1
|
Wasim R, Singh A, Islam A, Mohammed S, Anwar A, Mahmood T. High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect. Cardiovasc Toxicol 2024; 24:1268-1286. [PMID: 39242448 DOI: 10.1007/s12012-024-09919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Cardiovascular disease is the deadly disease that can result in sudden death, and inflammation plays an important role in its onset and progression. High mobility group box 1 (HMGB1) is a nuclear protein that regulates transcription, DNA replication, repair, and nucleosome assembly. HMGB1 is released passively by necrotic tissues and actively secreted by stressed cells. Extracellular HMGB1 functions as a damage associated molecular patterns molecule, producing numerous redox forms that induce a range of cellular responses by binding to distinct receptors and interactors, including tissue inflammation and regeneration. Extracellular HMGB1 inhibition reduces inflammation and is protective in experimental models of myocardial ischemia/reperfusion damage, myocarditis, cardiomyopathies caused by mechanical stress, diabetes, bacterial infection, or chemotherapeutic drugs. HMGB1 administration following a myocardial infarction followed by permanent coronary artery ligation improves cardiac function by stimulating tissue regeneration. HMGB1 inhibits contractility and produces hypertrophy and death in cardiomyocytes, while also stimulating cardiac fibroblast activity and promoting cardiac stem cell proliferation and differentiation. Maintaining normal nuclear HMGB1 levels, interestingly, protects cardiomyocytes from apoptosis by limiting DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac injury. Finally, elevated levels of circulating HMGB1 have been linked to human heart disease. As a result, following cardiac damage, HMGB1 elicits both detrimental and helpful responses, which may be due to the formation and stability of the various redox forms, the particular activities of which in this context are mostly unknown. This review covers recent findings in HMGB1 biology and cardiac dysfunction.
Collapse
Affiliation(s)
- Rufaida Wasim
- Department of Pharmacy, Integral University, Lucknow, 226026, India.
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Aditya Singh
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Anas Islam
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Saad Mohammed
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Aamir Anwar
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
2
|
Wu T, Lu Y, Yu Y, Hua Y, Ge G, Zhao W, Chen K, Zhong Z, Zhang F. Long noncoding RNA AK144717 exacerbates pathological cardiac hypertrophy through modulating the cellular distribution of HMGB1 and subsequent DNA damage response. Cell Mol Life Sci 2024; 81:432. [PMID: 39395058 PMCID: PMC11470913 DOI: 10.1007/s00018-024-05464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
DNA damage induced by oxidative stress during cardiac hypertrophy activates the ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR) signaling, in turn aggravating the pathological cardiomyocyte growth. This study aims to identify the functional associations of long noncoding RNA (lncRNAs) with cardiac hypertrophy and DDR. The altered ventricular lncRNAs in the mice between sham and transverse aortic constriction (TAC) group were identified by microarray analysis, and a novel lncRNA AK144717 was found to gradually upregulate during the development of pathological cardiac hypertrophy induced by TAC surgery or angiotensin II (Ang II) stimulation. Silencing AK144717 had a similar anti-hypertrophic effect to that of ATM inhibitor KU55933 and also suppressed the activated ATM-DDR signaling induced by hypertrophic stimuli. The involvement of AK144717 in DDR and cardiac hypertrophy was closely related to its interaction with HMGB1, as silencing HMGB1 abolished the effects of AK144717 knockdown. The binding of AK144717 to HMGB1 prevented the interaction between HMGB1 and SIRT1, contributing to the increased acetylation and then cytosolic translocation of HMGB1. Overall, our study highlights the role of AK144717 in the hypertrophic response by interacting with HMGB1 and regulating DDR, hinting that AK144717 is a promising therapeutic target for pathological cardiac growth.
Collapse
Affiliation(s)
- Tianyu Wu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yao Lu
- Department of Cardiology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, No.199 Jiefang South Road, Xuzhou, 221009, PR China
| | - Yue Yu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210029, PR China
| | - Yan Hua
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Gaoyuan Ge
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Wei Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Kaiyan Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Zhuen Zhong
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China.
| |
Collapse
|
3
|
Bayer AL, Smolgovsky S, Ngwenyama N, Hernández-Martínez A, Kaur K, Sulka K, Amrute J, Aronovitz M, Lavine K, Sharma S, Alcaide P. T-Cell MyD88 Is a Novel Regulator of Cardiac Fibrosis Through Modulation of T-Cell Activation. Circ Res 2023; 133:412-429. [PMID: 37492941 PMCID: PMC10529989 DOI: 10.1161/circresaha.123.323030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Cardiac inflammation in heart failure is characterized by the presence of damage-associated molecular patterns, myeloid cells, and T cells. Cardiac damage-associated molecular patterns provide continuous proinflammatory signals to myeloid cells through TLRs (toll-like receptors) that converge onto the adaptor protein MyD88 (myeloid differentiation response 88). These induce activation into efficient antigen-presenting cells that activate T cells through their TCR (T-cell receptor). T-cell activation results in cardiotropism, cardiac fibroblast transformation, and maladaptive cardiac remodeling. T cells rely on TCR signaling for effector function and survival, and while they express MyD88 and damage-associated molecular pattern receptors, their role in T-cell activation and cardiac inflammation is unknown. METHODS We performed transverse aortic constriction in mice lacking MyD88 in T cells and analyzed remodeling, systolic function, survival, and T-cell activation. We profiled wild type versus Myd88-/- mouse T cells at the transcript and protein level and performed several functional assays. RESULTS Analysis of single-cell RNA-sequencing data sets revealed that MyD88 is expressed in mouse and human cardiac T cells. MyD88 deletion in T cells resulted in increased levels of cardiac T-cell infiltration and fibrosis in response to transverse aortic constriction. We discovered that TCR-activated Myd88-/- T cells had increased proinflammatory signaling at the transcript and protein level compared with wild type, resulting in increased T-cell effector functions such as adhesion, migration across endothelial cells, and activation of cardiac fibroblast. Mechanistically, we found that MyD88 modulates T-cell activation and survival through TCR-dependent rather than TLR-dependent signaling. CONCLUSIONS Our results outline a novel intrinsic role for MyD88 in limiting T-cell activation that is central to tune down cardiac inflammation during cardiac adaptation to stress.
Collapse
Affiliation(s)
| | | | | | | | - Kuljeet Kaur
- Department of Immunology, Tufts University, Boston MA
| | | | - Junedh Amrute
- Department of Medicine, Washington University School of Medicine, Saint Louis MO
| | | | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, Saint Louis MO
| | - Shruti Sharma
- Department of Immunology, Tufts University, Boston MA
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston MA
| |
Collapse
|
4
|
Belmadani S, Matrougui K. Role of High Mobility Group Box 1 in Cardiovascular Diseases. Inflammation 2022; 45:1864-1874. [PMID: 35386038 PMCID: PMC11145736 DOI: 10.1007/s10753-022-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
Abstract
High Mobility Group Box 1 (HMGB1) is a ubiquitous, highly conserved nuclear and cytosolic protein that has diverse biological roles depending on its cellular location and posttranslational modifications. The HMGB1 is localized in the nucleus but can be translocated to the cytoplasm to modulate the intracellular signaling and eventually secreted outside the cells. It is widely established that HMGB1 plays a key role in inflammation; however, the role of HMGB1 in the cardiovascular diseases is not well understood. In this review, we will discuss the latest reports on the pathophysiological link between HMGB1 and cardiovascular complications, with special emphasis on the inflammation. Thus, the understanding of the role of HMGB1 may provide new insights into developing new HMGB1-based therapies.
