1
|
Yu P, Zhao X, Zhou D, Wang S, Hu Z, Lian K, Zhang N, Duan P. The microRNA-mediated apoptotic signaling axis in male reproduction: a possible and targetable culprit in male infertility. Cell Biol Toxicol 2025; 41:54. [PMID: 40038116 DOI: 10.1007/s10565-025-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Recently, infertility has emerged as a significant and prevalent public health concern warranting considerable attention. Apoptosis, recognized as programmed cell death, constitutes a crucial process essential for the maintenance of normal spermatogenesis. Multiple investigations have illustrated that the dysregulated apoptosis of reproductive cells, encompassing spermatogonial stem cells, Sertoli cells, and Leydig cells, serves as a causative factor in male infertility. MicroRNAs represent a class of small RNA molecules that exert negative regulatory control over gene expression using direct interaction with messenger RNA transcripts. Previous studies have established that aberrant expression of miRNAs induces apoptosis in reproductive tissues, correlating with reproductive dysfunctions and infertility. In this review, we offer a comprehensive overview of miRNAs and their respective target genes implicated in the apoptotic process. As well, miRNAs are involved in multiple apoptotic signaling pathways, namely the PI3K/AKT, NOTCH, Wnt/β-catenin, and mTOR signaling cascades, exerting both negative and positive effects. We additionally elucidate the significant functions played by lncRNAs and circular RNAs as competing endogenous RNAs in the process of apoptosis within reproductive cells. We further illustrate that external factors, including silica nanoparticles, Cyclosporine A, and smoking, induce dysregulation of miRNAs, resulting in apoptosis within reproductive cells and subsequent male reproductive toxicity. Further, we discuss the implication of heat stress, hypoxia, and diabetes in reproductive cell apoptosis induced by miRNA dysregulation in male infertility. Finally, we demonstrate that the modulation of miRNAs via traditional and novel medicine could protect reproductive cells from apoptosis and be implemented as a therapeutic approach in male infertility.
Collapse
Affiliation(s)
- Pengxia Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Xue Zhao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Dan Zhou
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Songtao Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zihuan Hu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Kai Lian
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Nanhui Zhang
- Department of Nephrology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| |
Collapse
|
2
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03594-7. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
3
|
Huang J, Wan H, Jiang J, Huang Y, Zou P, Zhang Z, Jia X, Wang Y. miR-34 negatively regulates the expression of Dmrt and related genes in the testis of mud crab Scylla paramamosain. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111018. [PMID: 39128537 DOI: 10.1016/j.cbpb.2024.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The mud crab (Scylla paramamosain) is a commercially significant marine decapod crustacean. Due to its obvious sexual dimorphism, the mechanism of sex differentiation and gonadal development has attracted significant research interest. The Dmrt (double-sex and mab-3 related transcription factor) genes are vital in animal gonadal development and sex differentiation. In the present study, miR-34 was predicted to target the 3' end of Dmrt-1, idmrt-2, Dmrt-3, Dsx and Dmrt-like genes by prediction software, and the interactions between miR-34 and these Dmrt genes were validated by in vivo and in vitro experiments. Dual luciferase assay results indicated that miR-34 mimics/inhibitors co-transfected with plasmid vectors with 3' end of Dmrt-1, idmrt-2, Dmrt-3, Dsx and Dmrt-like, respectively, led to a significant decrease/increase of fluorescence activity in HEK293T cells. In vivo experiments showed that injection of agomir-34 significantly inhibited Dmrt-1, idmrt-2, Dsx and Dmrt-like expression, while injection of antagomir-34 caused the opposite result. However, Dmrt-3 expression was not affected by injection of miR-34 reagents. Meanwhile, the expression of spermatogenesis and testicular development-related molecular marker genes (IAG, foxl2 and vasa) in mud crabs was significantly changed after injecting the miR-34 reagent in vivo. Furthermore, the result of immunoblotting proved that the expression level of Dmrt-like protein can be regulated by miR-34. These results imply that miR-34 is indirectly involved in sex differentiation and testicular development of S. paramamosain by regulating Dmrt-1, idmrt-2, Dsx and Dmrt-like genes.
Collapse
Affiliation(s)
- Jinkun Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Haifu Wan
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jing Jiang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yicong Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Pengfei Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiwei Jia
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yilei Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
4
|
Hamilton M, Russell S, Swanson GM, Krawetz SA, Menezes K, Moskovtsev SI, Librach C. A comprehensive analysis of spermatozoal RNA elements in idiopathic infertile males undergoing fertility treatment. Sci Rep 2024; 14:10316. [PMID: 38705876 PMCID: PMC11070429 DOI: 10.1038/s41598-024-60586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Current approaches to diagnosing male infertility inadequately assess the complexity of the male gamete. Beyond the paternal haploid genome, spermatozoa also deliver coding and non-coding RNAs to the oocyte. While sperm-borne RNAs have demonstrated potential involvement in embryo development, the underlying mechanisms remain unclear. In this study, 47 sperm samples from normozoospermic males undergoing fertility treatment using donor oocytes were sequenced and analyzed to evaluate associations between sperm RNA elements (exon-sized sequences) and blastocyst progression. A total of 366 RNA elements (REs) were significantly associated with blastocyst rate (padj < 0.05), some of which were linked to genes related to critical developmental processes, including mitotic spindle formation and both ectoderm and mesoderm specification. Of note, 27 RE-associated RNAs are predicted targets of our previously reported list of developmentally significant miRNAs. Inverse RE-miRNA expression patterns were consistent with miRNA-mediated down-regulation. This study provides a comprehensive set of REs which differ by the patient's ability to produce blastocysts. This knowledge can be leveraged to improve clinical screening of male infertility and ultimately reduce time to pregnancy.
