1
|
Salles ACP, Alexandre-Santos B, de Souza Carvalho T, Proença AB, Sepúlveda-Fragoso V, Fernandes T, Oliveira EM, da Nóbrega ACL, Frantz EDC, Magliano DC. ER stress improvement by aerobic training or enalapril differently ameliorates pathological cardiac remodeling in obese mice. Mol Cell Biochem 2024; 479:3167-3179. [PMID: 38308790 DOI: 10.1007/s11010-024-04925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
Overactivation of the classic arm of the renin-angiotensin system (RAS) is one of the main mechanisms involved in obesity-related cardiac remodeling, and a possible relationship between RAS and ER stress in the cardiovascular system have been described. Thus, the aim of this study is to evaluate if activating the protective arm of the RAS by ACE inhibition or aerobic exercise training could overturn diet-induced pathological cardiac hypertrophy by attenuating ER stress. Male C57BL/6 mice were fed a control (SC) or a high-fat diet (HF) for 16 weeks. In the 8th week, HF-fed animals were randomly divided into HF, enalapril treatment (HF-En), and aerobic exercise training (HF-Ex) groups. Body mass (BM), food and energy intake, plasma analyzes, systolic blood pressure (SBP), physical conditioning, and plasma ACE and ACE2 activity were evaluated. Cardiac morphology, and protein expression of hypertrophy, cardiac metabolism, RAS, and ER stress markers were assessed. Data presented as mean ± standard deviation and analyzed by one-way ANOVA with Holm-Sidak post-hoc. HF group had increased BM and SBP, and developed pathological concentric cardiac hypertrophy, with overactivation of the classic arm of the RAS, and higher ER stress. Both interventions reverted the increase in BM, and SBP, and favored the protective arm of the RAS. Enalapril treatment improved pathological cardiac hypertrophy with partial reversal of the concentric pattern, and slightly attenuated cardiac ER stress. In contrast, aerobic exercise training induced physiological eccentric cardiac hypertrophy, and fully diminished ER stress.
Collapse
Affiliation(s)
- Amanda Conceição Pimenta Salles
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Alexandre-Santos
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Thais de Souza Carvalho
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Beatriz Proença
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Vinicius Sepúlveda-Fragoso
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Antonio Claudio Lucas da Nóbrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
- National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
- Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
2
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2024:10.1007/s12013-024-01581-6. [PMID: 39422790 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
3
|
Gouveia M, Schmidt C, Basilio PG, Aveiro SS, Domingues P, Xia K, Colón W, Vitorino R, Ferreira R, Santos M, Vieira SI, Ribeiro F. Exercise training decreases the load and changes the content of circulating SDS-resistant protein aggregates in patients with heart failure with reduced ejection fraction. Mol Cell Biochem 2024; 479:2711-2722. [PMID: 37902886 PMCID: PMC11455743 DOI: 10.1007/s11010-023-04884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Heart failure (HF) often disrupts the protein quality control (PQC) system leading to protein aggregate accumulation. Evidence from tissue biopsies showed that exercise restores PQC system in HF; however, little is known about its effects on plasma proteostasis. AIM To determine the effects of exercise training on the load and composition of plasma SDS-resistant protein aggregates (SRA) in patients with HF with reduced ejection fraction (HFrEF). METHODS Eighteen patients with HFrEF (age: 63.4 ± 6.5 years; LVEF: 33.4 ± 11.6%) participated in a 12-week combined (aerobic plus resistance) exercise program (60 min/session, twice per week). The load and content of circulating SRA were assessed using D2D SDS-PAGE and mass spectrometry. Cardiorespiratory fitness, quality of life, and circulating levels of high-sensitive C-reactive protein, N-terminal pro-B-type natriuretic peptide (NT-proBNP), haptoglobin and ficolin-3, were also evaluated at baseline and after the exercise program. RESULTS The exercise program decreased the plasma SRA load (% SRA/total protein: 38.0 ± 8.9 to 36.1 ± 9.7%, p = 0.018; % SRA/soluble fraction: 64.3 ± 27.1 to 59.8 ± 27.7%, p = 0.003). Plasma SRA of HFrEF patients comprised 31 proteins, with α-2-macroglobulin and haptoglobin as the most abundant ones. The exercise training significantly increased haptoglobin plasma levels (1.03 ± 0.40 to 1.11 ± 0.46, p = 0.031), while decreasing its abundance in SRA (1.83 ± 0.54 × 1011 to 1.51 ± 0.59 × 1011, p = 0.049). Cardiorespiratory fitness [16.4(5.9) to 19.0(5.2) ml/kg/min, p = 0.002], quality of life, and circulating NT-proBNP [720.0(850.0) to 587.0(847.3) pg/mL, p = 0.048] levels, also improved after the exercise program. CONCLUSION Exercise training reduced the plasma SRA load and enhanced PQC, potentially via haptoglobin-mediated action, while improving cardiorespiratory fitness and quality of life of patients with HFrEF.
