level of MMP-2/9 and downregulation of E-cadherin induced by PGE2 were suppressed by FH535, an inhibitor of β-catenin. Taken together, these findings provide a new treatment strategy against HCC proliferation and migration.
Collapse
Affiliation(s)
- Tao Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jingtao Zhong
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xiaofeng Dong
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fuhai Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Honglong Wei
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xin Wang
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zongzhen Xu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Feng Liu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
17
|
Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol 2016; 15:49. [PMID: 27005938 PMCID: PMC4804519 DOI: 10.1186/s12933-016-0367-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/12/2016] [Indexed: 11/25/2022] Open
Abstract
Background Circulating microRNAs (miRs) are differentially regulated and selectively packaged into microparticles (MPs). We evaluated whether diabetes mellitus alters circulating vascular and endothelial MP-incorporated miRs expression levels. Methods and results Circulating MPs were isolated from 135 patients with or without diabetes mellitus type II and characterized using flow cytometer and electron microscope. Nine miRs involved in the regulation of vascular performance—miR-126, miR-222, miR-let7d, miR-21, miR-30, miR-92a, miR-139, miR-199a and miR-26a—were quantified in circulating MPs by reverse transcription polymerase chain reaction. Among those, miR-126 and miR-26a were significantly reduced in diabetic patients compared to non-diabetic patients. Patients with low miR-26a and miR-126 levels were at higher risk for a concomitant coronary artery disease. MP-sorting experiments showed that endothelial cells were the major cell sources of MPs containing miR-126 and miR-26a, respectively. Finally, in accordance with our clinical results, in vitro experiments revealed that hyperglycemia reduces the packaging of miR-126 and miR-26a into EMPs. Conclusion Diabetes mellitus significantly alters the expression of vascular endothelial miRs in circulating endothelial MPs with potential implications on vascular heath. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0367-8) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2015; 99:141-9. [PMID: 26775730 DOI: 10.1016/j.critrevonc.2015.12.005] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling pathway is critically involved in both the development and homeostasis of tissues via regulation of their endogenous stem cells. Aberrant Wnt signaling has been described as a key player in the initiation of and/or maintenance and development of many cancers, via affecting the behavior of Cancer Stem Cells (CSCs). CSCs are considered by most to be responsible for establishment of the tumor and also for disease relapse, as they possess inherent drug-resistance properties. The development of new therapeutic compounds targeting the Wnt signaling pathway promises new hope to eliminate CSCs and achieve cancer eradication. However, a major challenge resides in developing a strategy efficient enough to target the dysregulated Wnt pathway in CSCs, while being safe enough to not damage the normal somatic stem cell population required for tissue homeostasis and repair. Here we review recent therapeutic approaches to target the Wnt pathway and their clinical applications.
Collapse
Affiliation(s)
- Yann Duchartre
- Children's Hospital Los Angeles, Department of Pediatrics and Pathology, Division of Hematology, Oncology and Bone Marrow Transplantation, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics and Pathology, Division of Hematology, Oncology and Bone Marrow Transplantation, Keck School of Medicine, University of Southern California, Los Angeles, California, United States.
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, California, United States; Norris Comprehensive Cancer Research Center, University of Southern California, Los Angeles, California, United States
| |
Collapse
|