Collapse
Affiliation(s)
| | | | - Grace M Swanson
- Department of Obstetrics and Gynecology, Center for Molecular Medicine & Genetics, C.S. Mott Center, Wayne State University School of Medicine, Detroit, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Center for Molecular Medicine & Genetics, C.S. Mott Center, Wayne State University School of Medicine, Detroit, USA
| | | | - Sergey I Moskovtsev
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
5
|
Bahmyari S, Khatami SH, Taghvimi S, Rezaei Arablouydareh S, Taheri-Anganeh M, Ghasemnejad-Berenji H, Farazmand T, Soltani Fard E, Solati A, Movahedpour A, Ghasemi H. MicroRNAs in Male Fertility. DNA Cell Biol 2024; 43:108-124. [PMID: 38394131 DOI: 10.1089/dna.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Farazmand
- Departmant of Gynecology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
6
|
Shi Z, Yu M, Guo T, Sui Y, Tian Z, Ni X, Chen X, Jiang M, Jiang J, Lu Y, Lin M. MicroRNAs in spermatogenesis dysfunction and male infertility: clinical phenotypes, mechanisms and potential diagnostic biomarkers. Front Endocrinol (Lausanne) 2024; 15:1293368. [PMID: 38449855 PMCID: PMC10916303 DOI: 10.3389/fendo.2024.1293368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Infertility affects approximately 10-15% of couples worldwide who are attempting to conceive, with male infertility accounting for 50% of infertility cases. Male infertility is related to various factors such as hormone imbalance, urogenital diseases, environmental factors, and genetic factors. Owing to its relationship with genetic factors, male infertility cannot be diagnosed through routine examination in most cases, and is clinically called 'idiopathic male infertility.' Recent studies have provided evidence that microRNAs (miRNAs) are expressed in a cell-or stage-specific manner during spermatogenesis. This review focuses on the role of miRNAs in male infertility and spermatogenesis. Data were collected from published studies that investigated the effects of miRNAs on spermatogenesis, sperm quality and quantity, fertilization, embryo development, and assisted reproductive technology (ART) outcomes. Based on the findings of these studies, we summarize the targets of miRNAs and the resulting functional effects that occur due to changes in miRNA expression at various stages of spermatogenesis, including undifferentiated and differentiating spermatogonia, spermatocytes, spermatids, and Sertoli cells (SCs). In addition, we discuss potential markers for diagnosing male infertility and predicting the varicocele grade, surgical outcomes, ART outcomes, and sperm retrieval rates in patients with non-obstructive azoospermia (NOA).
Collapse
Affiliation(s)
- Ziyan Shi
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tingchao Guo
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Zhiying Tian
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xiang Ni
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Jingyi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Meina Lin
- NHC Key Laboratory of Reproductive Health and Medical Genetics & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Gao Y, Wu Q, Wang G, Zhang S, Ma W, Shi X, Liu H, Wu L, Tian X, Li X, Ma X. Histomorphic analysis and expression of mRNA and miRNA in embryonic gonadal differentiation in Chinese soft-shelled turtle (Pelodiscus sinensis). Gene 2024; 893:147913. [PMID: 37866663 DOI: 10.1016/j.gene.2023.147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is extensively cultured in Asia for its nutritional and medical value. Gonadal differentiation is fantastic in turtles, whereas morphologic, mRNA, and miRNA expressions were insufficient in the turtle. In this study, ovaries and testes histomorphology analysis of 14-23 stage embryos were performed, and mRNA and miRNA expression profiles were analyzed. Histomorphology analysis revealed that gonads were undifferentiated at embryonic stage 14. Ovarian morphological differentiation became evident from stage 15, which was characterized by the development of the cortical region and degeneration of the medullary region. Concurrently, testicular morphological differentiation was apparent from stage 15, marked by the development of the medullary region and degeneration of the cortical region. qRT-PCR results showed that Cyp19a1 and Foxl2 exhibited female-specific expression at stage 15 and the expression increased throughout most of the embryonic development. Dmrt1, Amh, and Sox9 displayed male-specific expression at stage 15 and tended to increase substantially at later developmental stages. The expression of miR-8356 and miR-3299 in ZZ gonads were significantly higher than that in ZW gonads at stage 15, 17 and 19, and they had the highest expression at stage 15. While the expression of miR-8085 and miR-7982 had the highest expression at stage 19. Furthermore, chromatin remodeler genes showed differential expression in female and male P. sinensis gonads. These results of master sex-differentiation genes and morphological characteristics would provide a reference for the research of sex differentiation and sex reversal in turtles. Additionally, the expression of chromatin remodeler genes indicated they might be involved in gonadal differentiation of P. sinensis.
Collapse
Affiliation(s)
- Yijie Gao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Qisheng Wu
- Fisheries Research Institute of Fujian, Xiamen 361000, China.
| | - Guiyu Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Shufang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Wenge Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xi Shi
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
8
|
Klees C, Alexandri C, Demeestere I, Lybaert P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? Int J Mol Sci 2023; 25:460. [PMID: 38203631 PMCID: PMC10778981 DOI: 10.3390/ijms25010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Oncological treatments have dramatically improved over the last decade, and as a result, survival rates for cancer patients have also improved. Quality of life, including concerns about fertility, has become a major focus for both oncologists and patients. While oncologic treatments are often highly effective at suppressing neoplastic growth, they are frequently associated with severe gonadotoxicity, leading to infertility. For male patients, the therapeutic option to preserve fertility is semen cryopreservation. In prepubertal patients, immature testicular tissue can be sampled and stored to allow post-cure transplantation of the tissue, immature germ cells, or in vitro spermatogenesis. However, experimental techniques have not yet been proven effective for restoring sperm production for these patients. MicroRNAs (miRNAs) have emerged as promising molecular markers and therapeutic tools in various diseases. These small regulatory RNAs possess the unique characteristic of having multiple gene targets. MiRNA-based therapeutics can, therefore, be used to modulate the expression of different genes involved in signaling pathways dysregulated by changes in the physiological environment (disease, temperature, ex vivo culture, pharmacological agents). This review discusses the possible role of miRNA as an innovative treatment option in male fertility preservation-restoration strategies and describes the diverse applications where these new therapeutic tools could serve as fertility protection agents.
Collapse
Affiliation(s)
- Charlotte Klees
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Chrysanthi Alexandri
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
- Fertility Clinic, HUB-Erasme Hospital, 1070 Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| |
Collapse
|
9
|
Zhu T, Kong M, Yu Y, Schartl M, Power DM, Li C, Ma W, Sun Y, Li S, Yue B, Li W, Shao C. Exosome delivery to the testes for dmrt1 suppression: A powerful tool for sex-determining gene studies. J Control Release 2023; 363:275-289. [PMID: 37726035 DOI: 10.1016/j.jconrel.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Exosomes are endosome-derived extracellular vesicles about 100 nm in diameter. They are emerging as promising delivery platforms due to their advantages in biocompatibility and engineerability. However, research into and applications for engineered exosomes are still limited to a few areas of medicine in mammals. Here, we expanded the scope of their applications to sex-determining gene studies in early vertebrates. An integrated strategy for constructing the exosome-based delivery system was developed for efficient regulation of dmrt1, which is one of the most widely used sex-determining genes in metazoans. By combining classical methods in molecular biology and the latest technology in bioinformatics, isomiR-124a was identified as a dmrt1 inhibitor and was loaded into exosomes and a testis-targeting peptide was used to modify exosomal surface for efficient delivery. Results showed that isomiR-124a was efficiently delivered to the testes by engineered exosomes and revealed that dmrt1 played important roles in maintaining the regular structure and function of testis in juvenile fish. This is the first de novo development of an exosome-based delivery system applied in the study of sex-determining gene, which indicates an attractive prospect for the future applications of engineered exosomes in exploring more extensive biological conundrums.