Collapse
Affiliation(s)
- Marisol Gouveia
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - Cristine Schmidt
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Porto, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Priscilla Gois Basilio
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Susana S Aveiro
- Mass Spectrometry Centre, Department of Chemistry, LAQV REQUIMTE, University of Aveiro, Aveiro, Portugal
- GreenCoLab - Green Ocean Association, University of Algarve, Faro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry, LAQV REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA & LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Serviço de Cardiologia, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, UMIB, University of Porto, Porto, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Fernando Ribeiro
- School of Health Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Mota GAF, de Souza SLB, Vileigas DF, da Silva VL, Sant'Ana PG, Costa LCDS, Padovani CR, Zanatti Bazan SG, Buzalaf MAR, Santos LDD, Okoshi MP, Gatto M, Cicogna AC. Myocardial proteome changes in aortic stenosis rats subjected to long-term aerobic exercise. J Cell Physiol 2024; 239:e31199. [PMID: 38291668 DOI: 10.1002/jcp.31199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
The effects of exercise training (ET) on the heart of aortic stenosis (AS) rats are controversial and the mechanisms involved in alterations induced by ET have been poorly clarified. In this study, we analyzed the myocardial proteome to identify proteins modulated by moderate-intensity aerobic ET in rats with chronic supravalvular AS. Wistar rats were divided into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed), and exercised AS (AS-Ex). ET consisted of five treadmill running sessions per week for 16 weeks. Statistical analysis was performed by ANOVA or Kruskal-Wallis and Goodman tests. Results were discussed at a significance level of 5%. At the end of the experiment, AS-Ex rats had higher functional capacity, lower blood lactate concentration, and better cardiac structural and left ventricular (LV) functional parameters than the AS-Sed. Myocardial proteome analysis showed that AS-Sed had higher relative protein abundance related to the glycolytic pathway, oxidative stress, and inflammation, and lower relative protein abundance related to beta-oxidation than C-Sed. AS-Ex had higher abundance of one protein related to mitochondrial biogenesis and lower relative protein abundance associated with oxidative stress and inflammation than AS-Sed. Proteomic data were validated for proteins related to lipid and glycolytic metabolism. Chronic pressure overload changes the abundance of myocardial proteins that are mainly involved in lipid and glycolytic energy metabolism in rats. Moderate-intensity aerobic training attenuates changes in proteins related to oxidative stress and inflammation and increases the COX4I1 protein, related to mitochondrial biogenesis. Protein changes are combined with improved functional capacity, cardiac remodeling, and LV function in AS rats.
Collapse
Affiliation(s)
- Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | | | - Vitor Loureiro da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Paula Grippa Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Licia Carla da Silva Costa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Silméia Garcia Zanatti Bazan
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | | | | | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Mariana Gatto
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Chen W, Ma M, Song Y, Hua Y, Jia H, Liu J, Wang Y. Exercise Attenuates Myocardial Ischemia-Reperfusion Injury by Regulating Endoplasmic Reticulum Stress and Mitophagy Through M 2 Acetylcholine Receptor. Antioxid Redox Signal 2024; 40:209-221. [PMID: 37294203 DOI: 10.1089/ars.2022.0168] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aims: Adaptive changes in the heart by exercise have been shown to reduce the risk of cardiovascular disease, and M2 Acetylcholine receptor (M2AChR), a receptor abundantly present on cardiac parasympathetic nerves, is closely associated with the development of cardiovascular disease. The present study intends to investigate whether exercise can regulate endoplasmic reticulum stress (ERS) and mitophagy through M2AChR to resist myocardial ischemia-reperfusion (I/R) injury and to elucidate its mechanism of action. Results: Exercise enhanced parasympathetic nerve function and increased myocardial M2AChR protein expression in I/R rats. In addition, it promoted the protein expression of MFN2 and inhibited the expression of Drp1, Chop, PINK1/Parkin, and PERK/eIF2α/ATF4 signaling pathways, effectively reducing mitophagy, ERS, and apoptosis. At the cellular level, 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) reduced hypoxia/reoxygenation (H/R)-induced ERS through the downregulated expression of PERK/eIF2α/ATF4 pathway proteins in H9C2 cardiomyocytes. When intervened with M2AChR inhibitors, the levels of ERS and phosphorylation levels of the PERK/eIF2α/ATF4 pathway were increased in H/R cells. Innovation and Conclusion: Exercise intervention activated the parasympathetic state in rats. It inhibited myocardial mitophagy and ERS levels, and reduced myocardial apoptosis through M2AChR, thereby resisting I/R-induced myocardial injury and improving cardiac function. Antioxid. Redox Signal. 40, 209-221.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, China
- School of Educational Science, Shaanxi University of Technology, Hanzhong, China
| | - Mei Ma
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Yinping Song
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Yijie Hua
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Jia
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Youhua Wang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
6
|
Yang Z, Cao Y, Kong L, Xi J, Liu S, Zhang J, Cheng W. Small molecules as modulators of the proteostasis machinery: Implication in cardiovascular diseases. Eur J Med Chem 2024; 264:116030. [PMID: 38071793 DOI: 10.1016/j.ejmech.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
With the escalating prevalence of cardiovascular diseases, the substantial socioeconomic burden on healthcare systems is intensifying. Accumulating empirical evidence underscores the pivotal role of the proteostasis network in regulating cardiac homeostasis and function. Disruptions in proteostasis may contribute to the loss of protein function or the acquisition of toxic functions, which are intricately linked to the development of cardiovascular ailments such as atrial fibrillation, heart failure, atherosclerosis, and cardiac aging. It is widely acknowledged that the proteostasis network encompasses molecular chaperones, autophagy, and the ubiquitin proteasome system (UPS). Consequently, the proteostasis network emerges as an appealing target for therapeutic interventions in cardiovascular diseases. Numerous small molecules, acting as modulators of the proteostasis machinery, have exhibited therapeutic efficacy in managing cardiovascular diseases. This review centers on elucidating the role of the proteostasis network in various cardiovascular diseases and explores the potential of small molecules as therapeutic agents.
