1
|
Nicolotti D, Grossi S, Palermo V, Pontone F, Maglietta G, Diodati F, Puntoni M, Rossi S, Caminiti C. Procalcitonin for the diagnosis of postoperative bacterial infection after adult cardiac surgery: a systematic review and meta-analysis. Crit Care 2024; 28:44. [PMID: 38326921 PMCID: PMC10848477 DOI: 10.1186/s13054-024-04824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND AND AIMS Patients undergoing cardiac surgery are subject to infectious complications that adversely affect outcomes. Rapid identification is essential for adequate treatment. Procalcitonin (PCT) is a noninvasive blood test that could serve this purpose, however its validity in the cardiac surgery population is still debated. We therefore performed a systematic review and meta-analysis to estimate the accuracy of PCT for the diagnosis of postoperative bacterial infection after cardiac surgery. METHODS We included studies on adult cardiac surgery patients, providing estimates of test accuracy. Search was performed on PubMed, EmBase and WebOfScience on April 12th, 2023 and rerun on September 15th, 2023, limited to the last 10 years. Study quality was assessed with the QUADAS-2 tool. The pooled measures of performance and diagnostic accuracy, and corresponding 95% Confidence Intervals (CI), were calculated using a bivariate regression model. Due to the variation in reported thresholds, we used a multiple-thresholds within a study random effects model for meta-analysis (diagmeta R-package). RESULTS Eleven studies were included in the systematic review, and 10 (2984 patients) in the meta-analysis. All studies were single-center with observational design, five of which with retrospective data collection. Quality assessment highlighted various issues, mainly concerning lack of prespecified thresholds for the index test in all studies. Results of bivariate model analysis using multiple thresholds within a study identified the optimal threshold at 3 ng/mL, with a mean sensitivity of 0.67 (0.47-0.82), mean specificity of 0.73 (95% CI 0.65-0.79), and AUC of 0.75 (IC95% 0.29-0.95). Given its importance for practice, we also evaluated PCT's predictive capability. We found that positive predictive value is at most close to 50%, also with a high prevalence (30%), and the negative predictive value was always > 90% when prevalence was < 20%. CONCLUSIONS These results suggest that PCT may be used to help rule out infection after cardiac surgery. The optimal threshold of 3 ng/mL identified in this work should be confirmed with large, well-designed randomized trials that evaluate the test's impact on health outcomes and on the use of antibiotic therapy. PROSPERO Registration number CRD42023415773. Registered 22 April 2023.
Collapse
Affiliation(s)
- Davide Nicolotti
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Parma, Parma, Italy
| | - Silvia Grossi
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Parma, Parma, Italy
| | - Valeria Palermo
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Parma, Parma, Italy
| | - Federico Pontone
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Parma, Parma, Italy
| | - Giuseppe Maglietta
- Clinical and Epidemiological Research Unit, University Hospital of Parma, Parma, Italy.
| | - Francesca Diodati
- Clinical and Epidemiological Research Unit, University Hospital of Parma, Parma, Italy
| | - Matteo Puntoni
- Clinical and Epidemiological Research Unit, University Hospital of Parma, Parma, Italy
| | - Sandra Rossi
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Parma, Parma, Italy
| | - Caterina Caminiti
- Clinical and Epidemiological Research Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
2
|
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, Han L, Tan M, Yin Y, Yang T, Jiang T, Li H. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Prolif 2024; 57:e13525. [PMID: 37434325 PMCID: PMC10771119 DOI: 10.1111/cpr.13525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianhua Han
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tianke Yang
- Department of Ophthalmology, Eye Institute, Eye & ENT HospitalFudan UniversityShanghaiChina