Collapse
Affiliation(s)
- Tengfei Zhu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266003, China
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Guangyun Road 33, Foshan 528225, China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Sanderring 2, Würzburg 97074, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Deborah Mary Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Algarve, Faro 8005-139, Portugal
| | - Chen Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266072, China
| | - Wenxiu Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Yanxu Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Shuo Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Bowen Yue
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Weijing Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China.
| |
Collapse
|
10
|
Hashemi Karoii D, Azizi H. Functions and mechanism of noncoding RNA in regulation and differentiation of male mammalian reproduction. Cell Biochem Funct 2023; 41:767-778. [PMID: 37583312 DOI: 10.1002/cbf.3838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Noncoding RNAs (ncRNAs) are active regulators of a wide range of biological and physiological processes, including the majority of mammalian reproductive events. Knowledge of the biological activities of ncRNAs in the context of mammalian reproduction will allow for a more comprehensive and comparative understanding of male sterility and fertility. In this review, we describe recent advances in ncRNA-mediated control of mammalian reproduction and emphasize the importance of ncRNAs in several aspects of mammalian reproduction, such as germ cell biogenesis and reproductive organ activity. Furthermore, we focus on gene expression regulatory feedback loops including hormones and ncRNA expression to better understand germ cell commitment and reproductive organ function. Finally, this study shows the role of ncRNAs in male reproductive failure and provides suggestions for further research.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
11
|
Yao B, Kang Y, An K, Tan Y, Hou Q, Zhang D, Su J. Comparative analysis of microRNA and messengerRNA expression profiles in plateau zokor testicular cells under reproductive suppression. Front Vet Sci 2023; 10:1184120. [PMID: 37275617 PMCID: PMC10235463 DOI: 10.3389/fvets.2023.1184120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Reproductive suppression is an adaptive strategy that affects the success rate and reproductive efficiency in animals, which in turn affects population continuation and evolution. However, no studies on the miRNAs in testicular development and spermatogenesis regulatory mechanisms under reproductive suppression have been reported. Methods In this study, the differentially expressed (DE) miRNAs, miRNA-mRNA interaction network and function of the plateau zokor testicular cells of non-breeders and breeders during the breeding season were comprehensively analyzed by transcriptomics. Results In total, 381 known and 94 novel miRNAs were determined. Compared with that in the breeders, 70 downregulated and 68 upregulated DE miRNAs were identified in the non-breeders. We predicted 1670 significant target mRNAs by analyzing the miRNA and mRNA expression profiles. According to the miRNA-mRNA interaction network, the target mRNAs of the DE miRNAs were related to testicular development and spermatogenesis. GO indicate that the target mRNAs were related to testicular development and spermatogenesis. KEGG indicate that pathways of target mRNAs enrichment related to testicular development, spermatogenesis, and energy metabolism. PROK2 was determined as the target mRNA of rno-miR-143-3p. Discussion Our study offers a basis for the regulatory mechanisms of miRNAs in testicular development and spermatogenesis in plateau zokor under reproductive suppression and offers a reference for reproductive regulation.
Collapse
Affiliation(s)
- Baohui Yao
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yukun Kang
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Kang An
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yuchen Tan
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Qiqi Hou
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Degang Zhang
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Junhu Su
- Key Laboratory of Grassland Ecosystem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Wei W, He J, Yaqoob MA, Gui L, Ren J, Li J, Li M. Integrated mRNA and miRNA Expression Profile Analysis of Female and Male Gonads in Acrossocheilus fasciatus. BIOLOGY 2022; 11:1296. [PMID: 36138775 PMCID: PMC9495813 DOI: 10.3390/biology11091296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
MicroRNAs (miRNAs) are regarded as key regulators in gonadal development and sex determination in diverse organisms. However, the functions of miRNAs in gonads of Acrossocheilus fasciatus, an economically important freshwater species in the south of China, are still unclear. Here, high-throughput sequencing was performed to investigate the mRNA and miRNAs on gonads of A. fasciatus. In total, 49,447 unigenes were obtained, including 11,635 differentially expressed genes (DEGs), among which 4147 upregulated genes and 7488 downregulated genes in the testis compared to the ovary, while 300 (237 known, and 63 novel) miRNAs with 36 differentially expressed miRNAs (DEMs) were identified, from which 17 upregulated and 19 downregulated DEMs. GO and KEGG enrichment analysis were performed to analyze the potential biological functions of DEGs and DEMs. Using qRT-PCR, 9 sex-related genes and 9 miRNAs were selected to verify the sequencing data. By dual-luciferase reporter assay, miR-22a-5p and miR-22b-5p interaction with piwil1, and miR-10d-5p interaction with piwil2 were identified. These findings could provide a reference for miRNA-regulated sex control of A. fasciatus and may reveal new insights into aquaculture and breeding concepts.
Collapse
Affiliation(s)
- Wenbo Wei
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jiamei He
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Muhammad Amjad Yaqoob
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jianfeng Ren
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Wang HQ, Wang T, Gao F, Ren WZ. Application of CRISPR/Cas Technology in Spermatogenesis Research and Male Infertility Treatment. Genes (Basel) 2022; 13:genes13061000. [PMID: 35741761 PMCID: PMC9223233 DOI: 10.3390/genes13061000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
As the basis of animal reproductive activity, normal spermatogenesis directly determines the efficiency of livestock production. An in-depth understanding of spermatogenesis will greatly facilitate animal breeding efforts and male infertility treatment. With the continuous development and application of gene editing technologies, they have become valuable tools to study the mechanism of spermatogenesis. Gene editing technologies have provided us with a better understanding of the functions and potential mechanisms of action of factors that regulate spermatogenesis. This review summarizes the applications of gene editing technologies, especially CRISPR/Cas9, in deepening our understanding of the function of spermatogenesis-related genes and disease treatment. The problems of gene editing technologies in the field of spermatogenesis research are also discussed.