Collapse
Affiliation(s)
- Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Limin Kong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Shourong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Liu X, Li T, Sun J, Wang Z. The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease. Can J Cardiol 2023; 39:1571-1580. [PMID: 37516250 DOI: 10.1016/j.cjca.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
Calcific aortic valve disease (CAVD), which is involved in osteogenic reprogramming of valvular interstitial cells, is the most common form of valve disease. It still lacks effective pharmacologic intervention, as its cellular biological mechanisms remain unclear. Congenital abnormality (bicuspid valve) and older age are considered to be the most powerful risk factors for CAVD. Aortic valve sclerosis (AVS) and calcific aortic stenosis (CAS), 2 subclinical forms of CAVD, represent 2 distinct stages of aortic valve calcification. During the AVS stage, the disease is characterised by endothelial activation/damage, inflammatory response, and lipid infiltration accompanied by microcalcification. The CAS stage is dominated by calcification, resulting in valvular dysfunction and severe obstruction to cardiac outflow, which is life threatening if surgery is not performed in time. Endoplasmic reticulum (ER) stress, a state in which conditions disrupting ER homeostasis cause an accumulation of unfolded and misfolded proteins in the ER lumen, has been shown to promote osteogenic differentiation and aortic valve calcification. Therefore, identifying targets or drugs for suppressing ER stress may be a novel approach for CAVD treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medicial Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Jun Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhengjun Wang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Korkmaz K, Düzova H, Çetin Taşlidere A, Koç A, Karaca Z, Durmuş K. Effect of high-intensity exercise on endoplasmic reticulum stress and proinflammatory cytokine levels. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Jiang J, Ni L, Zhang X, Gokulnath P, Vulugundam G, Li G, Wang H, Xiao J. Moderate-Intensity Exercise Maintains Redox Homeostasis for Cardiovascular Health. Adv Biol (Weinh) 2023; 7:e2200204. [PMID: 36683183 DOI: 10.1002/adbi.202200204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Indexed: 01/24/2023]
Abstract
It is well known that exercise is beneficial for cardiovascular health. Oxidative stress is the common pathological basis of many cardiovascular diseases. The overproduction of free radicals, both reactive oxygen species and reactive nitrogen species, can lead to redox imbalance and exacerbate oxidative damage to the cardiovascular system. Maintaining redox homeostasis and enhancing anti-oxidative capacity are critical mechanisms by which exercise protects against cardiovascular diseases. Moderate-intensity exercise is an effective means to maintain cardiovascular redox homeostasis. Moderate-intensity exercise reduces the risk of cardiovascular disease by improving mitochondrial function and anti-oxidative capacity. It also attenuates adverse cardiac remodeling and enhances cardiac function. This paper reviews the primary mechanisms of moderate-intensity exercise-mediated redox homeostasis in the cardiovascular system. Exploring the role of exercise-mediated redox homeostasis in the cardiovascular system is of great significance to the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Priyanka Gokulnath
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
10
|
Li K, Wan B, Li S, Chen Z, Jia H, Song Y, Zhang J, Ju W, Ma H, Wang Y. Mitochondrial dysfunction in cardiovascular disease: Towards exercise regulation of mitochondrial function. Front Physiol 2023; 14:1063556. [PMID: 36744035 PMCID: PMC9892907 DOI: 10.3389/fphys.2023.1063556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
The morbidity and mortality of cardiovascular diseases are exceedingly high worldwide. Pathological heart remodeling, which is developed as a result of mitochondrial dysfunction, could ultimately drive heart failure. More recent research target exercise modulation of mitochondrial dysfunction to improve heart failure. Therefore, finding practical treatment goals and exercise programs to improve cardiovascular disease is instrumental. Better treatment options are available with the recent development of exercise and drug therapy. This paper summarizes pathological states of abnormal mitochondrial function and intervention strategies for exercise therapy.