- Department of OphthalmologyThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Zhao G, Zhang H, Zhu S, Wang S, Zhu K, Zhao Y, Xu L, Zhang P, Xie J, Sun A, Zou Y, Ge J. Interleukin-18 accelerates cardiac inflammation and dysfunction during ischemia/reperfusion injury by transcriptional activation of CXCL16. Cell Signal 2021; 87:110141. [PMID: 34487815 DOI: 10.1016/j.cellsig.2021.110141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Myocardial ischemia/reperfusion(I/R) injury elicits an inflammatory response that drives tissue damage and cardiac remodeling. The trafficking and recruitment of inflammatory cells are controlled by C-X-C motif chemokine ligands and their receptors. CXCL16, a hallmark of acute coronary syndromes, is responsible for the recruitment of macrophages, monocytes and T lymphocytes. However, its role in cardiac I/R injury remains poorly characterized. Here we reported that CXCL16-mediated cardiac infiltration of CD11b+Ly6C+ cells played a crucial role in IL-18-induced myocardial inflammation, apoptosis and left ventricular(LV) dysfunction during I/R. Treatment with CXCL16 shRNA attenuated I/R-induced cardiac injury, LV remodeling and cardiac inflammation by reducing the recruitment of inflammatory cells and the release of TNFα, IL-17 and IFN-γ in the heart. We found that I/R-mediated NLRP3/IL-18 signaling pathway triggered CXCL16 transcription in cardiac vascular endothelial cells(VECs). Two binding sites of FOXO3 were found at the promoter region of CXCL16. By luciferase report assay and ChIP analysis, we confirmed that FOXO3 was responsible for endothelial CXCL16 transcription. A pronounced reduction of CXCL16 was observed in FOXO3 siRNA pretreated-VECs. Further experiments revealed that IL-18 activated FOXO3 by promoting the phosphorylation of STAT3 but not STAT4. An interaction between FOXO3 and STAT3 enhanced the transcription of CXCL16 induced by FOXO3. Treatment with Anakinra or Stattic either effectively inhibited IL-18-mediated nuclear import of FOXO3 and CXCL16 transcription. Our findings suggested that IL-18 accelerated I/R-induced cardiac damage and dysfunction through activating CXCL-16 and CXCL16-mediated cardiac infiltration of the CD11b+Ly6C+ cells. CXCL16 might be a novel therapeutic target for the treatment of I/R-related ischemic heart diseases.
Collapse
Affiliation(s)
- Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Hongqiang Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijie Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kai Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ping Zhang
- Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Jing Xie
- Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
4
|
CXCL16 silencing alleviates hepatic ischemia reperfusion injury during liver transplantation by inhibiting p38 phosphorylation. Pathol Res Pract 2020; 216:152913. [PMID: 32171552 DOI: 10.1016/j.prp.2020.152913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
|
5
|
Perros AJ, Esguerra‐Lallen A, Rooks K, Chong F, Engkilde‐Pedersen S, Faddy HM, Hewlett E, Naidoo R, Tung J, Fraser JF, Tesar P, Ziegenfuss M, Smith S, O’Brien D, Flower RL, Dean MM. Coronary artery bypass grafting is associated with immunoparalysis of monocytes and dendritic cells. J Cell Mol Med 2020; 24:4791-4803. [PMID: 32180339 PMCID: PMC7176880 DOI: 10.1111/jcmm.15154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary artery bypass grafting (CABG) triggers a systemic inflammatory response that may contribute to adverse outcomes. Dendritic cells (DC) and monocytes are immunoregulatory cells potentially affected by CABG, contributing to an altered immune state. This study investigated changes in DC and monocyte responses in CABG patients at 5 time-points: admission, peri-operative, ICU, day 3 and day 5. Whole blood from 49 CABG patients was used in an ex vivo whole blood culture model to prospectively assess DC and monocyte responses. Lipopolysaccharide (LPS) was added in parallel to model responses to an infectious complication. Co-stimulatory and adhesion molecule expression and intracellular mediator production was measured by flow cytometry. CABG modulated monocyte and DC responses. In addition, DC and monocytes were immunoparalysed, evidenced by failure of co-stimulatory and adhesion molecules (eg HLA-DR), and intracellular mediators (eg IL-6) to respond to LPS stimulation. DC and monocyte modulation was associated with prolonged ICU length of stay and post-operative atrial fibrillation. DC and monocyte cytokine production did not recover by day 5 post-surgery. This study provides evidence that CABG modulates DC and monocyte responses. Using an ex vivo model to assess immune competency of CABG patients may help identify biomarkers to predict adverse outcomes.