Collapse
|
14
|
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022; 19:162-175. [PMID: 35067179 PMCID: PMC8786336 DOI: 10.1080/15476286.2021.2024033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infertility is rarely life threatening, however, it poses a serious global health issue posing far-reaching socio-economic impacts affecting 12–15% of couples worldwide where male factor accounts for 70%. Functional spermatogenesis which is the result of several concerted coordinated events to produce sperms is at the core of male fertility, Alternative splicing and microRNA (miRNA) mediated RNA silencing (RNAi) constitute two conserved post-transcriptional gene (re)programming machinery across species. The former by diversifying transcriptome signature and the latter by repressing target mRNA activity orchestrate a spectrum of testicular events, and their dysfunctions has several implications in male infertility. This review recapitulates the knowledge of these mechanistic events in regulation of spermatogenesis and testicular homoeostasis. In addition, miRNA payload in sperm, vulnerable to paternal inputs, including unhealthy diet, infection and trauma, creates epigenetic memory to initiate intergenerational phenotype. Naive zygote injection of sperm miRNAs from stressed father recapitulates phenotypes of offspring of stressed father. The epigenetic inheritance of paternal pathologies through miRNA could be a tantalizing avenue to better appreciate ‘Paternal Origins of Health and Disease’ and the power of tiny sperm.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Department of Zoology, Faculty of Science, University of Central Punjab, Lahore, Pakistan
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
15
|
Walker WH. Regulation of mammalian spermatogenesis by miRNAs. Semin Cell Dev Biol 2022; 121:24-31. [PMID: 34006455 PMCID: PMC8591147 DOI: 10.1016/j.semcdb.2021.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
Male fertility requires the continual production of sperm by the process of spermatogenesis. This process requires the correct timing of regulatory signals to germ cells during each phase of their development. MicroRNAs (miRNAs) in germ cells and supporting Sertoli cells respond to regulatory signals and cause down- or upregulation of mRNAs and proteins required to produce proteins that act in various pathways to support spermatogenesis. The targets and functional consequences of altered miRNA expression in undifferentiated and differentiating spermatogonia, spermatocytes, spermatids and Sertoli cells are discussed. Mechanisms are reviewed by which miRNAs contribute to decisions that promote spermatogonia stem cell self-renewal versus differentiation, entry into and progression through meiosis, differentiation of spermatids, as well as the regulation of Sertoli cell proliferation and differentiation. Also discussed are miRNA actions providing the very first signals for the differentiation of spermatogonia stem cells in a non-human primate model of puberty initiation.
Collapse
Affiliation(s)
- William H. Walker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, 204 Craft Ave., Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
17
|
Wang Y, Chen Y, Cao M, Wang X, Wang G, Li J. Identification of wnt2 in the pearl mussel Hyriopsis cumingii and its role in innate immunity and gonadal development. FISH & SHELLFISH IMMUNOLOGY 2021; 118:85-93. [PMID: 34438059 DOI: 10.1016/j.fsi.2021.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Wnt2 is a significant factor in the Wnt signaling pathway, which is associated with a variety of physiological activities, including inflammatory response, cell apoptosis, reproductive system development, and cell differentiation. Hyriopsis cumingii is the main pearl breeding mussel in China. However, the role of wnt2 in this species remains unclear. In this study, wnt2 from H. cumingii was cloned and identified. The full-length cDNA of wnt2 is 1524 bp, containing a 963 bp open reading frame (ORF), encoding 320 amino acid residues. The tissue distribution of H. cumingii indicated that wnt2 was predominantly highly expressed in the ovary and gill. And the expression profile after Aeromonas hydrophila or LPS injection indicated that wnt2 was up-regulated in gill, suggesting its role in the innate immune response. The expression of wnt2 was high at 4-month-old of early gonadal development and throughout ovarian development. In situ hybridization (ISH) showed significant hybridization signals on the gills and mature eggs of female gonads. In addition, miR-1988b-5p was found to negatively regulate wnt2 to affect the expression of key genes (frizzled-5, ctnnb1, and tcf7l) in the Wnt signaling pathway. Thus, these findings suggest a key role for wnt2 in immune regulation and gonadal development in H. cumingii.
Collapse
Affiliation(s)
- Yayu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Ya Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Mulian Cao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Xiaoqiang Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| |
Collapse
|
18
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
19
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
20
|
Guttula PK, Monteiro PT, Gupta MK. Prediction and Boolean logical modelling of synergistic microRNA regulatory networks during reprogramming of male germline pluripotent stem cells. Biosystems 2021; 207:104453. [PMID: 34129895 DOI: 10.1016/j.biosystems.2021.104453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Unipotent male germline stem (GS) cells can undergo spontaneous reprogramming to germline pluripotent stem (GPS) cells during in vitro culture. In our previous study, we proposed a Boolean logical model of gene regulatory network (GRN) during reprogramming of GS cells to GPS cells. This study was designed to predict and model synergistic microRNA (miRNA) regulatory network during reprogramming of GS cells into GPS cells. The miRNAs targeting differentially expressed genes (DEGs) among GS and GPS cells were predicted by a novel Gene Ontology (GO) enrichment analysis to construct miRNA synergistic networks (MSN) and identify regulatory miRNA modules. Qualitative Boolean logical model of synergistic miRNAs and its regulated genes was then constructed by considering discrete, asynchronous, multivalued logical formalism using the GINsim modeling and simulation tools. Topology, functional and community overlap studies revealed that mmu-miR-200b-3p, mmu-miR-429-3p and mmu-miR-141-3p, mmu-miR-200a-3p and mmu-miR-200c-3p in MSN belongs to the family of miR-200/429/141 and conjectured to control the pluripotency and reprogramming by promoting Mesenchymal to Epithelial Transition (MET). Synergistic network involving mmu-miR-20b-5p, mmu-miR-20a-5p, mmu-miR-106a-5p, mmu-miR-106b-5p, and mmu-miR-17-5p were found to be essential for the maintenance of GS cells. Logical miRNA regulatory network modelling showed that synergistic miRNAs regulates the gene dynamics of MET during GS-GPS reprogramming, as confirmed by perturbation analysis. Taken together, our study predicted novel synergistic miRNAs involved in the regulation of reprogramming and pluripotency in GPS cells. The Boolean logical model of synergistic miRNAs regulatory network further confirms our previous study that gene dynamics of MET regulates GS-GPS reprogramming.
Collapse
Affiliation(s)
- Praveen Kumar Guttula
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Pedro T Monteiro
- Department of Computer Science and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; INESC-ID, SW Algorithms and Tools for Constraint Solving Group, R. Alves Redol 9, 1000-029 Lisbon, Portugal
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
21
|
Yin Z, Xu X, Tan Y, Cao H, Zhou W, Dong X, Mao H. Expression analysis of microRNAs and their target mRNAs of testes with high and low sperm motility in domestic pigeons (Columba livia). Genomics 2020; 113:257-264. [PMID: 33338630 DOI: 10.1016/j.ygeno.2020.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 12/13/2020] [Indexed: 11/24/2022]
Abstract
Sperm motility is one of the most important indicators to evaluate poultry fertility. In order to explore key molecular regulation roles related to sperm motility, we employed testicular RNA sequencing of pigeon. A total of 705 known and 385 novel microRNAs were identified. Compared with the low sperm motility group, four upregulated and two downregulated miRNAs in the high sperm motility group were identified. A total of 3567 target mRNAs were predicted and four target mRNAs were selected to validate by qPCR. The miRNA-mRNA interaction network analysis, indicated that mmu-miR-183-5p /FOXO1 and PC-3p-244994_31/CHDH pairs might affect sperm motility. GO and KEGG annotation analysis showed that target genes of differentially expressed miRNAs were related to serine/threonine kinase activity, ATP binding, Wnt and MAPK signaling pathway. The study provided a global miRNAs transcriptome of pigeon and a novel insight into the expression of the miRNAs in testes that associated with sperm motility.