Collapse
Affiliation(s)
- Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, Virginia, 23501, USA
| | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, Virginia, 23501, USA.
| |
Collapse
|
5
|
Chen F, Li W, Zhang D, Fu Y, Yuan W, Luo G, Liu F, Luo J. MALAT1 regulates hypertrophy of cardiomyocytes by modulating the miR-181a/HMGB2 pathway. Eur J Histochem 2022; 66:3426. [PMID: 35726535 PMCID: PMC9251611 DOI: 10.4081/ejh.2022.3426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
Noncoding RNAs are important for regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2; their contribution to cardiac hypertrophy; and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of a miR-181a inhibitor and enhanced by overexpression of a miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Wenfeng Li
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Dandan Zhang
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Wenjin Yuan
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Gang Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Fuwei Liu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| |
Collapse
|
6
|
Wang H, Shi J, Shi S, Bo R, Zhang X, Hu Y. Bibliometric analysis on the progress of chronic heart failure. Curr Probl Cardiol 2022; 47:101213. [PMID: 35525461 DOI: 10.1016/j.cpcardiol.2022.101213] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic heart failure (CHF) is the terminal stage of a variety of heart diseases with higher morbidity and mortality. Although CHF has been studied for decades, the comprehensive analysis by bibliometrics has not been done. So, we analyzed the scientific outputs of global chronic heart failureresearches, explored the current research status and hotpots from 2009 to 2019. METHODS Web of Science Core Collection (WOSCC) was the data source, and the data was retrieved on June 25, 2020, according to the set search strategy. Bibliometrics tools- CiteSpace V (Drexel university, Chaomei Chen) and VOS viewer (Leiden University, van Eck NJ)-were used for analyzing published literature and exploring research hotspots and frontier directions. RESULTS A total of 21,484 articles were included, and the rate of published articles increased from 2009 to 2019 annually. United States of America (USA) was the leading country, Duke University was the leading institution, and Stefan D Anker was the most productive researcher in this field. The analysis of keywords showed that mortality, risk, outcomes, association, and dysfunction were the main hotpots and frontier directions of CHF. CONCLUSION Bibliometric analysis of the outputs on CHF shows an overall view about the current status of the research on CHF. Clinical treatment and the associations among organs in the patients with CHF are the major research frontiers. However, further research and collaboration are still required worldwide. Our findings can help researchers grasp the research status of CHF and determine new directions for future researches as soon as possible.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Graduate School, Beijing University of Chinese Medicine
| | - Rongqiang Bo
- Graduate School, Beijing University of Chinese Medicine
| | - Xuesong Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Yang X, Zhang B, Yu P, Liu M, Zhang C, Su E, Xie S, Zou Y, Jiang H, Ge J. HMGB1 in macrophage nucleus protects against pressure overload induced cardiac remodeling via regulation of macrophage differentiation and inflammatory response. Biochem Biophys Res Commun 2022; 611:91-98. [PMID: 35483224 DOI: 10.1016/j.bbrc.2022.04.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023]
Abstract
Pressure overload induced cardiac remodeling is associated with a complex spectrum of pathophysiological mechanisms. As inflammatory cells, macrophages maintain a critical position in mechanical stress-induced myocardial remodeling. HMGB1 is a highly conserved, ubiquitous protein in various types of cells whose biological roles are closely dependent on subcellular sites. However, whether HMGB1 expressed in macrophages performs the protective or pathological responses in cardiac remodeling is unknown. In this study, we generated the myeloid-specific HMGB1 knockout mice and detected the effects of macrophage HMGB1 in response to pathophysiological stress. Our data showed HMGB1 in macrophages played a protective role against the pressure overload induced cardiac pathophysiology. The deletion of HMGB1 in macrophages gains more differentiation of M1-type pro-inflammatory macrophage during the mechanical stress-induced myocardial remodeling, thereby aggravating the inflammatory response in whole heart, resulting in accelerated deterioration of cardiac function. Moreover, in vitro data also validated HMGB1 got involved in the process of macrophage polarization. Macrophages without HMGB1 are more inclined to differentiate into M1 during the stretch process. In summary, the present results indicated that loss of HMGB1 in macrophages can exacerbate heart failure through increased differentiation of pro-inflammatory macrophages and enhanced inflammatory response.
Collapse
Affiliation(s)
- Xue Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ming Liu
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunyu Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Enyong Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Shiyao Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| |
Collapse
|
8
|
Paracrine signal emanating from stressed cardiomyocytes aggravates inflammatory microenvironment in diabetic cardiomyopathy. iScience 2022; 25:103973. [PMID: 35281739 PMCID: PMC8905320 DOI: 10.1016/j.isci.2022.103973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.
Collapse
|
9
|
Zhang B, Yu P, Su E, Jia J, Zhang C, Xie S, Huang Z, Dong Y, Ding J, Zou Y, Jiang H, Ge J. Sodium tanshinone IIA sulfonate improves adverse ventricular remodeling post MI by reducing myocardial necrosis, modulating inflammation and promoting angiogenesis. Curr Pharm Des 2021; 28:751-759. [PMID: 34951571 DOI: 10.2174/1381612828666211224152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows therapeutic values. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI. METHODS Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson's trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB. RESULTS Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1β and tumor necrosis factor-α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor-1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days. CONCLUSION STS improved pathological remodeling post-MI, and the associated therapeutic effects may result from a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis.
Collapse
Affiliation(s)
- Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Enyong Su
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jianguo Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chunyu Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shiyao Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhenhui Huang
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Ying Dong
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Jinguo Ding
- R&D Center, SPH No.1 Biochemical & Pharmaceutical Co., Ltd, Shanghai 200240, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
10
|
Zhang L, Zhang B, Wu J, Zou Y, Jiang H, Ge J. AT1 receptor blocker inhibits HMGB1 expression in pressure overload-induced acute cardiac dysfunction by suppressing the MAPK/NF-κB signaling pathway. Clin Exp Hypertens 2021; 44:93-99. [PMID: 34704526 DOI: 10.1080/10641963.2021.1996588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND High-mobility group box 1 (HMGB1) expression not only peaks during the early phase of pressure overload (PO), but also serves a role in the pathogenesis of PO-induced cardiac remodeling. Meanwhile, angiotensin II type 1 (AT1) receptor blockers reverse PO-induced cardiac remodeling and repress the secretion of inflammatory factors. However, whether AT1 receptor inhibitors decrease HMGB1 expression in the early stages of PO remains unknown. MATERIALS AND METHODS PO mouse models were established using transverse aortic constriction (TAC), in which losartan was administrated. Transthoracic echocardiography was performed 3 days after the operation, and serum and cardiac HMGB1 expression, as well as the expression levels of related proteins were measured. RESULTS PO-induced acute cardiac dysfunction was observed 3 days after TAC, and was subsequently slightly, but not significantly relieved by losartan. The expression levels of HMGB1, tumor necrosis factor-α and interleukin-6 in both the serum and myocardium were upregulated in response to TAC, while they were significantly reduced by losartan. Moreover, the phosphorylation of extracellular signal-regulated kinases, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in the myocardium were significantly increased under PO, and this was also prevented by losartan. CONCLUSION These data suggest that losartan may downregulate the expression of HMGB1 in acute cardiac dysfunction induced by PO by inhibiting the MAPKs/NF-κB signaling pathway, which indicates a novel beneficial role of AT1 receptor antagonists in ameliorating cardiac remodeling under PO.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