Collapse
Affiliation(s)
- Kunzhe Li
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Bingzhi Wan
- Physical Education Department, Xidian University, Xi’an, China
| | - Sujuan Li
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Zhixin Chen
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Yinping Song
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Jiamin Zhang
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Wenyu Ju
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Han Ma
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China,*Correspondence: Youhua Wang,
| |
Collapse
|
11
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Comparison between aerobic exercise training and enalapril treatment as tools to improve diet-induced metabolic-associated fatty liver disease: Effects on endoplasmic reticulum stress markers. Life Sci 2022; 311:121136. [PMID: 36349603 DOI: 10.1016/j.lfs.2022.121136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
AIMS Endoplasmic reticulum (ER) stress poses a new pathological mechanism for metabolic-associated fatty liver disease (MAFLD). MAFLD treatment has encompassed renin-angiotensin system (RAS) blockers and aerobic exercise training, but their association with hepatic ER stress is not well known. Therefore, we aimed to compare the effects of hepatic RAS modulation by enalapril and/or aerobic exercise training over ER stress in MAFLD caused by a diet-induced obesity model. MAIN METHODS C57BL/6 mice were fed a standard-chow (CON, n = 10) or a high-fat (HF, n = 40) diet for 8 weeks. HF group was then randomly divided into: HF (n = 10), HF + Enalapril (EN, n = 10), HF + Aerobic exercise training (AET, n = 10), and HF + Enalapril+Aerobic exercise training (EN + AET, n = 10) for 8 more weeks. Body mass (BM) and glucose profile were evaluated. In the liver, ACE and ACE2 activity, morphology, lipid profile, and protein expression of ER stress and metabolic markers were assessed. KEY FINDINGS Both enalapril and aerobic exercise training provided comparable efficacy in improving diet-induced MAFLD through modulation of RAS and ER stress, but the latter was more efficient in improving ER stress, liver damage and metabolism. SIGNIFICANCE This is the first study to evaluate pharmacological (enalapril) and non-pharmacological (aerobic exercise training) RAS modulators associated with ER stress in a diet-induced MAFLD model.
Collapse
|
13
|
Qiu M, Chen J, Li X, Zhuang J. Intersection of the Ubiquitin–Proteasome System with Oxidative Stress in Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms232012197. [PMID: 36293053 PMCID: PMC9603077 DOI: 10.3390/ijms232012197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular diseases (CVDs) present a major social problem worldwide due to their high incidence and mortality rate. Many pathophysiological mechanisms are involved in CVDs, and oxidative stress plays a vital mediating role in most of these mechanisms. The ubiquitin–proteasome system (UPS) is the main machinery responsible for degrading cytosolic proteins in the repair system, which interacts with the mechanisms regulating endoplasmic reticulum homeostasis. Recent evidence also points to the role of UPS dysfunction in the development of CVDs. The UPS has been associated with oxidative stress and regulates reduction–oxidation homeostasis. However, the mechanisms underlying UPS-mediated oxidative stress’s contribution to CVDs are unclear, especially the role of these interactions at different disease stages. This review highlights the recent research progress on the roles of the UPS and oxidative stress, individually and in combination, in CVDs, focusing on the pathophysiology of key CVDs, including atherosclerosis, ischemia–reperfusion injury, cardiomyopathy, and heart failure. This synthesis provides new insight for continued research on the UPS–oxidative stress interaction, in turn suggesting novel targets for the treatment and prevention of CVDs.
Collapse
Affiliation(s)
- Min Qiu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jimei Chen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaohong Li
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jian Zhuang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Correspondence: ; Tel.: +86-020-83827812 (ext. 51050)
| |
Collapse
|
14
|
Lv Y, Cheng L, Peng F. Compositions and Functions of Mitochondria-Associated Endoplasmic Reticulum Membranes and Their Contribution to Cardioprotection by Exercise Preconditioning. Front Physiol 2022; 13:910452. [PMID: 35733995 PMCID: PMC9207531 DOI: 10.3389/fphys.2022.910452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are important components of intracellular signaling and contribute to the regulation of intracellular Ca2+/lipid homeostasis, mitochondrial dynamics, autophagy/mitophagy, apoptosis, and inflammation. Multiple studies have shown that proteins located on MAMs mediate cardioprotection. Exercise preconditioning (EP) has been shown to protect the myocardium from adverse stimuli, but these mechanisms are still being explored. Recently, a growing body of evidence points to MAMs, suggesting that exercise or EP may be involved in cardioprotection by modulating proteins on MAMs and subsequently affecting MAMs. In this review, we summarize the latest findings on MAMs, analyzing the structure and function of MAMs and the role of MAM-related proteins in cardioprotection. We focused on the possible mechanisms by which exercise or EP can modulate the involvement of MAMs in cardioprotection. We found that EP may affect MAMs by regulating changes in MFN2, MFN1, AMPK, FUNDC1, BECN1, VDAC1, GRP75, IP3R, CYPD, GSK3β, AKT, NLRP3, GRP78, and LC3, thus playing a cardioprotective role. We also provided direction for future studies that may be of interest so that more in-depth studies can be conducted to elucidate the relationship between EP and cardioprotection.