Collapse
Affiliation(s)
- Zhaozheng Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiuli Xu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yuge Tan
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiyue Cao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Wei Zhou
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinyang Dong
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiguang Mao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
22
|
Yang F, Whelan EC, Guan X, Deng B, Wang S, Sun J, Avarbock MR, Wu X, Brinster RL. FGF9 promotes mouse spermatogonial stem cell proliferation mediated by p38 MAPK signalling. Cell Prolif 2020; 54:e12933. [PMID: 33107118 PMCID: PMC7791179 DOI: 10.1111/cpr.12933] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/24/2020] [Accepted: 10/03/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives Fibroblast growth factor 9 (FGF9) is expressed by somatic cells in the seminiferous tubules, yet little information exists about its role in regulating spermatogonial stem cells (SSCs). Materials and Methods Fgf9 overexpression lentivirus was injected into mouse testes, and PLZF immunostaining was performed to investigate the effect of FGF9 on spermatogonia in vivo. Effect of FGF9 on SSCs was detected by transplanting cultured germ cells into tubules of testes. RNA‐seq of bulk RNA and single cell was performed to explore FGF9 working mechanisms. SB203580 was used to disrupt p38 MAPK pathway. p38 MAPK protein expression was detected by Western blot and qPCR was performed to determine different gene expression. Small interfering RNA (siRNA) was used to knock down Etv5 gene expression in germ cells. Results Overexpression of Fgf9 in vivo resulted in arrested spermatogenesis and accumulation of undifferentiated spermatogonia. Exposure of germ cell cultures to FGF9 resulted in larger numbers of SSCs over time. Inhibition of p38 MAPK phosphorylation negated the SSC growth advantage provided by FGF9. Etv5 and Bcl6b gene expressions were enhanced by FGF9 treatment. Gene knockdown of Etv5 disrupted the growth effect of FGF9 in cultured SSCs along with downstream expression of Bcl6b. Conclusions Taken together, these data indicate that FGF9 is an important regulator of SSC proliferation, operating through p38 MAPK phosphorylation and upregulating Etv5 and Bcl6b in turn.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eoin C Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuebing Guan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bingquan Deng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiachen Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mary R Avarbock
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Ma X, Cen S, Wang L, Zhang C, Wu L, Tian X, Wu Q, Li X, Wang X. Genome-wide identification and comparison of differentially expressed profiles of miRNAs and lncRNAs with associated ceRNA networks in the gonads of Chinese soft-shelled turtle, Pelodiscus sinensis. BMC Genomics 2020; 21:443. [PMID: 32600250 PMCID: PMC7322844 DOI: 10.1186/s12864-020-06826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background The gonad is the major factor affecting animal reproduction. The regulatory mechanism of the expression of protein-coding genes involved in reproduction still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction have been investigated in some species. However, the regulatory patterns of miRNA and lncRNA in the sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of Pelodiscus sinensis. Results We identified 10,446 mature miRNAs, 20,414 mRNAs and 28,500 lncRNAs in the ovaries and testes, and 633 miRNAs, 11,319 mRNAs, and 10,495 lncRNAs showed differential expression. A total of 2814 target genes were identified for miRNAs. The predicted target genes of these differentially expressed (DE) miRNAs and lncRNAs included abundant genes related to reproductive regulation. Furthermore, we found that 189 DEmiRNAs and 5408 DElncRNAs showed sex-specific expression. Of these, 3 DEmiRNAs and 917 DElncRNAs were testis-specific, and 186 DEmiRNAs and 4491 DElncRNAs were ovary-specific. We further constructed complete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 103 DEmiRNAs, 636 DEmRNAs, and 1622 DElncRNAs. The target genes for the differentially expressed miRNAs and lncRNAs included abundant genes involved in gonadal development, including Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1. Conclusions In animals, miRNA and lncRNA as master regulators regulate reproductive processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for studying the molecular processes involved in sexual reproduction and genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproductive traits for aquaculture.
Collapse
Affiliation(s)
- Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Shuangshuang Cen
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Luming Wang
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Chao Zhang
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qisheng Wu
- Fisheries Research Institute of Fujian, Xiamen, Fujian, 361000, People's Republic of China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| | - Xiaoqing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| |
Collapse
|
24
|
Li Q, Lu C, Wang J, Gao M, Gao W. MicroRNA-449b-5p Suppresses Proliferation, Migration, and Invasion of Osteosarcoma by Targeting c-Met. Med Sci Monit 2019; 25:6236-6243. [PMID: 31425497 PMCID: PMC6713030 DOI: 10.12659/msm.918454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The aim of this study was to clarify the biological function of microRNA-449b-5p in the progression of osteosarcoma (OS) and to define the underlying mechanism. Material/Methods Relative levels of microRNA-449b-5p in OS tissues and cell lines was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between microRNA-449b-5p level and pathological characteristics of OS patients was analyzed by chi-square test. Kaplan-Meier analysis was used for survival analysis of OS patients based on their expression level of microRNA-449b-5p. Regulatory effects of microRNA-449b-5p on cellular behaviors of OS cells were evaluated by cell counting kit-8 (CCK-8) and Transwell assay. The binding relationship between microRNA-449b-5p and c-Met was verified through dual-luciferase reporter gene assay, and their interaction in OS progression was further examined through a series of rescue experiments. Results MicroRNA-449b-5p was expressed at low levels in OS. Lower levels of microRNA-449b-5p were seen in OS tissues with worse tumor grade or histological differentiation. OS patients with low levels of microRNA-449b-5p had worse overall survival relative to those with high level of microRNA-449b-5p. Overexpression of microRNA-449b-5p markedly attenuated proliferative, migratory, and invasive abilities of OS cells. C-Met is the downstream target of microRNA-449b-5p, and its level was inhibited in OS cells overexpressing microRNA-449b-5p. Importantly, c-Met partially rescued the inhibitory effects of microRNA-449b-5p on behavior of OS cells. Conclusions MicroRNA-449b-5p is downregulated in OS, which alleviates the malignant progression of OS by targeting c-Met.