11
|
Recombinant High-Mobility Group Box 1 (rHMGB1) Promotes NRF2-Independent Mitochondrial Fusion through CXCR4/PSMB5-Mediated Drp1 Degradation in Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993240. [PMID: 34394840 PMCID: PMC8358426 DOI: 10.1155/2021/9993240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Mitochondrial dynamics plays an important role in maintaining normal endothelial cell function and in the pathogenesis of cardiovascular disease. It is not identified whether high-mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP) molecule, could influence mitochondrial dynamics in endothelial cells. The objective of this study is to clarify the effect of HMGB1 on mitochondrial dynamics in endothelial cells and the underlying mechanism. EA.hy926 human endothelial cells were incubated with recombinant HMGB1 (rHMGB1); mitochondrial morphology was observed with a confocal microscope and transmission electron microscope (TEM). The expression of dynamin-related protein 1 (Drp1), Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), Optic atrophy 1 (Opa1), phosphatase and tensin homolog- (PTEN-) induced kinase 1 (PINK1), NOD-like receptor 3 (NLRP3), caspase 1, cleaved caspase 1, 20S proteasome subunit beta 5 (PSMB5), and antioxidative master nuclear factor E2-related factor 2 (NRF2) and the concentration of interleukin 1β (IL-1β) were determined. Specific inhibitors C29, TAK-242, FPS-ZM1, AMD3100, and epoxomicin were used to block toll-like receptor 2 (TLR2), toll-like receptor 4 (TLR4), receptor for advanced glycation end products (RAGE), C-X-C-chemokine receptor 4 (CXCR4), and PSMB5, respectively. siRNAs were used to silence the expression of NRF2. rHMGB1 promoted mitochondrial fusion in endothelial cells, while no significant proinflammatory effects were found. The expression of mitochondrial fission protein Drp1 and phosphorylated subtypes p-Drp1-S616 and p-Drp1-S637 were all downregulated; no significant expression changes of PINK1 and Mfn1, Mfn2, and Opa1 were found. Inhibition of CXCR4 but not TLR4, RAGE, or TLR2 reversed rHMGB1-induced Drp1 downregulation and mitochondrial fusion. Interestingly, inhibition of TLR4 with TAK-242 promoted Drp1 downregulation and mitochondrial fusion. rHMGB1 increased the expression of NRF2 and PSMB5; inhibition of PSMB5 but not silencing NRF2 abolished rHMGB1-induced Drp1 downregulation and mitochondrial fusion. These results indicate that rHMGB1 promotes NRF2 independent mitochondrial fusion via CXCR4/PSMB5 pathway-mediated Drp1 proteolysis. rHMGB1 may influence mitochondrial and endothelial function through this effect on mitochondrial dynamics.
Collapse
|
12
|
High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomed Pharmacother 2021; 139:111555. [PMID: 33865014 DOI: 10.1016/j.biopha.2021.111555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is the most deadly disease, which can cause sudden death, in which inflammation is a key factor in its occurrence and development. High-mobility group box 1 (HMGB1) is a novel nuclear DNA-binding protein that activates innate immunity to induce inflammation in CVD. HMGB1 exists in the cytoplasm and nucleus of different cell types, including those in the heart. By binding to its receptors, HMGB1 triggers a variety of signaling cascades, leading to inflammation and CVD. To help develop HMGB1-targeted therapies, here we discuss HMGB1 and its biological functions, receptors, signaling pathways, and pathophysiology related to inflammation and CVD, including cardiac remodeling, cardiac hypertrophy, myocardial infarction, heart failure, pulmonary hypertension, atherosclerosis, and cardiomyopathy.
Collapse
|
13
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
14
|
Su F, Shi M, Zhang J, Li Y, Tian J. Recombinant high‑mobility group box 1 induces cardiomyocyte hypertrophy by regulating the 14‑3‑3η, PI3K and nuclear factor of activated T cells signaling pathways. Mol Med Rep 2021; 23:214. [PMID: 33495819 PMCID: PMC7845624 DOI: 10.3892/mmr.2021.11853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 09/07/2020] [Indexed: 01/20/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is released by necrotic cells and serves an important role in cardiovascular pathology. However, the effects of HMGB1 in cardiomyocyte hypertrophy remain unclear. Therefore, the aim of the present study was to investigate the potential role of HMGB1 in cardiomyocyte hypertrophy and the underlying mechanisms of its action. Neonatal mouse cardiomyocytes (NMCs) were co-cultured with recombinant HMGB1 (rHMGB1). Wortmannin was used to inhibit PI3K activity in cardiomyocytes. Subsequently, atrial natriuretic peptide (ANP), 14-3-3 and phosphorylated-Akt (p-Akt) protein levels were detected using western blot analysis. In addition, nuclear factor of activated T cells 3 (NFAT3) protein levels were measured by western blot analysis and observed in NMCs under a confocal microscope. The results revealed that rHMGB1 increased ANP and p-Akt, and decreased 14-3-3η protein levels. Furthermore, wortmannin abrogated the effects of rHMGB1 on ANP, 14-3-3η and p-Akt protein levels. In addition, rHMGB1 induced nuclear translocation of NFAT3, which was also inhibited by wortmannin pretreatment. The results of this study suggest that rHMGB1 induces cardiac hypertrophy by regulating the 14-3-3η/PI3K/Akt/NFAT3 signaling pathway.
Collapse
Affiliation(s)
- Feifei Su
- Department of Cardiology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Miaoqian Shi
- Department of Cardiology, The Seventh Medical Centre of The People's Liberation Army General Hospital, Beijing 100700, P.R. China
| | - Jian Zhang
- Department of Cardiology, Beijing Chest Hospital Heart Center, Capital Medical University, Beijing 101149, P.R. China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital Affiliated to The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jianwei Tian
- Department of Cardiology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| |
Collapse
|
15
|
Zhang L, Zhang B, Yu Y, Wang J, Wu J, Su Y, Jiang H, Zou Y, Ge J. Angiotensin II Increases HMGB1 Expression in the Myocardium Through AT1 and AT2 Receptors When Under Pressure Overload. Int Heart J 2021; 62:162-170. [PMID: 33455985 DOI: 10.1536/ihj.20-384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High-mobility group box 1 (HMGB1) is increased in the myocardium under pressure overload (PO) and is involved in PO-induced cardiac remodeling. The mechanisms of the upregulation of cardiac HMGB1 expression have not been fully elucidated. In the present study, a mouse transverse aortic constriction (TAC) model was used, and an angiotensin II (Ang II) type 1 (AT1) receptor inhibitor (losartan) or Ang II type 2 (AT2) receptor inhibitor (PD123319) was administrated to mice for 14 days. Cardiac myocytes were cultured and treated with Ang II for 5 minutes to 48 hours conditionally with the blockage of the AT1 or AT2 receptor. TAC-induced cardiac hypertrophy was observed at 14 days after the operation, which was partially reversed by losartan, but not by PD123319. Similarly, the upregulated HMGB1 expression levels observed in both the serum and myocardium induced by TAC were reduced by losartan. Elevated cardiac HMGB1 protein levels, but not mRNA or serum levels, were significantly decreased by PD123319. Furthermore, HMGB1 expression levels in culture media and cardiac myocytes were increased following Ang II treatment in vitro, positively associated with the duration of treatment. Similarly, Ang II-induced upregulation of HMGB1 in vitro was inhibited by both losartan and PD123319. These results suggest that upregulation of HMGB1 in serum and myocardium under PO, which are partially derived from cardiac myocytes, may be induced by Ang II via the AT1 and AT2 receptors. Additionally, amelioration of PO-induced cardiac hypertrophy following losartan treatment may be associated with the reduction of HMGB1 expression through the AT1 receptor.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Baoli Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Fudan University