Collapse
|
15
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
17
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
18
|
Cai M, Xu Z, Bo W, Wu F, Qi W, Tian Z. Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:132-140. [PMID: 35782283 PMCID: PMC9219273 DOI: 10.1016/j.smhs.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Exercise training (ET) has been reported to reduce oxidative stress and endoplasmic reticulum (ER) stress in the heart following myocardial infarction (MI). Thioredoxin 1 (Trx1) plays a protective role in the infarcted heart. However, whether Trx1 regulates ER stress of the infarcted heart and participates in ET-induced cardiac protective effects are still not well known. In this work, H9c2 cells were treated with hydrogen peroxide (H2O2) and recombinant human Trx1 protein (TXN), meanwhile, adult male C57B6L mice were used to establish the MI model, and subjected to a six-week aerobic exercise training (AET) with or without the injection of Trx1 inhibitor, PX-12. Results showed that H2O2 significantly increased reactive oxygen species (ROS) level and the expression of TXNIP, CHOP and cleaved caspase12, induced cell apoptosis; TXN intervention reduced ROS level and the expression of CHOP and cleaved caspase12, and inhibited cell apoptosis in H2O2-treated H9c2 cells. Furthermore, AET up-regulated endogenous Trx1 protein expression and down-regulated TXNIP expression, restored ROS level and the expression of ER stress-related proteins, inhibited cell apoptosis as well as improved cardiac fibrosis and heart function in mice after MI. PX-12 partly inhibited the AET-induced beneficial effects in the infarcted heart. This study demonstrates that Trx1 attenuates ER stress-induced cell apoptosis, and AET reduces MI-induced ROS overproduction, ER stress and cell apoptosis partly through up-regulating of Trx1 expression in mice with MI.
Collapse
|
19
|
Jiang H, Jia D, Zhang B, Yang W, Dong Z, Sun X, Cui X, Ma L, Wu J, Hu K, Sun A, Ge J. Exercise improves cardiac function and glucose metabolism in mice with experimental myocardial infarction through inhibiting HDAC4 and upregulating GLUT1 expression. Basic Res Cardiol 2020; 115:28. [PMID: 32236769 DOI: 10.1007/s00395-020-0787-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
This study aims to determine the effect of exercise on the cardiac function, metabolic profiles and related molecular mechanisms in mice with ischemic-induced heart failure (HF). HF was induced by myocardial infarction (MI) in C57BL6/N mice. Cardiac function and physical endurance were improved in HF mice after exercise. Micro-PET/CT scanning revealed enhanced myocardial glucose uptake in vivo in HF mice after exercise. Exercise reduced mitochondrial structural damage in HF mice. Cardiomyocytes isolated from HF + exercise mice showed increased glycolysis capacity, respiratory function and ATP production. Both mRNA and protein expression of glucose transporter 1 (GLUT1) were upregulated after exercise. Results of ChIP-PCR revealed a novel interaction between transcription factor myocyte enhancer factor 2a (MEF2a) and GLUT1 in hearts of HF + exercise mice. Exercise also activated myocardial AMP-activated protein kinase (AMPK), which in turn phosphorylated histone deacetylase 4 (HDAC4), and thereby modulated the GLUT1 expression through reducing its inhibition on MEF2a in HF mice. Inhibition of HDAC4 also improved cardiac function in HF mice. Moreover, knockdown of GLUT1 impaired the systolic and diastolic function of isolated cardiomyocytes. In conclusion, exercise improves cardiac function and glucose metabolism in HF mice through inhibiting HDAC4 and upregulating GLUT1 expression.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaotong Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Institute of Cardiovascular Diseases, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Shanghai Institute of Cardiovascular Diseases, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China. .,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
20
|
Sun ZG, Lu G, Zhao LL, Zhang LZ, Li A, Jing J, Xu X. Exercise Preconditioning Protects against Acute Cardiac Injury Induced by Lipopolysaccharide Through General Control Nonderepressible 2 Kinase. Int Heart J 2020; 61:138-144. [DOI: 10.1536/ihj.19-307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhong-Guang Sun
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Guo Lu
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Lin-Lin Zhao
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Li-Zhen Zhang
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Ai Li
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Jing Jing
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport
| |
Collapse
|
21
|
Tofas T, Draganidis D, Deli CK, Georgakouli K, Fatouros IG, Jamurtas AZ. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants (Basel) 2019; 9:antiox9010013. [PMID: 31877965 PMCID: PMC7023632 DOI: 10.3390/antiox9010013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Although low levels of reactive oxygen species (ROS) are beneficial for the organism ensuring normal cell and vascular function, the overproduction of ROS and increased oxidative stress levels play a significant role in the onset and progression of cardiovascular diseases (CVDs). This paper aims at providing a thorough review of the available literature investigating the effects of acute and chronic exercise training and detraining on redox regulation, in the context of CVDs. An acute bout of either cardiovascular or resistance exercise training induces a transient oxidative stress and inflammatory response accompanied by reduced antioxidant capacity and enhanced oxidative damage. There is evidence showing that these responses to exercise are proportional to exercise intensity and inversely related to an individual’s physical conditioning status. However, when chronically performed, both types of exercise amplify the antioxidant defense mechanism, reduce oxidative stress and preserve redox status. On the other hand, detraining results in maladaptations within a time-frame that depends on the exercise training intensity and mode, as high-intensity training is superior to low-intensity and resistance training is superior to cardiovascular training in preserving exercise-induced adaptations during detraining periods. Collectively, these findings suggest that exercise training, either cardiovascular or resistance or even a combination of them, is a promising, safe and efficient tool in the prevention and treatment of CVDs.