Collapse
Affiliation(s)
- Qian Li
- Department of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Changliang Lu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Jingye Wang
- Department of Pathology, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong, China (mainland)
| | - Min Gao
- Department of Otolaryngology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Wei Gao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China (mainland)
| |
Collapse
|
25
|
Wang JH, Li Y, Deng SL, Liu YX, Lian ZX, Yu K. Recent Research Advances in Mitosis during Mammalian Gametogenesis. Cells 2019; 8:cells8060567. [PMID: 31185583 PMCID: PMC6628140 DOI: 10.3390/cells8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Mitosis is a highly sophisticated and well-regulated process during the development and differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the regulation of meiosis. In addition, more functional signaling molecules have been discovered in mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction and the development of disease treatments.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Abdeyrim A, Cheng X, Lian M, Tan Y. miR‑490‑5p regulates the proliferation, migration, invasion and epithelial‑mesenchymal transition of pharyngolaryngeal cancer cells by targeting mitogen‑activated protein kinase kinasekinase 9. Int J Mol Med 2019; 44:240-252. [PMID: 31115491 PMCID: PMC6559303 DOI: 10.3892/ijmm.2019.4196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/08/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miRNA/miR) has been identified to be a promising tool in treating pharyngolaryngeal cancer. The present study aimed to investigate the role of miR‑490‑5p in the regulation of proliferation, migration, invasion and epithelial‑mesenchymal transition (EMT) of pharyngolaryngeal cancer cells. The data of miR‑490‑5p expression levels of 45 cases were obtained from the People's Hospital of Xinjiang Uygur Autonomous Region, and the prediction of the target of miR‑490‑5p was conducted by bioinformatics and verified using a luciferase assay. Cell viability was determined by cell counting kit‑8. Migration and invasion rates were measured by wound healing test and Transwell apparatus, respectively. Colony formation rate was measured by plate colony formation assay. mRNA and protein levels were determined by quantitative polymerase chain reaction and western blotting, respectively. miR‑490‑5p expression was significantly depressed in primary pharyngolaryngeal cancer tissues and cell lines, leading to an unfavorable prognosis. Evidently, miR‑490‑5p overexpression decreased the cell viabilities of BICR 18 and FaDu cells. Mechanically, miR‑490‑5p could target mitogen‑activated protein kinase kinasekinase 9 (MAP3K9). The overexpression of MAP3K9 could promote cell viability, migration and invasion rates, EMT process and ability of cloning, miR‑490‑5p could target MAP3K9 and further modulate the proliferation, migration, invasion and EMT of pharyngolaryngeal cancer cells. The results of the present study provide a novel entry point to the treatment of pharyngolaryngeal cancer.
Collapse
Affiliation(s)
- Arikin Abdeyrim
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, Xinjiang 830001, P.R. China
| | - Xiuqin Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, Xinjiang 830001, P.R. China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, P.R. China
| | - Yuanyouan Tan
- Department of Otorhinolaryngology Head and Neck Surgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, Xinjiang 830001, P.R. China
| |
Collapse
|
27
|
Robles V, Valcarce DG, Riesco MF. Non-coding RNA regulation in reproduction: Their potential use as biomarkers. Noncoding RNA Res 2019; 4:54-62. [PMID: 31193491 PMCID: PMC6531869 DOI: 10.1016/j.ncrna.2019.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are crucial regulatory elements in most biological processes and reproduction is also controlled by them. The different types of ncRNAs, as well as the high complexity of these regulatory pathways, present a complex scenario; however, recent studies have shed some light on these questions, discovering the regulatory function of specific ncRNAs on concrete reproductive biology processes. This mini review will focus on the role of ncRNAs in spermatogenesis and oogenesis, and their potential use as biomarkers for reproductive diseases or for reproduction success.
Collapse
Affiliation(s)
- Vanesa Robles
- Spanish Institute of Oceanography (IEO) Santander, Spain
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain
- Corresponding author. Planta de Cultivos el Bocal, IEO, Barrio Corbanera, Monte, Santander, 39012, Spain.
| | | | | |
Collapse
|
28
|
Identification of the X-linked germ cell specific miRNAs (XmiRs) and their functions. PLoS One 2019; 14:e0211739. [PMID: 30707741 PMCID: PMC6358104 DOI: 10.1371/journal.pone.0211739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in multiple aspects of biology. Dicer, an RNase III endonuclease, is essential for the biogenesis of miRNAs, and the germ cell-specific Dicer1 knockout mouse shows severe defects in gametogenesis. How miRNAs regulate germ cell development is still not fully understood. In this study, we identified germ cell-specific miRNAs (miR-741-3p, miR-871-3p, miR-880-3p) by analyzing published RNA-seq data of mouse. These miRNA genes are contiguously located on the X chromosome near other miRNA genes. We named them X chromosome-linked miRNAs (XmiRs). To elucidate the functions of XmiRs, we generated knockout mice of these miRNA genes using the CRISPR/Cas9-mediated genome editing system. Although no histological abnormalities were observed in testes of F0 mice in which each miRNA gene was disrupted, a deletion covering miR-871 and miR-880 or covering all XmiRs (ΔXmiRs) resulted in arrested spermatogenesis in meiosis in a few seminiferous tubules, indicating their redundant functions in spermatogenesis. Among candidate targets of XmiRs, we found increased expression of a gene encoding a WNT receptor, FZD4, in ΔXmiRs testis compared with that in wildtype testis. miR-871-3p and miR-880-3p repressed the expression of Fzd4 via the 3′-untranslated region of its mRNA. In addition, downstream genes of the WNT/β-catenin pathway were upregulated in ΔXmiRs testis. We also found that miR-871, miR-880, and Fzd4 were expressed in spermatogonia, spermatocytes and spermatids, and overexpression of miR-871 and miR-880 in germ stem cells in culture repressed their increase in number and Fzd4 expression. Previous studies indicated that the WNT/β-catenin pathway enhances and represses proliferation and differentiation of spermatogonia, respectively, and our results consistently showed that stable β-catenin enhanced GSC number. In addition, stable β-catenin partially rescued reduced GSC number by overexpression of miR-871 and miR-880. The results together suggest that miR-871 and miR-880 cooperatively regulate the WNT/β-catenin pathway during testicular germ cell development.
Collapse
|
29
|
Chen YX. Protective effect of microRNA-224 on acute lower extremity ischemia through activation of the mTOR signaling pathway via CHOP in mice. J Cell Physiol 2018; 234:8888-8898. [PMID: 30488423 DOI: 10.1002/jcp.27550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
Acute lower extremity ischemia (ALEXI) is known worldwide as an urgent condition, occurring when there is an abrupt interruption in blood flow into an extremity. This study aims to investigate whether microRNA-224 (miR-224) affects the ALEXI mice and the underlying mechanism. The miR-224 expression and C/EBP homologous protein (CHOP), mammalian target of rapamycin (mTOR), translation initiation factor 4E-binding protein 1 (4E-BP1), and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) messenger RNA (mRNA), as well as protein expressions, were determined. The target gene of miR-224 was also verified by using a luciferase reporter gene assay. The vascular endothelial cells from the ALEXI mice were transfected with miR-224 mimics, miR-224 inhibitors, or small-interfering RNA against CHOP. Cell proliferation was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle distribution along with the cell apoptosis were both evaluated by using a flow cytometry. The muscle fibers of the lower extremities found in the ALEXI mice were evidently swollen and rounded, presenting with a remarkably narrowed gap. The positive CHOP expression increased in ALEXI mice than normal mice, while the miR-224 expression and mTOR, 4E-BP1, and p70S6K mRNA, as well as the protein expression, decreased. Luciferase reporter gene assay validated that the miR-224 gene directly targeted CHOP. MiR-224 facilitated cell proliferation but inhibited cell apoptosis; by contrast, CHOP increased cell apoptosis. Moreover, the cells transfected along with miR-224 mimic exhibited a lower CHOP expression as well as increased mTOR, 4E-BP1, and p70S6K expression. Our study provided evidence that miR-224 could alleviate the occurrence and development of ALEXI in mice through activation of the mTOR signaling pathway by downregulating CHOP.