| | - Jingfeng Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University.,Shanghai Institute of Cardiovascular Diseases
| |
Collapse
|
16
|
Weber B, Lackner I, Gebhard F, Miclau T, Kalbitz M. Trauma, a Matter of the Heart-Molecular Mechanism of Post-Traumatic Cardiac Dysfunction. Int J Mol Sci 2021; 22:E737. [PMID: 33450984 PMCID: PMC7828409 DOI: 10.3390/ijms22020737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Trauma remains a leading global cause of mortality, particularly in the young population. In the United States, approximately 30,000 patients with blunt cardiac trauma were recorded annually. Cardiac damage is a predictor for poor outcome after multiple trauma, with a poor prognosis and prolonged in-hospitalization. Systemic elevation of cardiac troponins was correlated with survival, injury severity score, and catecholamine consumption of patients after multiple trauma. The clinical features of the so-called "commotio cordis" are dysrhythmias, including ventricular fibrillation and sudden cardiac arrest as well as wall motion disorders. In trauma patients with inappropriate hypotension and inadequate response to fluid resuscitation, cardiac injury should be considered. Therefore, a combination of echocardiography (ECG) measurements, echocardiography, and systemic appearance of cardiomyocyte damage markers such as troponin appears to be an appropriate diagnostic approach to detect cardiac dysfunction after trauma. However, the mechanisms of post-traumatic cardiac dysfunction are still actively being investigated. This review aims to discuss cardiac damage following trauma, focusing on mechanisms of post-traumatic cardiac dysfunction associated with inflammation and complement activation. Herein, a causal relationship of cardiac dysfunction to traumatic brain injury, blunt chest trauma, multiple trauma, burn injury, psychosocial stress, fracture, and hemorrhagic shock are illustrated and therapeutic options are discussed.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, 2550 23rd Street, San Francisco, CA 94110, USA;
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| |
Collapse
|
17
|
Chen H, Liu J, Wang B, Li Y. Protective effect of lncRNA CRNDE on myocardial cell apoptosis in heart failure by regulating HMGB1 cytoplasm translocation through PARP-1. Arch Pharm Res 2020; 43:1325-1334. [PMID: 33249529 DOI: 10.1007/s12272-020-01290-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) are bound up with the regulation of various diseases. Here, we probed into the effect of lncRNA colorectal neoplasia differentially expressed (CRNDE) on heart failure (HF). The pathological alterations and cell apoptosis of heart tissues were observed by hematoxylin-eosin and TUNEL staining. The viability or apoptosis of mouse myocardial cells HL-1 was tested by XTT or flow cytometry. The interaction between lncRNA CRNDE and poly-ADP-ribose polymerase 1 (PARP-1) was verified by RNA immunoprecipitation and RNA pull-down. The stability of the PARP-1 protein and the acetylation level of high mobility group box-1 (HMGB1) were determined by cycloheximide-chase and immunoprecipitation, respectively. LncRNA CRNDE expression was decreased in HF mice tissues and doxorubicin (Dox)-treated HL-1 cells, whereas PARP-1 and HMGB1 were increased. The overexpression of lncRNA CRNDE restrained HL-1 cell apoptosis induced by Dox. Moreover, the interaction between CRNDE and PARP-1 was corroborated, CRNDE negatively regulated PARP-1 expression, and the overexpression of CRNDE reduced PARP-1 protein stability. In HL-1 cells, PARP-1 positively regulated the acetylation level and cytoplasm translocation of HMGB1. CRNDE restrained Dox-induced apoptosis in mouse myocardial cells via the PARP-1/HMGB1 pathway.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Jinming Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Bin Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
18
|
Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T, Huang H. Key Player in Cardiac Hypertrophy, Emphasizing the Role of Toll-Like Receptor 4. Front Cardiovasc Med 2020; 7:579036. [PMID: 33324685 PMCID: PMC7725871 DOI: 10.3389/fcvm.2020.579036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor 4 (TLR4), a key pattern recognition receptor, initiates the innate immune response and leads to chronic and acute inflammation. In the past decades, accumulating evidence has implicated TLR4-mediated inflammatory response in regulation of myocardium hypertrophic remodeling, indicating that regulation of the TLR4 signaling pathway may be an effective strategy for managing cardiac hypertrophy's pathophysiology. Given TLR4's significance, it is imperative to review the molecular mechanisms and roles underlying TLR4 signaling in cardiac hypertrophy. Here, we comprehensively review the current knowledge of TLR4-mediated inflammatory response and its interaction ligands and co-receptors, as well as activation of various intracellular signaling. We also describe the associated roles in promoting immune cell infiltration and inflammatory mediator secretion, that ultimately cause cardiac hypertrophy. Finally, we provide examples of some of the most promising drugs and new technologies that have the potential to attenuate TLR4-mediated inflammatory response and prevent or reverse the ominous cardiac hypertrophy outcomes.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chang Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jin Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianyou Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
19
|
Chen L, Zhu H, Su S, Harshfield G, Sullivan J, Webb C, Blumenthal JA, Wang X, Huang Y, Treiber FA, Kapuku G, Li W, Dong Y. High-Mobility Group Box-1 Is Associated With Obesity, Inflammation, and Subclinical Cardiovascular Risk Among Young Adults: A Longitudinal Cohort Study. Arterioscler Thromb Vasc Biol 2020; 40:2776-2784. [PMID: 32814439 PMCID: PMC7578115 DOI: 10.1161/atvbaha.120.314599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We aimed to characterize circulating HMGB1 (high-mobility group box-1) levels, one of the better-characterized damage-associated molecular patterns, with respect to age, sex, and race in the general population, and investigate the longitudinal associations of HMGB1 with inflammatory markers, obesity, and preclinical markers of cardiovascular disease. Approach and Results: The analyses included 489 participants (50% Blacks, aged 24.6±3.3 years at the first visit) with up to 4 follow-up visits (1149 samples) over a maximum of 8.5 years. Systolic blood pressure, diastolic blood pressure, carotid-femoral pulse wave velocity, and carotid intima-media thickness together with plasma HMGB1, hs-CRP (high-sensitivity C-reactive protein), IFN-γ (interferon-γ), IL-6 (interleukin-6), IL-10 (interleukin-10), and TNF-α (tumor necrosis factor-α) were measured at each visit. At baseline, plasma HMGB1 concentrations were higher in Blacks compared with Whites (3.86 versus 3.20 ng/mL, P<0.001), and in females compared with males (3.75 versus 3.30 ng/mL, P=0.005). HMGB1 concentrations increased with age (P=0.007), and higher levels of obesity measures (P<0.001). Without adjustment for age, sex, race, and body mass index, HMGB1 concentrations were positively associated with hs-CRP, IL-6, TNF-α, systolic blood pressure, diastolic blood pressure, and carotid-femoral pulse wave velocity (P<0.05) but not IL-10, IFN-γ or carotid intima-media thickness. After covariate adjustments, the associations of HMGB1 with hs-CRP, and carotid-femoral pulse wave velocity remained statistically significant (P<0.05). CONCLUSIONS This study demonstrates the age, sex, and race differences in circulating HMGB1. The increasing circulating concentrations of HMGB1 with age suggest a potential role of HMGB1 in the pathogenesis of chronic low-grade inflammation, obesity, and subclinical cardiovascular disease risk.