Collapse
Affiliation(s)
- Alexis J. Perros
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
- School of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- Critical Care Research Group (CCRG)The Prince Charles HospitalBrisbaneQLDAustralia
| | - Arlanna Esguerra‐Lallen
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
- Critical Care Research Group (CCRG)The Prince Charles HospitalBrisbaneQLDAustralia
- Adult Intensive Care ServicesThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Kelly Rooks
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
| | - Fenny Chong
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
| | - Sanne Engkilde‐Pedersen
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
- Critical Care Research Group (CCRG)The Prince Charles HospitalBrisbaneQLDAustralia
- Adult Intensive Care ServicesThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Helen M. Faddy
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
- School of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
- School of Health and Sport SciencesUniversity of the Sunshine CoastPetrieQLDAustralia
| | - Elise Hewlett
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
| | - Rishendran Naidoo
- Cardiothoracic Surgery ProgramThe Prince Charles HospitalBrisbaneQLDAustralia
| | - John‐Paul Tung
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
- School of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- Critical Care Research Group (CCRG)The Prince Charles HospitalBrisbaneQLDAustralia
- Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - John F. Fraser
- School of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- Critical Care Research Group (CCRG)The Prince Charles HospitalBrisbaneQLDAustralia
- Adult Intensive Care ServicesThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Peter Tesar
- Cardiothoracic Surgery ProgramThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Marc Ziegenfuss
- Adult Intensive Care ServicesThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Susan Smith
- Cardiothoracic Surgery ProgramThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Donalee O’Brien
- Cardiothoracic Surgery ProgramThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Robert L. Flower
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
- Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| | - Melinda M. Dean
- Research and DevelopmentAustralian Red Cross LifebloodBrisbaneQLDAustralia
- Critical Care Research Group (CCRG)The Prince Charles HospitalBrisbaneQLDAustralia
- School of Health and Sport SciencesUniversity of the Sunshine CoastPetrieQLDAustralia
| |
Collapse
|
6
|
Schick D, Babendreyer A, Wozniak J, Awan T, Noels H, Liehn E, Bartsch JW, Vlacil AK, Grote K, Zayat R, Goetzenich A, Ludwig A, Dreymueller D. Elevated expression of the metalloproteinase ADAM8 associates with vascular diseases in mice and humans. Atherosclerosis 2019; 286:163-171. [PMID: 30910225 DOI: 10.1016/j.atherosclerosis.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Members of the family of a disintegrin and metalloproteinases (ADAMs) and their substrates have been previously shown to modulate the inflammatory response in cardiac diseases, but studies investigating the relevance of ADAM8 are still rare. Our aim is to provide evidence for the inflammatory dysregulation of ADAM8 in vascular diseases and its association with disease severity. METHODS Western-type diet fed Apoe-/- and Ldlr-/- mice and artery ligation served as murine model for atherosclerosis and myocardial infarction, respectively. Human bypass grafts were used to study the association with coronary artery disease (CAD), with the simplified acute physiology score II (SAPS II) as a measure of postoperative organ dysfunction. Human primary vascular and blood cells were analyzed under basal and inflammatory conditions. mRNA levels were determined by RT-qPCR, ADAM8 protein levels by ELISA, immunohistochemistry or flow cytometry. RESULTS ADAM8/ADAM8 expression is associated with atherosclerosis and CAD such as myocardial infarction in both mice and humans, especially in endothelial cells and leukocytes. We observed a strong in vivo and in vitro correlation of ADAM8 with the vascular disease markers VCAM-1, ICAM-1, TNF, IL-6, and CCL-2. Serum analysis revealed a significant elevation of soluble ADAM8 serum levels correlating with soluble CXCL16 levels and SAPS II. CONCLUSIONS We demonstrate a general association of ADAM8 with cardiovascular diseases in mice and humans predominantly acting in endothelial cells and leukocytes. The correlation with postoperative organ dysfunctions in CAD patients highlights the value of further studies investigating the specific function of ADAM8 in cardiovascular diseases.
Collapse
Affiliation(s)
- Daniel Schick
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Justyna Wozniak
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tanzeela Awan
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Elisa Liehn
- Institute of Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany; National Heart Center Singapore, Singapore, Human Genetic Laboratory, University of Medicine Craiova, Romania
| | - Jörg-W Bartsch
- Department of Neurosurgery, Philipps University Marburg, University Hospital Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Ann-Kathrin Vlacil
- Clinic for Internal Medicine, Cardiology, Philipps University Marburg, University Hospital Marburg, Marburg, Germany
| | - Karsten Grote
- Clinic for Internal Medicine, Cardiology, Philipps University Marburg, University Hospital Marburg, Marburg, Germany
| | - Rashad Zayat
- Department of Thoracic and Cardiovascular Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52066, Aachen, Germany
| | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52066, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Daniela Dreymueller
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, UKS Bldg. 46, 66421, Homburg, Germany.