Collapse
|
22
|
Li J, Zhang D, Brundel BJJM, Wiersma M. Imbalance of ER and Mitochondria Interactions: Prelude to Cardiac Ageing and Disease? Cells 2019; 8:cells8121617. [PMID: 31842269 PMCID: PMC6952992 DOI: 10.3390/cells8121617] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiac disease is still the leading cause of morbidity and mortality worldwide, despite some exciting and innovative improvements in clinical management. In particular, atrial fibrillation (AF) and heart failure show a steep increase in incidence and healthcare costs due to the ageing population. Although research revealed novel insights in pathways driving cardiac disease, the exact underlying mechanisms have not been uncovered so far. Emerging evidence indicates that derailed proteostasis (i.e., the homeostasis of protein expression, function and clearance) is a central component driving cardiac disease. Within proteostasis derailment, key roles for endoplasmic reticulum (ER) and mitochondrial stress have been uncovered. Here, we describe the concept of ER and mitochondrial stress and the role of interactions between the ER and mitochondria, discuss how imbalance in the interactions fuels cardiac ageing and cardiac disease (including AF), and finally assess the potential of drugs directed at conserving the interaction as an innovative therapeutic target to improve cardiac function.
Collapse
Affiliation(s)
- Jin Li
- Correspondence: (J.L.); (M.W.)
| | | | | | | |
Collapse
|
23
|
Jiang H, Zhang B, Jia D, Yang W, Sun A, Ge J. Insights from Exercise-induced Cardioprotection-from Clinical Application to Basic Research. Curr Pharm Des 2019; 25:3751-3761. [PMID: 31593529 DOI: 10.2174/1381612825666191008102047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/06/2019] [Indexed: 01/04/2023]
Abstract
Exercise has long been recognized as a beneficial living style for cardiovascular health. It has been applied to be a central component of cardiac rehabilitation for patients with chronic heart failure (CHF), coronary heart disease (CHD), post-acute coronary syndrome (ACS) or primary percutaneous coronary intervention (PCI), post cardiac surgery or transplantation. Although the effect of exercise is multifactorial, in this review, we focus on the specific contribution of regular exercise on the heart and vascular system. We will summarize the known result of clinical findings and possible mechanisms of chronic exercise on the cardiovascular system.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Ma S, Liao Y. Noncoding RNAs in exercise-induced cardio-protection for chronic heart failure. EBioMedicine 2019; 46:532-540. [PMID: 31351933 PMCID: PMC6711852 DOI: 10.1016/j.ebiom.2019.07.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic heart failure (CHF) has long been a major medical care burden on society due to its high morbidity and mortality. Although lots of evidence has demonstrated the beneficial impacts of exercise on CHF, termed exercise-induced cardioprotection (EIC), the underlying mechanisms and applicability of EIC are elusive and controversial, and thus, clinical applications are difficult. Noncoding RNAs (ncRNAs) are potential therapeutic targets for CHF. Increasing number of ncRNAs were found to play a role in EIC and CHF. The purpose of this review is to illustrate the current knowledge of ncRNAs in EIC for CHF as well as their prospective and limitations in clinical application.
Collapse
Affiliation(s)
- Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
25
|
Estébanez B, de Paz JA, Cuevas MJ, González-Gallego J. Endoplasmic Reticulum Unfolded Protein Response, Aging and Exercise: An Update. Front Physiol 2018; 9:1744. [PMID: 30568599 PMCID: PMC6290262 DOI: 10.3389/fphys.2018.01744] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic and multifunctional organelle responsible for protein biosynthesis, folding, assembly and modifications. Loss of protein folding regulation, which leads to unfolded or misfolded proteins accumulation inside the ER lumen, drives ER stress (ERS) and unfolded protein response (UPR) activation. During aging, there is a decline in the ability of the cell to handle protein folding, accumulation and aggregation, and the function of UPR is compromised. There is a progressive failure of the chaperoning systems and a decline in many of its components, so that the UPR activation cannot rescue the ERS. Physical activity has been proposed as a powerful tool against aged-related diseases, which are linked to ERS. Interventional studies have demonstrated that regular exercise is able to decrease oxidative stress and inflammation and reverse mitochondrial and ER dysfunctions. Exercise-induced metabolic stress could activate the UPR since muscle contraction is directly involved in its activation, mediating exercise-induced adaptation responses. In fact, regular moderate-intensity exercise-induced ERS acts as a protective mechanism against current and future stressors. However, biological responses vary according to exercise intensity and therefore induce different degrees of ERS and UPR activation. This article reviews the effects of aging and exercise on ERS and UPR, also analyzing possible changes induced by different types of exercise in elderly subjects.