Collapse
Affiliation(s)
- Li Chen
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shaoyong Su
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Gregory Harshfield
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jennifer Sullivan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Clinton Webb
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - James A. Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ying Huang
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Frank A. Treiber
- College of Nursing, Medical University of South Carolina, Charleston, SC, USA
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gaston Kapuku
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wenjun Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
20
|
Yu P, Liu M, Zhang B, Yu Y, Su E, Xie S, Zhang L, Yang X, Jiang H, Chen R, Zou Y, Ge J. Cardiomyocyte-restricted high-mobility group box 1 (HMGB1) deletion leads to small heart and glycolipid metabolic disorder through GR/PGC-1α signalling. Cell Death Discov 2020; 6:106. [PMID: 33101708 PMCID: PMC7575537 DOI: 10.1038/s41420-020-00340-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022] Open
Abstract
Cardiac growth and remodelling are key biological processes influencing the physiological performance of the heart, and a previous study showed a critical role for intracellular HMGB1 in vitro. However, the in vivo study, which used conditional Hmgb1 ablation, did not show a significant effect on cellular or organic function. We have demonstrated the extracellular effect of HMGB1 as a pro-inflammatory molecule on cardiac remodelling. In this study, we found that HMGB1 deletion by cTnT-Cre in mouse hearts altered glucocorticoid receptor (GR) function and glycolipid metabolism, eventually leading to growth retardation, small heart and heart failure. The subcellular morphology did not show a significant change caused by HMGB1 knockout. The heart showed significant elevation of glycolysis, free fatty acid deposition and related enzyme changes. Transcriptomic analysis revealed a list of differentially expressed genes that coincide with glucocorticoid receptor function in neonatal mice and a significant increase in inflammatory genes in adult mice. Cardiac HMGB1 knockout led to a series of changes in PGC-1α, UCP3 and GyK, which were the cause of metabolic changes and further impacted cardiac function. Ckmm-Cre Hmgb1fl/fl mice did not show a specific phenotype, which was consistent with the reported negative result of cardiomyocyte-specific Hmgb1 deletion via MHC-Cre. We concluded that HMGB1 plays essential roles in maintaining normal cardiac growth, and different phenotype from cardiac-specific HMGB1-deficient mice may be caused by the cross with mice of different Cre strains.
Collapse
Affiliation(s)
- Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Liu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Baoli Zhang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Enyong Su
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shiyao Xie
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei Zhang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xue Yang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hong Jiang
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Shanghai Clinical Bioinformatics Research Institute, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
21
|
HMGB1 Aggravates Pressure Overload-Induced Left Ventricular Dysfunction by Promoting Myocardial Fibrosis. Int J Hypertens 2020. [DOI: 10.1155/2020/7270351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim. Fibrosis had important effects on pressure overload-induced left ventricular (LV) dysfunction. High-mobility group box 1 (HMGB1), which was closely associated with fibrosis, was involved in the pressure overload-induced cardiac injury. This study determines the role of HMGB1 in LV dysfunction under pressure overload. Methods. Transverse aortic constriction (TAC) operation was performed on male C57BL/6J mice to build the model of pressure overload, while HMGB1 or PBS was injected into the LV wall. Cardiac function, collagen volume, and relevant genes were detected. Results. Echocardiography demonstrated that the levels of LV ejection fraction (LVEF) were markedly decreased on day 28 after TAC, which was consistent with raised collagen in the myocardium. Moreover, we found that the exposure of mice to TAC + HMGB1 is associated with higher mortality, BNP, and collagen volume in the myocardium and lower LVEF. In addition, real-time PCR showed that the expression of collagen type I, TGF-β, and MMP2 markedly increased in the myocardium after TAC, while HMGB1 overexpression further raised the TGF-β expression but not collagen type I and MMP2 expressions. Conclusion. This study indicated that exogenous HMGB1 overexpression in the myocardium aggravated the pressure overload-induced LV dysfunction by promoting cardiac fibrosis, which may be mediated by increasing the TGF-β expression.
Collapse
|
22
|
Yu Y, Shi H, Yu Y, Liu M, Li M, Liu X, Wang Y, Chen R. Inhibition of calpain alleviates coxsackievirus B3-induced myocarditis through suppressing the canonical NLRP3 inflammasome/caspase-1-mediated and noncanonical caspase-11-mediated pyroptosis pathways. Am J Transl Res 2020; 12:1954-1964. [PMID: 32509190 PMCID: PMC7270028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to verify the effects of calpain on coxsackievirus B3 (CVB3)-induced myocarditis and to further explore the underlying mechanisms. Transgenic mice overexpressing calpastatin, the endogenous calpain inhibitor, were introduced in the present study. The murine model of viral myocarditis (VMC) was established by intraperitoneal injection of CVB3 into transgenic and wild-type mice. Myocardial injury was measured by H&E staining and ELISA for cTnI. CVB3 replication was assessed via capsid protein VP1 detection and virus titration. The fibrotic factors collagen and TGF-β1 were evaluated by Masson staining and real-time PCR analysis, respectively. Moreover, the levels of NLRP3, AIM2, ASC, cleaved caspase-1, cleaved caspase-11 and the pyroptosis indicators GSDMD p30, IL-1β and HMGB1 were determined by real-time PCR, western blot or immunohistochemical analysis. In addition, peripheral IL-1β and HMGB1 were evaluated by ELISA. We observed that CVB3-infected transgenic mice had lower pathological scores, peripheral cTnI levels, viral loads and expression levels of collagen and TGF-β1 in the heart than CVB3-infected wild-type mice. Furthermore, we found decreased levels of NLRP3, ASC, cleaved caspase-1 and cleaved caspase-11 in the hearts of CVB3-infected transgenic mice. However, after CVB3 infection, the levels of AIM2 in transgenic mice and wild-type mice did not differ significantly. Additionally, calpastatin overexpression significantly reduced the levels of GSDMD p30, IL-1β and HMGB1 in the myocardium as well as peripheral IL-1β and HMGB1. Taken together, these findings indicate that calpain inhibition attenuates CVB3-induced myocarditis by suppressing the canonical NLRP3 inflammasome/caspase-1-mediated and noncanonical caspase-11-mediated pyroptosis pathways.
Collapse
Affiliation(s)
- Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan UniversityShanghai 200032, China
| | - Hui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan UniversityShanghai 200032, China
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan UniversityShanghai 200032, China
| | - Ming Liu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan UniversityShanghai 200032, China
| | - Minghui Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan UniversityShanghai 200032, China
| | - Xiaoxiao Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan UniversityShanghai 200032, China
| | - Yucheng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan UniversityShanghai 200032, China
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan UniversityShanghai 200032, China
| |
Collapse
|
23
|
Effects of Circulating HMGB-1 and Histones on Cardiomyocytes-Hemadsorption of These DAMPs as Therapeutic Strategy after Multiple Trauma. J Clin Med 2020; 9:jcm9051421. [PMID: 32403440 PMCID: PMC7291040 DOI: 10.3390/jcm9051421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background and purpose: The aim of the study was to determine the effects of post-traumatically released High Mobility Group Box-1 protein (HMGB1) and extracellular histones on cardiomyocytes (CM). We also evaluated a therapeutic option to capture circulating histones after trauma, using a hemadsorption filter to treat CM dysfunction. Experimental Approach: We evaluated cell viability, calcium handling and mitochondrial respiration of human cardiomyocytes in the presence of HMGB-1 and extracellular histones. In a translational approach, a hemadsorption filter was applied to either directly eliminate extracellular histones or to remove them from blood samples obtained from multiple injured patients. Key results: Incubation of human CM with HMGB-1 or histones is associated with changes in calcium handling, a reduction of cell viability and a substantial reduction of the mitochondrial respiratory capacity. Filtrating plasma from injured patients with a hemadsorption filter reduces histone concentration ex vivo and in vitro, depending on dosage. Conclusion and implications: Danger associated molecular patterns such as HMGB-1 and extracellular histones impair human CM in vitro. A hemadsorption filter could be a therapeutic option to reduce high concentrations of histones.