| |
Collapse
|
7
|
Gao Y, Wang N, Li RH, Xiao YZ. The Role of Autophagy and the Chemokine (C-X-C Motif) Ligand 16 During Acute Lung Injury in Mice. Med Sci Monit 2018; 24:2404-2412. [PMID: 29677174 PMCID: PMC5928852 DOI: 10.12659/msm.906016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Acute lung injury (ALI) is responsible for mortality in hospitalized patients. Autophagy can negatively regulate inflammatory response, and CXCL16 (chemokine (C-X-C motif) ligand 16) is a kind of chemokine, which is closely related to the inflammatory response. However, the relationship between autophagy and CXCL16 in ALI is still unclear. This study aimed to investigate the role of autophagy and chemokine CXCL16 in ALI in mice. Material/Methods Thirty-two male C57BL/6 mice were divided into four groups. The control group (C group) was given normal saline through intraperitoneal injection. The L group was given LPS (lipopolysaccharide) at 30 mg/kg to construct an ALI model. The 3-MA group received an intraperitoneal injection of inhibitor of autophagy 3-methyladenine at 15 mg/kg, 30 minutes before LPS injection. The anti-CXCL16 group was given 20 mg/kg of CXCL16 monoclonal antibody 30 minutes before the LPS injection. Results In the 3-MA Group, the level of histological analysis, lung wet/dry ratio, total protein of BAL (bronchoalveolar lavage fluid) and TNF-α level were higher than the L group (p<0.05), the level of autophagy was lower than the L group (p<0.05), and the level of CXCL16 was higher than the L group (p<0.05). In the anti-CXCL16 group, the level of histological analysis, lung wet/dry ratio, BAL protein, and TNF-α level were declined compared to the L group (p<0.05), but there was no statistically significant difference in expression of CXCL16 detected by ELISA between the anti-CXCL16 group and the L group (p>0.05). Conclusions Autophagy played a protective role in ALI induced by LPS in mice. Autophagy could regulate the level of CXCL16. The chemokine CXCL16 could exacerbate ALI.
Collapse
Affiliation(s)
- Ye Gao
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Ni Wang
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Rui H Li
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Yang Z Xiao
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
8
|
Mossanen JC, Pracht J, Jansen TU, Buendgens L, Stoppe C, Goetzenich A, Struck J, Autschbach R, Marx G, Tacke F. Elevated Soluble Urokinase Plasminogen Activator Receptor and Proenkephalin Serum Levels Predict the Development of Acute Kidney Injury after Cardiac Surgery. Int J Mol Sci 2017; 18:ijms18081662. [PMID: 28758975 PMCID: PMC5578052 DOI: 10.3390/ijms18081662] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) develops in up to 40% of patients after cardiac surgery. The soluble urokinase plasminogen activator receptor (suPAR) has been identified as a biomarker for incident chronic kidney disease (CKD). Proenkephalin (proENK) also has been shown to be a biomarker for renal dysfunction. We hypothesized that pre-surgery suPAR and proENK levels might predict AKI in patients undergoing cardiac surgery. Consecutive patients (n = 107) undergoing elective cardiac surgery were studied prospectively. Clinical data, laboratory parameters, suPAR and proENK serum levels were assessed before operation, after operation and days one and four post-operatively. A total of 21 (19.6%) patients developed AKI within the first four days after elective surgery. Serum levels of suPAR and proENK, but not of creatinine, were significantly higher before surgery in these patients compared to those patients without AKI. This difference remained significant for suPAR, if patients with or without AKI were matched for risk factors (hypertension, diabetes, CKD). If cardiac surgery patients with pre-existing CKD (n = 10) were excluded, only pre-operative suPAR but not proENK serum levels remained significantly elevated in patients with subsequent AKI. Thus, our findings indicate that suPAR may be a predictive biomarker for AKI in the context of cardiac surgery, even in patients without underlying CKD.
Collapse
Affiliation(s)
- Jana C Mossanen
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany.
- Department of Intensive and Intermediate Care, University Hospital Aachen, 52074 Aachen, Germany.
| | - Jessica Pracht
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany.
| | - Tobias U Jansen
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany.
| | - Lukas Buendgens
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany.
| | - Christian Stoppe
- Department of Intensive and Intermediate Care, University Hospital Aachen, 52074 Aachen, Germany.
| | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, University Hospital Aachen, 52074 Aachen, Germany.
| | | | - Rüdiger Autschbach
- Department of Thoracic and Cardiovascular Surgery, University Hospital Aachen, 52074 Aachen, Germany.