Collapse
Affiliation(s)
| | - José A de Paz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
26
|
Bozi LH, Takano AP, Campos JC, Rolim N, Dourado PM, Voltarelli VA, Wisløff U, Ferreira JC, Barreto-Chaves ML, Brum PC. Endoplasmic reticulum stress impairs cardiomyocyte contractility through JNK-dependent upregulation of BNIP3. Int J Cardiol 2018; 272:194-201. [DOI: 10.1016/j.ijcard.2018.08.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
|
27
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
28
|
Exercise prevents impaired autophagy and proteostasis in a model of neurogenic myopathy. Sci Rep 2018; 8:11818. [PMID: 30087400 PMCID: PMC6081439 DOI: 10.1038/s41598-018-30365-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of cellular homeostasis by disposing cytotoxic proteins and non-functioning organelles. We recently demonstrated that exercise activates autophagy and re-establishes proteostasis in cardiac diseases. Here, we characterized the impact of exercise on skeletal muscle autophagy and proteostasis in a model of neurogenic myopathy induced by sciatic nerve constriction in rats. Neurogenic myopathy, characterized by progressive atrophy and impaired contractility, was paralleled by accumulation of autophagy-related markers and loss of acute responsiveness to both colchicine and chloroquine. These changes were correlated with elevated levels of damaged proteins, chaperones and pro-apoptotic markers compared to control animals. Sustained autophagy inhibition using chloroquine in rats (50 mg.kg-1.day-1) or muscle-specific deletion of Atg7 in mice was sufficient to impair muscle contractility in control but not in neurogenic myopathy, suggesting that dysfunctional autophagy is critical in skeletal muscle pathophysiology. Finally, 4 weeks of aerobic exercise training (moderate treadmill running, 5x/week, 1 h/day) prior to neurogenic myopathy improved skeletal muscle autophagic flux and proteostasis. These changes were followed by spared muscle mass and better contractility properties. Taken together, our findings suggest the potential value of exercise in maintaining skeletal muscle proteostasis and slowing down the progression of neurogenic myopathy.
Collapse
|
29
|
Kim K, Ahn N, Jung S. Comparison of endoplasmic reticulum stress and mitochondrial biogenesis responses after 12 weeks of treadmill running and ladder climbing exercises in the cardiac muscle of middle-aged obese rats. ACTA ACUST UNITED AC 2018; 51:e7508. [PMID: 30066723 PMCID: PMC6075797 DOI: 10.1590/1414-431x20187508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to compare the influence of aerobic exercise (AE) lasting 12 weeks to that of resistance exercise (RE) of the same duration on endoplasmic reticulum (ER) stress and mitochondrial biogenesis in the cardiac muscle of middle-aged obese rats. Obesity was induced in thirty 50-week-old male Sprague Dawley rats over 6 weeks by administration of a high-fat diet. The rats were then subjected to treadmill-running (AE) and ladder-climbing (RE) exercises 3 times per week for 12 weeks. Rats in the AE group showed significantly lower increases in body weight and intraperitoneal fat than those in the sedentary control (SC) group (P<0.05). The 12-week exercise regimes resulted in a significant increase in expression of mitochondrial biogenesis markers and levels of peroxisome proliferator-activated receptor gamma coactivator 1α in the cardiac muscle (P<0.05). Phosphorylation of PKR-like ER kinase, an ER stress marker, decreased significantly (P<0.05) after the exercise training. Although a trend for decreased C/EBP homologous protein (CHOP) expression was observed in both exercise groups, only the AE group had a statistically significant decrease (P<0.05). Levels of GRP78, an ER stress marker that protects cardiac muscle, did not significantly differ among the groups. Although only the AE group decreased body weight and fat mass, the two exercise regimes had similar effects on cardiac muscle with the exception of CHOP. Therefore, we suggest that both AE, which results in weight loss, and high-intensity RE, though not accompanied by weight loss, protect obese cardiac muscle effectively.