Collapse
|
24
|
Yang H, Wang XX, Zhou CY, Xiao X, Tian C, Li HH, Yin CL, Wang HX. Tripartite motif 10 regulates cardiac hypertrophy by targeting the PTEN/AKT pathway. J Cell Mol Med 2020; 24:6233-6241. [PMID: 32343488 PMCID: PMC7294125 DOI: 10.1111/jcmm.15257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of cardiac hypertrophy is tightly associated with activation of intracellular hypertrophic signalling pathways, which leads to the synthesis of various proteins. Tripartite motif 10 (TRIM10) is an E3 ligase with important functions in protein quality control. However, its role in cardiac hypertrophy was unclear. In this study, neonatal rat cardiomyocytes (NRCMs) and TRIM10-knockout mice were subjected to phenylephrine (PE) stimulation or transverse aortic constriction (TAC) to induce cardiac hypertrophy in vitro and in vivo, respectively. Trim10 expression was significantly increased in hypertrophied murine hearts and PE-stimulated NRCMs. Knockdown of TRIM10 in NRCMs alleviated PE-induced changes in the size of cardiomyocytes and hypertrophy gene expression, whereas TRIM10 overexpression aggravated these changes. These results were further verified in TRIM10-knockout mice. Mechanistically, we found that TRIM10 knockout or knockdown decreased AKT phosphorylation. Furthermore, we found that TRIM10 knockout or knockdown increased ubiquitination of phosphatase and tensin homolog (PTEN), which negatively regulated AKT activation. The results of this study reveal the involvement of TRIM10 in pathological cardiac hypertrophy, which may occur by prompting of PTEN ubiquitination and subsequent activation of AKT signalling. Therefore, TRIM10 may be a promising target for treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hui Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Xiao-Xiao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Chun-Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Xue Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Cui Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated hospital of Dalian Medical University, Dalian, China
| | - Chun-Lin Yin
- Department of Cardiology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Hong-Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Le Y, Wang Y, Zhou L, Xiong J, Tian J, Yang X, Gai X, Sun Y. Cigarette smoke-induced HMGB1 translocation and release contribute to migration and NF-κB activation through inducing autophagy in lung macrophages. J Cell Mol Med 2020; 24:1319-1331. [PMID: 31769590 PMCID: PMC6991703 DOI: 10.1111/jcmm.14789] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
High-mobility group box 1 (HMGB1) shows pro-inflammatory activity in various inflammatory diseases and has been found up-regulated in chronic obstructive pulmonary disease (COPD). Lung macrophages play an important role in airway inflammation and lung destruction in COPD, yet whether HMGB1 is involved in cigarette smoke (CS)-induced lung macrophage dysfunction is unknown. We sought to evaluate the intracellular localization and release of HMGB1 in lung macrophages from COPD patients and CS-exposed mice, and to investigate the role of HMGB1 in regulating autophagy in CS extract (CSE)-treated lung macrophages (MH-S cells). Our results showed that HMGB1 was highly expressed in lung tissues and sera of COPD patients and CS-exposed mice, along with predominantly cytoplasmic exporting from nuclei in lung macrophages. In vitro experiments revealed that CSE promoted the expression, nucleocytoplasmic translocation and release of HMGB1 partly via the nicotinic acetylcholine receptor (nAChR). Blockade of HMGB1 with chicken anti-HMGB1 polyclonal antibody (anti-HMGB1) or glycyrrhizin (Gly) attenuated the increase of LC3B-II and Beclin1, migration and p65 phosphorylation, suggesting the involvement of HMGB1 in autophagy, migration and NF-κB activation of lung macrophages. Hydroxychloroquine (CQ), an autophagy inhibitor, enhanced the increase of LC3B-II but not Beclin1 in CSE or rHMGB1-treated MH-S cells, and inhibition of autophagy by CQ and 3-methyladenine (3-MA) abrogated the migration and p65 phosphorylation of CSE-treated cells. These results indicate that CS-induced HMGB1 translocation and release contribute to migration and NF-κB activation through inducing autophagy in lung macrophages, providing novel evidence for HMGB1 as a potential target of intervention in COPD.
Collapse
Affiliation(s)
- Yanqing Le
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yanhong Wang
- Department of Respiratory MedicineZhongshan City People's HospitalZhongshanChina
| | - Lu Zhou
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Jing Xiong
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Jieyu Tian
- Hematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityBeijingChina
| | - Xia Yang
- Department of Respiratory MedicineTianjin Medical University General HospitalTianjingChina
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yongchang Sun
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
26
|
Transcriptome Analysis of Hypertrophic Heart Tissues from Murine Transverse Aortic Constriction and Human Aortic Stenosis Reveals Key Genes and Transcription Factors Involved in Cardiac Remodeling Induced by Mechanical Stress. DISEASE MARKERS 2019; 2019:5058313. [PMID: 31772688 PMCID: PMC6854968 DOI: 10.1155/2019/5058313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Background Mechanical stress-induced cardiac remodeling that results in heart failure is characterized by transcriptional reprogramming of gene expression. However, a systematic study of genomic changes involved in this process has not been performed to date. To investigate the genomic changes and underlying mechanism of cardiac remodeling, we collected and analyzed DNA microarray data for murine transverse aortic constriction (TAC) and human aortic stenosis (AS) from the Gene Expression Omnibus database and the European Bioinformatics Institute. Methods and Results The differential expression genes (DEGs) across the datasets were merged. The Venn diagrams showed that the number of intersections for early and late cardiac remodeling was 74 and 16, respectively. Gene ontology and protein–protein interaction network analysis showed that metabolic changes, cell differentiation and growth, cell cycling, and collagen fibril organization accounted for a great portion of the DEGs in the TAC model, while in AS patients' immune system signaling and cytokine signaling displayed the most significant changes. The intersections between the TAC model and AS patients were few. Nevertheless, the DEGs of the two species shared some common regulatory transcription factors (TFs), including SP1, CEBPB, PPARG, and NFKB1, when the heart was challenged by applied mechanical stress. Conclusions This study unravels the complex transcriptome profiles of the heart tissues and highlighting the candidate genes involved in cardiac remodeling induced by mechanical stress may usher in a new era of precision diagnostics and treatment in patients with cardiac remodeling.