Collapse
Affiliation(s)
- Yang-Xi Chen
- Department of Hematology Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
30
|
Fu H, Zhou F, Yuan Q, Zhang W, Qiu Q, Yu X, He Z. miRNA-31-5p Mediates the Proliferation and Apoptosis of Human Spermatogonial Stem Cells via Targeting JAZF1 and Cyclin A2. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:90-100. [PMID: 30583099 PMCID: PMC6305686 DOI: 10.1016/j.omtn.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Several lines of evidence highlight the important application of human spermatogonial stem cells (SSCs) in translational medicine. The fate decisions of SSCs are mainly mediated by genetic and epigenetic factors. We have recently demonstrated that PAK1 regulates the proliferation, DNA synthesis, and early apoptosis of human SSCs through the PDK1/KDR/ZNF367 and ERK1/2 and AKT pathway. However, the underlying epigenetic mechanism of PAK1 in human SSCs remains unknown. In this study, we found that the level of miRNA-31-5p was elevated by PAK1 knockdown. CCK-8, PCNA, and 5-ethynyl-2′-deoxyuridine (EDU) assays revealed that miRNA-31-5p mimics inhibited cell proliferation and DNA synthesis of human SSCs. Annexin V/propidium iodide (PI) staining and flow cytometry showed that miRNA-31-5p increased the early and late apoptosis of human SSCs. Furthermore, JAZF1 was predicted and verified as a target of miRNA-31-5p, and the three-dimensional (3D) structure model of JAZF1 protein was illustrated. JAZF1 silencing led to a reduction of cell proliferation and DNA synthesis as well as an enhancement of the early and late apoptosis of human SSCs. Finally, miRNA-31-5p mimics decreased the level of cyclin A2 rather than cyclin D1 or cyclin E1, and JAZF1 knockdown led to the reduction of cyclin A2 in human SSCs. Collectively, miRNA-31-5p regulates the proliferation, DNA synthesis, and apoptosis of human SSCs by the PAK1-JAZF1-cyclin A2 pathway. This study thus offers a novel insight into the molecular mechanisms underlying the fate determinations of human SSCs and might provide novel targets for molecular therapy of male infertility.
Collapse
Affiliation(s)
- Hongyong Fu
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China; The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou, Henan 450008, China
| | - Fan Zhou
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Qingqing Yuan
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Wenhui Zhang
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Qianqian Qiu
- Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Xing Yu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China
| | - Zuping He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, Hunan 410013, China; Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China; Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.
| |
Collapse
|
31
|
Bie B, Wang Y, Li L, Fang H, Liu L, Sun J. Noncoding RNAs: Potential players in the self-renewal of mammalian spermatogonial stem cells. Mol Reprod Dev 2018; 85:720-728. [PMID: 29969526 DOI: 10.1002/mrd.23041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/30/2018] [Indexed: 12/11/2022]
Abstract
Spermatogonial stem cells (SSCs), a unique population of male germ cells with self-renewal ability, are the foundation for maintenance of spermatogenesis throughout the life of the male. Although many regulatory molecules essential for SSC self-renewal have been identified, the fundamental mechanism underlying how SSCs acquire and maintain their self-renewal activity remains largely to be elucidated. In recent years, many types of noncoding RNAs (ncRNAs) have been suggested to regulate the SSC self-renewal through multiple ways, indicating ncRNAs play crucial roles in SSC self-renewal. In this paper, we mainly focus on four types of ncRNAs including microRNA, long ncRNA, piwi-interacting RNA, as well as circular RNAs, and reviewed their potential roles in SSC self-renewal that discovered recently to help us gain a better understanding of molecular mechanisms by which ncRNAs perform their function in regulating SSC self-renewal.
Collapse
Affiliation(s)
- Beibei Bie
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Ya Wang
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Liang Li
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Huanle Fang
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Libing Liu
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Harchegani AB, Shafaghatian H, Tahmasbpour E, Shahriary A. Regulatory Functions of MicroRNAs in Male Reproductive Health: A New Approach to Understanding Male Infertility. Reprod Sci 2018:1933719118765972. [PMID: 29587612 DOI: 10.1177/1933719118765972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a novel class of small noncoding RNAs (ncRNAs) that play critical roles in regulation of gene expression, especially at posttranscriptional level. Over the past decade, the degree to which miRNAs are involved in male infertility has become clear. They are expressed in a cell- or phase-specific manner during spermatogenesis and play crucial role in male reproductive health. Therefore, dysregulation of miRNAs in testicular cells can be considered as a molecular basis for reproductive failure and male infertility. The abnormal expression pattern of miRNAs can be transmitted to the offspring via assisted reproductive techniques (ART) and results in the birth of children with a higher risk of infertility, congenital abnormalities, and morbidity. This review expounds on the miRNAs reported to play essential roles in somatic cells development, germ cells differentiation, steroidogenesis, normal spermatogenesis, sperm maturation, and male infertility, as well as emphasizes their importance as minimally invasive biomarkers of male infertility.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- 1 Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shafaghatian
- 1 Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eisa Tahmasbpour
- 2 Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Shahriary
- 1 Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Expression and cellular localization of double sex and mab-3 related transcription factor 1 in testes of postnatal Small-Tail Han sheep at different developmental stages. Gene 2017; 642:467-473. [PMID: 29174386 DOI: 10.1016/j.gene.2017.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022]
Abstract
Double sex and mab-3 related transcription factor 1 (Dmrt1), an evolutionarily conserved gene, is a sex-related gene expressed in male gonads, that is involved in the regulation of sex differentiation, testicular development and reproductive function maintenance. Until now, functional studies on the Dmrt1 gene in sheep (Ovis aries) have been lacking. In this study, testis, heart, liver, spleen, lung, kidney and longissimus dorsi muscle tissues were collected from Small-Tail Han sheep at 0, 2, 5, 12 and 24months after birth (mab). Dmrt1 expression and cellular localization were detected in various testicular tissues by quantitative real time PCR (qRT-PCR), western blot and immunohistochemistry methods. The morphological structures of testicular tissues at different developmental stages were observed by hematoxylin & eosin (HE) staining. The Dmrt1 mRNA expression levels in 12 and 24 mab sheep were significantly higher than those in 0 and 2 mab sheep (P<0.05), and Dmrt1 protein expression showed a similar trend. The qRT-PCR results in various tissues at 12 mab showed that Dmrt1 mRNA was predominantly expressed in testes. Immunohistochemical staining in testes at different developmental stages showed that Dmrt1 protein immunoreactive responses were mainly localized in Sertoli cells and gonocytes at 0, 2 and 5 mab, while they were localized in spermatocytes, sperm cells and some spermatogonia and Sertoli cells at 12 and 24 mab. We speculate that the Dmrt1 gene plays a vital role in postnatal sheep spermatogenesis, perhaps by regulating the maturation and functional maintenance of Sertoli cells, the proliferation and differentiation of gonocytes in prepubertal sheep testes, and the mitosis and meiosis of germ cells in adult sheep, but the specific mechanisms underlying these phenomena must be further studied and verified. ABBREVIATIONS