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital Aachen, 52074 Aachen, Germany.
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany.
| |
Collapse
|
9
|
Stoppe C, Goetzenich A, Whitman G, Ohkuma R, Brown T, Hatzakorzian R, Kristof A, Meybohm P, Mechanick J, Evans A, Yeh D, McDonald B, Chourdakis M, Jones P, Barton R, Tripathi R, Elke G, Liakopoulos O, Agarwala R, Lomivorotov V, Nesterova E, Marx G, Benstoem C, Lemieux M, Heyland DK. Role of nutrition support in adult cardiac surgery: a consensus statement from an International Multidisciplinary Expert Group on Nutrition in Cardiac Surgery. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:131. [PMID: 28583157 PMCID: PMC5460477 DOI: 10.1186/s13054-017-1690-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/02/2017] [Indexed: 12/25/2022]
Abstract
Nutrition support is a necessary therapy for critically ill cardiac surgery patients. However, conclusive evidence for this population, consisting of well-conducted clinical trials is lacking. To clarify optimal strategies to improve outcomes, an international multidisciplinary group of 25 experts from different clinical specialties from Germany, Canada, Greece, USA and Russia discussed potential approaches to identify patients who may benefit from nutrition support, when best to initiate nutrition support, and the potential use of pharmaco-nutrition to modulate the inflammatory response to cardiopulmonary bypass. Despite conspicuous knowledge and evidence gaps, a rational nutritional support therapy is presented to benefit patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Christian Stoppe
- Department of Intensive Care Medicine, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Andreas Goetzenich
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Glenn Whitman
- Cardiac Surgical Intensive Care, Johns Hopkins Hospital Baltimore, Blalock 618, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Rika Ohkuma
- Cardiac Surgical Intensive Care, Johns Hopkins Hospital Baltimore, Blalock 618, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Trish Brown
- Cardiac Surgical Intensive Care, Johns Hopkins Hospital Baltimore, Blalock 618, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Roupen Hatzakorzian
- Department of Anesthesia, Royal Victoria Hospital, McGill University Health Centre, Montreal, Canada
| | - Arnold Kristof
- Department of Microbiology and Immunology, McGill University Health Centre, Montreal, Canada
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jefferey Mechanick
- Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Evans
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Yeh
- Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Bernard McDonald
- Division of Cardiac Anesthesiology and Critical Care Medicine, University of Ottawa Heart Institute, Ruskin Street H2410, Ottawa, ON, K1Y 4W7, Canada
| | - Michael Chourdakis
- Department of Medicine, Aristotle University of Thessaloniki, University Campus, Thessaloniki, 54124, Greece
| | - Philip Jones
- Departments of Anesthesia & Perioperative Medicine and Epidemiology & Biostatistics, University of Western Ontario, London, Canada
| | - Richard Barton
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ravi Tripathi
- Department of Anesthesiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Gunnar Elke
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 Haus 12, 24105, Kiel, Germany
| | - Oliver Liakopoulos
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Ravi Agarwala
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Vladimir Lomivorotov
- Department of Anesthesiology and Intensive Care, Research Institute of Circulation Pathology, Novosibirsk, Russia
| | - Ekaterina Nesterova
- Department of Anesthesiology and Intensive Care Medicine, National Pirogov Surgical Medical Center, Moscow, Russia
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Carina Benstoem
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Margot Lemieux
- Department of Critical Care Medicine, Queen's University and Clinical Evaluation Research Unit, Angada 4, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| | - Daren K Heyland
- Department of Critical Care Medicine, Queen's University and Clinical Evaluation Research Unit, Angada 4, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| |
Collapse
|
10
|
Koenen A, Babendreyer A, Schumacher J, Pasqualon T, Schwarz N, Seifert A, Deupi X, Ludwig A, Dreymueller D. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion. PLoS One 2017; 12:e0173486. [PMID: 28267793 PMCID: PMC5340378 DOI: 10.1371/journal.pone.0173486] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.
Collapse
Affiliation(s)
- Andrea Koenen
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Julian Schumacher
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Tobias Pasqualon
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anke Seifert
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|