Collapse
|
27
|
Zhang L, Yang X, Jiang G, Yu Y, Wu J, Su Y, Sun A, Zou Y, Jiang H, Ge J. HMGB1 enhances mechanical stress-induced cardiomyocyte hypertrophy in vitro via the RAGE/ERK1/2 signaling pathway. Int J Mol Med 2019; 44:885-892. [PMID: 31524228 PMCID: PMC6657962 DOI: 10.3892/ijmm.2019.4276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023] Open
Abstract
Pressure overload-induced cardiac hypertrophy is associated with a complex spectrum of pathophysiological mechanisms, including the inflammation response. High mobility group box-1 (HMGB1), a pro-inflammatory cytokine, is not only increased in myocardium under pressure overload, but also exacerbates pressure overload-induced cardiac hypertrophy and dysfunction; however, the underlying mechanisms have remained elusive. In the present study, cultured cardiomyocytes were stimulated by mechanical stress and/or HMGB1 for various durations to examine the role of HMGB1 in cardiomyocyte hypertrophy, and to detect the expression of receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR-4) and the activation status of mitogen-activated protein kinases (MAPKs) and Janus kinase 2 (JAK2)/STAT3. The results indicated that HMGB1 aggravated mechanical stress-induced cardiomyocyte hypertrophy. Furthermore, mechanical stress and HMGB1 stimulation activated extracellular signal-regulated kinase 1/2 (ERK1/2), P38 and JAK2/STAT3 signaling in cardiomyocytes, but an additive effect of the combined stimuli was only observed on the activation of ERK1/2. In addition, mechanical stress caused a prompt upregulation of the expression of RAGE and TLR-4 in cardiomyocytes, while the activation of ERK1/2 by HMGB1 was inhibited by blockage of RAGE, but not by blockage of TLR-4. In summary, the present results indicated that extracellular HMGB1 enhanced mechanical stress-induced cardiomyocyte hypertrophy in vitro, at least partially via the RAGE/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Xue Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Guoliang Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Jian Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Yangang Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Hong Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
28
|
PARP1 interacts with HMGB1 and promotes its nuclear export in pathological myocardial hypertrophy. Acta Pharmacol Sin 2019; 40:589-598. [PMID: 30030529 DOI: 10.1038/s41401-018-0044-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022] Open
Abstract
High-mobility group box 1 (HMGB1) exhibits various functions according to its subcellular location, which is finely conditioned by diverse post-translational modifications, such as acetylation. The nuclear HMGB1 may prevent from cardiac hypertrophy, whereas its exogenous protein is proven to induce hypertrophic response. This present study sought to investigate the regulatory relationships between poly(ADP-ribose) polymerase 1 (PARP1) and HMGB1 in the process of pathological myocardial hypertrophy. Primary-cultured neonatal rat cardiomyocytes (NRCMs) were respectively incubated with three cardiac hypertrophic stimulants, including angiotensin II (Ang II), phenylephrine (PE), and isoproterenol (ISO), and cell surface area and the mRNA expression of hypertrophic biomarkers were measured. the catalytic activity of PARP1 was remarkably enhanced, meanwhile HMGB1 excluded from the nucleus. PARP1 overexpression by infecting with adenovirus PARP1 (Ad-PARP1) promoted the nuclear export of HMGB1, facilitated its secretion outside the cell, aggravated cardiomyocyte hypertrophy, which could be alleviated by HMGB1 overexpression. PE treatment led to the similar results, while that effect was widely depressed by PARP1 silencing or its specific inhibitor AG14361. Moreover, SD rats were intraperitoneally injected with 3-aminobenzamide (3AB, 20 mg/kg every day, a well-established PARP1 inhibitor) 7 days after abdominal aortic constriction (AAC) surgery for 6 weeks, echocardiography and morphometry of the hearts were measured. Pre-treatment of 3AB relieved AAC-caused the translocation of nuclear HMGB1 protein, cardiac hypertrophy, and heart dysfunction. Our research offers a novel evidence that PARP1 combines with HMGB1 and accelerates its translocation from nucleus to cytoplasm, and the course finally causes cardiac hypertrophy.
Collapse
|
29
|
Raucci A, Di Maggio S, Scavello F, D'Ambrosio A, Bianchi ME, Capogrossi MC. The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol Life Sci 2019; 76:211-229. [PMID: 30306212 PMCID: PMC6339675 DOI: 10.1007/s00018-018-2930-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022]
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein involved in transcription regulation, DNA replication and repair and nucleosome assembly. HMGB1 is passively released by necrotic tissues or actively secreted by stressed cells. Extracellular HMGB1 acts as a damage-associated molecular pattern (DAMPs) molecule and gives rise to several redox forms that by binding to different receptors and interactors promote a variety of cellular responses, including tissue inflammation or regeneration. Inhibition of extracellular HMGB1 in experimental models of myocardial ischemia/reperfusion injury, myocarditis, cardiomyopathies induced by mechanical stress, diabetes, bacterial infection or chemotherapeutic drugs reduces inflammation and is protective. In contrast, administration of HMGB1 after myocardial infarction induced by permanent coronary artery ligation ameliorates cardiac performance by promoting tissue regeneration. HMGB1 decreases contractility and induces hypertrophy and apoptosis in cardiomyocytes, stimulates cardiac fibroblast activities, and promotes cardiac stem cell proliferation and differentiation. Interestingly, maintenance of appropriate nuclear HMGB1 levels protects cardiomyocytes from apoptosis by preventing DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac damage. Finally, higher levels of circulating HMGB1 are associated to human heart diseases. Hence, during cardiac injury, HMGB1 elicits both harmful and beneficial responses that may in part depend on the generation and stability of the diverse redox forms, whose specific functions in this context remain mostly unexplored. This review summarizes recent findings on HMGB1 biology and heart dysfunctions and discusses the therapeutic potential of modulating its expression, localization, and oxidative-dependent activities.
Collapse
Affiliation(s)
- Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy.
| | - Stefania Di Maggio
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Alessandro D'Ambrosio
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marco E Bianchi
- Chromatin Dynamics Unit, Università Vita-Salute San Raffaele, Milan, Italy
| | - Maurizio C Capogrossi
- Department of Cardiology, Ochsner Medical Center, New Orleans, USA
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, USA
| |
Collapse
|
30
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
31
|
Zhou S, Lu H, Chen R, Tian Y, Jiang Y, Zhang S, Ni D, Su Z, Shao X. Angiotensin II enhances the acetylation and release of HMGB1 in RAW264.7 macrophage. Cell Biol Int 2018; 42:1160-1169. [PMID: 29741224 DOI: 10.1002/cbin.10984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/05/2018] [Indexed: 12/14/2022]
Abstract
The high-mobility group box-1 (HMGB1), as a highly conserved ubiquitous DNA-binding protein, has been widely studied in various diseases, including inflammation and tumor; however, fewer studies were focused on the mechanisms controlling HMGB1 release compared with the function of HMGB1. Previous studies have proven that ANG II can act as a pro-inflammatory cytokine, both of HMGB1 and ANG II were significantly upregulated in autoimmune diseases; however, the exact role of ANG II in regulating HMGB1 release have not been shown. The present study was to define the effects of ANG II on macrophages and the possible mechanisms in controlling HMGB1 release. Our results showed that ANG II can induce M1 macrophage polarization through upregulated the expression of HMGB1 and caused acetylation of HMGB1 and release via its dissociation from SIRT1, which in a positive feedback upregulates ANG II. Subsequently, HMGB1 inhibitors can reduce the ANG II-elicited polarize of macrophage. Meanwhile, we show that JAK/STAT pathways play an essential role in ANG II-induced HMGB1 nuclear translocation, JAK/STAT specific inhibitors can inhibit ANG II-induced HMGB1 expression. Taken together, our results provide a novel evidence that HMGB1 play a critical role in ANG II mediated macrophage polarization, and we suggest that ANG II mediated HMGB1 release via dissociation from SIRT1, induce hyperacetylation of HMGB1, thus for subsequent release, suggesting that the angiotensin II receptor antagonist is a potential drug target for inhibiting HMGB1 release in inflammation diseases.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Hongxiang Lu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Rong Chen
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Tian
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - YuanYuan Jiang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Shiqing Zhang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Daobing Ni
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyi Shao
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
32
|
Goncalves GK, Caldeira de Oliveira TH, de Oliveira Belo N. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet. Med Sci Monit Basic Res 2017; 23:380-391. [PMID: 29249795 PMCID: PMC5747295 DOI: 10.12659/msmbr.907162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. MATERIAL AND METHODS Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. RESULTS A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. CONCLUSIONS The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model.