Collapse
|
34
|
Zhang S, Zhang Y, Yu P, Hu Y, Zhou H, Guo L, Xu X, Zhu X, Waqas M, Qi J, Zhang X, Liu Y, Chen F, Tang M, Qian X, Shi H, Gao X, Chai R. Characterization of Lgr5+ Progenitor Cell Transcriptomes after Neomycin Injury in the Neonatal Mouse Cochlea. Front Mol Neurosci 2017; 10:213. [PMID: 28725177 PMCID: PMC5496572 DOI: 10.3389/fnmol.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022] Open
Abstract
Lgr5+ supporting cells (SCs) are enriched hair cell (HC) progenitors in the cochlea. Both in vitro and in vivo studies have shown that HC injury can spontaneously activate Lgr5+ progenitors to regenerate HCs in the neonatal mouse cochlea. Promoting HC regeneration requires the understanding of the mechanism of HC regeneration, and this requires knowledge of the key genes involved in HC injury-induced self-repair responses that promote the proliferation and differentiation of Lgr5+ progenitors. Here, as expected, we found that neomycin-treated Lgr5+ progenitors (NLPs) had significantly greater HC regeneration ability, and greater but not significant proliferation ability compared to untreated Lgr5+ progenitors (ULPs) in response to neomycin exposure. Next, we used RNA-seq analysis to determine the differences in the gene-expression profiles between the transcriptomes of NLPs and ULPs from the neonatal mouse cochlea. We first analyzed the genes that were enriched and differentially expressed in NLPs and ULPs and then analyzed the cell cycle genes, the transcription factors, and the signaling pathway genes that might regulate the proliferation and differentiation of Lgr5+ progenitors. We found 9 cell cycle genes, 88 transcription factors, 8 microRNAs, and 16 cell-signaling pathway genes that were significantly upregulated or downregulated after neomycin injury in NLPs. Lastly, we constructed a protein-protein interaction network to show the interaction and connections of genes that are differentially expressed in NLPs and ULPs. This study has identified the genes that might regulate the proliferation and HC regeneration of Lgr5+ progenitors after neomycin injury, and investigations into the roles and mechanisms of these genes in the cochlea should be performed in the future to identify potential therapeutic targets for HC regeneration.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Pengfei Yu
- Bioinformatics Department, Admera Health LLCSouth Plainfield, NJ, United States
| | - Yao Hu
- School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical UniversityNanjing, China
| | - Han Zhou
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Lingna Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaochen Xu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaocheng Zhu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Muhammad Waqas
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and TechnologyKarachi, Pakistan
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Yan Liu
- School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical UniversityNanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong UniversityShanghai, China
| | - Xia Gao
- Research Institute of OtolaryngologyNanjing, China.,Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Research Institute of OtolaryngologyNanjing, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| |
Collapse
|
35
|
Chen X, Li X, Guo J, Zhang P, Zeng W. The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechnol 2017; 8:35. [PMID: 28469844 PMCID: PMC5410700 DOI: 10.1186/s40104-017-0166-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Mammalian spermatogenesis contains three continuous and organized processes, by which spermatogonia undergo mitosis and differentiate to spermatocytes, follow on meiosis to form haploid spermatids and ultimately transform into spermatozoa. These processes require an accurately, spatially and temporally regulated gene expression patterns. The microRNAs are a novel class of post-transcriptional regulators. Cumulating evidences have demonstrated that microRNAs are expressed in a cell-specific or stage-specific manner during spermatogenesis. In this review, we focus on the roles of microRNAs in spermatogenesis. We highlight that N6-methyladenosine (m6A) is involved in the biogenesis of microRNAs and miRNA regulates the m6A modification on mRNA, and that specific miRNAs have been exploited as potential biomarkers for the male factor infertility, which will provide insightful understanding of microRNA roles in spermatogenesis.
Collapse
Affiliation(s)
- Xiaoxu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xueliang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Jiayin Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Pengfei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
36
|
Li J, Liu X, Hu X, Tian GG, Ma W, Pei X, Wang Y, Wu J. MicroRNA-10b regulates the renewal of spermatogonial stem cells through Kruppel-like factor 4. Cell Biochem Funct 2017; 35:184-191. [DOI: 10.1002/cbf.3263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/10/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jiang Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education; Ningxia Medical University; Yinchuan China
| | - Xiang Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education; Ningxia Medical University; Yinchuan China
| | - Xiaopeng Hu
- Bio-X Institutes; Shanghai Jiao Tong University; Shanghai China
| | - Geng G. Tian
- Bio-X Institutes; Shanghai Jiao Tong University; Shanghai China
| | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education; Ningxia Medical University; Yinchuan China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education; Ningxia Medical University; Yinchuan China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education; Ningxia Medical University; Yinchuan China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education; Ningxia Medical University; Yinchuan China
- Bio-X Institutes; Shanghai Jiao Tong University; Shanghai China
- Shanghai Key Laboratory of Reproductive Medicine; Shanghai China
| |
Collapse
|
37
|
Hu K, Zhang J, Liang M. LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p. In Vitro Cell Dev Biol Anim 2016; 53:277-284. [PMID: 27822884 DOI: 10.1007/s11626-016-0102-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play important roles in male reproduction. In our previous research, we studied the expression profile of lncRNAs in mouse male germ cells including spermatogonial stem cell, type A spermatogonia, pachytene spermatocyte, and round spermatid by microarray method, which showed that testis-enriched lncRNA AK015322 is highly expressed in spermatogonial stem cell. In this study, we found that AK015322 promotes proliferation of mouse spermatogonial stem cell line C18-4 in vitro. Furthermore, bioinformatic analysis, real-time PCR, and luciferase assay validated that AK015322 serves as a decoy of microRNA-19b-3p (miR-19b-3p), antagonizes its function, and attenuates the repression of its endogenous target transcriptional factor Ets-variant 5 (ETV5) which was a pivotal gene for spermatogonial stem cell self-renewal. Taken together, our results suggest that a variety of lncRNAs may regulate male reproduction through serving as competing-endogenous RNAs to modulate the function of germ cells.
Collapse
Affiliation(s)
- Ke Hu
- Department of Biology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jing Zhang
- Department of Biology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Meng Liang
- Department of Biology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China.
| |
Collapse
|