Collapse
Affiliation(s)
- Gleisy Kelly Goncalves
- Department of Physiology and Biophysic, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Najara de Oliveira Belo
- Multidisciplinar Institute of Health, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| |
Collapse
|
33
|
Di Maggio S, Milano G, De Marchis F, D'Ambrosio A, Bertolotti M, Palacios BS, Badi I, Sommariva E, Pompilio G, Capogrossi MC, Raucci A. Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2693-2704. [PMID: 28716707 DOI: 10.1016/j.bbadis.2017.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023]
Abstract
Myocardial infarction (MI) is a major health burden worldwide. Extracellular High mobility group box 1 (HMGB1) regulates tissue healing after injuries. The reduced form of HMGB1 (fr-HMGB1) exerts chemotactic activity by binding CXCL12 through CXCR4, while the disulfide form, (ds-HMGB1), induces cytokines expression by TLR4. Here, we assessed the role of HMGB1 redox forms and the non-oxidizable mutant (3S) on human cardiac fibroblast (hcFbs) functions and cardiac remodeling after infarction. Among HMGB1 receptors, hcFbs express CXCR4. Fr-HMGB1 and 3S, but not ds-HMGB1, promote hcFbs migration through Src activation, while none of HMGB1 redox forms induces proliferation or inflammatory mediators. 3S is more effective than fr-HMGB1 in stimulating hcFbs migration and Src phosphorylation being active at lower concentrations and in oxidizing conditions. Notably, chemotaxis toward both proteins is CXCR4-dependent but, in contrast to fr-HMGB1, 3S does not require CXCL12 since hcFbs migration persists in the presence of the CXCL12/CXCR4 inhibitor AMD3100 or an anti-CXCL12 antibody. Interestingly, 3S interacts with CXCR4 and induces a different receptor conformation than CXCL12. Mice undergoing MI and receiving 3S exhibit adverse LV remodeling owing to an excessive collagen deposition promoted by a higher number of myofibroblasts. On the contrary, fr-HMGB1 ameliorates cardiac performance enhancing neoangiogenesis and reducing the infarcted area and fibrosis. Altogether, our results demonstrate that non-oxidizable HMGB1 induce a sustained cardiac fibroblasts migration despite the redox state of the environment and by altering CXCL12/CXCR4 axis. This affects proper cardiac remodeling after an infarction.
Collapse
Affiliation(s)
- Stefania Di Maggio
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Giuseppina Milano
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy; Laboratory of Cardiovascular Research, Department of Surgery and Anesthesiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Francesco De Marchis
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro D'Ambrosio
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Matteo Bertolotti
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Blanca Soler Palacios
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, Cantoblanco Campus, Madrid, Spain
| | - Ileana Badi
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | - Maurizio C Capogrossi
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy.
| |
Collapse
|
34
|
Inferring Genes and Biological Functions That Are Sensitive to the Severity of Toxicity Symptoms. Int J Mol Sci 2017; 18:ijms18040755. [PMID: 28368331 PMCID: PMC5412340 DOI: 10.3390/ijms18040755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/23/2017] [Accepted: 03/30/2017] [Indexed: 11/16/2022] Open
Abstract
The effective development of new drugs relies on the identification of genes that are related to the symptoms of toxicity. Although many researchers have inferred toxicity markers, most have focused on discovering toxicity occurrence markers rather than toxicity severity markers. In this study, we aimed to identify gene markers that are relevant to both the occurrence and severity of toxicity symptoms. To identify gene markers for each of four targeted liver toxicity symptoms, we used microarray expression profiles and pathology data from 14,143 in vivo rat samples. The gene markers were found using sparse linear discriminant analysis (sLDA) in which symptom severity is used as a class label. To evaluate the inferred gene markers, we constructed regression models that predicted the severity of toxicity symptoms from gene expression profiles. Our cross-validated results revealed that our approach was more successful at finding gene markers sensitive to the aggravation of toxicity symptoms than conventional methods. Moreover, these markers were closely involved in some of the biological functions significantly related to toxicity severity in the four targeted symptoms.
Collapse
|
35
|
Liu Y, Yu M, Zhang Z, Yu Y, Chen Q, Zhang W, Zhao X. Blockade of receptor for advanced glycation end products protects against systolic overload-induced heart failure after transverse aortic constriction in mice. Eur J Pharmacol 2016; 791:535-543. [PMID: 27393458 DOI: 10.1016/j.ejphar.2016.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 11/15/2022]
Abstract
Heart failure is the consequence of sustained, abnormal neurohormonal and mechanical stress and remains a leading cause of death worldwide. The aim of this work was to identify whether blockade of receptor for advanced glycation end products (RAGE) protected against systolic overload-induced heart failure and investigate the possible underlying mechanism. It was found that RAGE mRNA and protein expression was up-regulated in cardiac tissues from mice subjected to pressure overload by transverse aortic constriction (TAC). Importantly, inhibition of RAGE by treatment with soluble RAGE (sRAGE) or FPS-ZM1 (a high-affinity RAGE-specific inhibitor) for 8 weeks attenuated cardiac remodeling (including cardiac hypertrophy and fibrosis), and dysfunction in mice exposed to TAC. Furthermore, treatment of TAC mice with sRAGE or FPS-ZM1 enhanced phosphorylation of AMPK and reduced phosphorylation of mTOR and protein expression of NFκB p65 in cardiac tissues. In addition, treatment of TAC mice with sRAGE or FPS-ZM1 abated oxidative stress, attenuated endoplasmic reticulum stress, and suppressed inflammation in cardiac tissues. These data demonstrated the benefits of blocking RAGE on the progression of systolic overload-induced heart failure in mice, which was possibly through modulating AMPK/mTOR and NFκB pathways.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, Jinling Hospital, Nanjing University, Zhongshan East Road 305, Nanjing 210002, China; Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Manli Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhigang Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yunhua Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qi Chen
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
36
|
Lin H, Shen L, Zhang X, Xie J, Hao H, Zhang Y, Chen Z, Yamamoto H, Liao W, Bin J, Cao S, Huang X, Liao Y. HMGB1-RAGE Axis Makes No Contribution to Cardiac Remodeling Induced by Pressure-Overload. PLoS One 2016; 11:e0158514. [PMID: 27355349 PMCID: PMC4927190 DOI: 10.1371/journal.pone.0158514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022] Open
Abstract
High-mobility group box1 (HMGB1) exerts effects on inflammation by binding to receptor for advanced glycation end products (RAGE) or Toll-like receptor 4. Considering that inflammation is involved in pressure overload-induced cardiac hypertrophy, we herein attempted to investigate whether HMGB1 plays a role in myocardial hypertrophy in RAGE knockout mice as well as in the growth and apoptosis of cardiomyocytes. The myocardial expression of RAGE was not significantly changed while TLR4 mRNA was upregulated in response to transverse aortic constriction (TAC) for 1 week. The myocardial expression of HMGB1 protein was markedly increased in TAC group when compared to the sham group. Heart weight to body weight ratio (HW/BW) and lung weight to body weight ratio (LW/BW) were evaluated in RAGE knockout (KO) and wild-type (WT) mice 1 week after TAC. Significant larger HW/BW and LW/BW ratios were found in TAC groups than the corresponding sham groups, but no significant difference was found between KO and WT TAC mice. Similar results were also found when TAC duration was extended to 4 weeks. Cultured neonatal rat cardiomyocytes were treated with different concentrations of recombinant HMGB1, then cell viability was determined using MTT and CCK8 assays and cell apoptosis was determined by Hoechst staining and TUNEL assay. The results came out that HMGB1 exerted no influence on viability or apoptosis of cardiomyocytes. Besides, the protein expression levels of Bax and Bcl2 in response to different concentrations of HMGB1 were similar. These findings indicate that HMGB1 neither exerts influence on cardiac remodeling by binding to RAGE nor induces apoptosis of cardiomyocytes under physiological condition.
Collapse
Affiliation(s)
- Hairuo Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liang Shen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, first affiliated hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiajun Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiahe Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huixin Hao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingxue Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhuan Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiping Cao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaobo Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- * E-mail:
| |
Collapse
|