Collapse
Affiliation(s)
- Kijin Kim
- Department of Physical Education, Keimyung University, Daegu, Republic of Korea
| | - Nayoung Ahn
- Department of Physical Education, Keimyung University, Daegu, Republic of Korea
| | - Suryun Jung
- Department of Physical Education, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
30
|
Li M, Pan B, Shi Y, Fu J, Xue X. Increased expression of CHOP and LC3B in newborn rats with bronchopulmonary dysplasia. Int J Mol Med 2018; 42:1653-1665. [PMID: 29901175 DOI: 10.3892/ijmm.2018.3724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/09/2018] [Indexed: 11/06/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) seriously affects the health and prognosis of children, but the efficacy of treatments is poor. The present study aimed to examine the effects of C/EBP homologous protein (CHOP), activating transcription factor 4 (ATF4) and microtubule‑associated protein light chain 3β (LC3B), and the interaction between CHOP and LC3B, in newborn rats with BPD. At 1, 7, 14 and 21 days, the rats in the model [fraction of inspired oxygen (FiO2)=80‑85%] and control groups (FiO2=21%) were randomly sacrificed, and lung samples were collected. Alveolar development was evaluated according to the radial alveolar count (RAC) and alveolar septum thickness. Ultrastructural changes were observed by transmission electron microscopy (TEM), the expression levels of CHOP, ATF4 and LC3B were determined by immunohistochemistry, and western blot and reverse transcription‑quantitative polymerase chain reaction analyses. The co‑localization of CHOP and LC3B in lung tissues was determined by immunofluorescence. The results showed that, compared with the control group, alveolarization arrest was present in the model group. The TEM observations revealed that, at 14 days, type II alveolar epithelial cell (AECII) lamellar bodies were damaged, with an apparent dilation of the endoplasmic reticulum (ER) and autophagy in cells within the model group. Between days 7 and 14, the protein levels of ATF4, CHOP and LC3B were significantly increased in the model group. The mRNA levels of CHOP and LC3B were lower at days 7‑21. CHOP and LC3B were co‑localized in the cells of the lung tissues at day 14 in the model group. Pearson's correlation analysis showed that the protein levels of CHOP and LC3B‑II were positively correlated in the model groups. As in previous studies, the present study demonstrated that BPD damaged the AECII cells, which exhibited detached and sparse microvilli and the vacuolization of lamellar bodies. In addition, it was found that the ER was dilated, with autophagosomes containing ER and other organelles in AECII cells; the expression levels of CHOP and LC3B‑II were upregulated. CHOP and LC3B‑II may have joint involvement in the occurrence and development of BPD.
Collapse
Affiliation(s)
- Mengyun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bingting Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
31
|
Hong J, Kim K, Park E, Lee J, Markofski MM, Marrelli SP, Park Y. Exercise ameliorates endoplasmic reticulum stress-mediated vascular dysfunction in mesenteric arteries in atherosclerosis. Sci Rep 2018; 8:7938. [PMID: 29784903 PMCID: PMC5962591 DOI: 10.1038/s41598-018-26188-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is closely associated with atherosclerosis, but the effects of exercise on ER stress-mediated endothelial dysfunction in atherosclerosis is not yet fully understood. We assessed endothelium-dependent vasodilation in isolated mesenteric arteries from wild type (WT), WT with exercise (WT-EX), ApoE knockout (ApoE KO), and ApoE KO mice with exercise (ApoE KO-EX). Vasodilation to acetylcholine (ACh) was elicited in the presence of inhibitors of ER stress, eNOS, caspase-1, and UCP-2 (Tudca, L-NAME, AC-YVARD-cmk, and Genipin, respectively) and the ER stress inducer (Tunicamycin). Immunofluorescence was used to visualize the expression of CHOP, as an indicator of ER stress, in superior mesenteric arteries (SMA). Dilation to ACh was attenuated in ApoE KO but was improved in ApoE KO-EX. Incubation of Tudca and AC-YVARD-cmk improved ACh-induced vasodilation in ApoE KO. L-NAME, tunicamycin, and Genipin attenuated vasodilation in WT, WT-EX and ApoE KO-EX, but not in ApoE KO. Exercise training reversed the increase in CHOP expression in the endothelium of SMA of ApoE KO mice. We conclude that ER stress plays a significant role in endothelial dysfunction of resistance arteries in atherosclerosis and that exercise attenuates ER stress and regulates its critical downstream signaling pathways including eNOS, UCP-2 and caspase-1.
Collapse
Affiliation(s)
- Junyoung Hong
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA
| | - Kwangchan Kim
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA
| | - Eunkyung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA
| | - Jonghae Lee
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA
| | - Melissa M Markofski
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, 77030, USA
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
32
|
De Moraes WMAM, de Souza PRM, da Paixão NA, de Sousa LGO, Ribeiro DA, Marshall AG, Prestes J, Irigoyen MC, Brum PC, Medeiros A. Aerobic exercise training rescues protein quality control disruption on white skeletal muscle induced by chronic kidney disease in rats. J Cell Mol Med 2017; 22:1452-1463. [PMID: 29265674 PMCID: PMC5824409 DOI: 10.1111/jcmm.13374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
We tested whether aerobic exercise training (AET) would modulate the skeletal muscle protein quality control (PQC) in a model of chronic kidney disease (CKD) in rats. Adult Wistar rats were evaluated in four groups: control (CS) or trained (CE), and 5/6 nephrectomy sedentary (5/6NxS) or trained (5/6NxE). Exercised rats were submitted to treadmill exercise (60 min., five times/wk for 2 months). We evaluated motor performance (tolerance to exercise on the treadmill and rotarod), cross-sectional area (CSA), gene and protein levels related to the unfolded protein response (UPR), protein synthesis/survive and apoptosis signalling, accumulated misfolded proteins, chymotrypsin-like proteasome activity (UPS activity), redox balance and heat-shock protein (HSP) levels in the tibialis anterior. 5/6NxS presented a trend towards to atrophy, with a reduction in motor performance, down-regulation of protein synthesis and up-regulation of apoptosis signalling; increases in UPS activity, misfolded proteins, GRP78, derlin, HSP27 and HSP70 protein levels, ATF4 and GRP78 genes; and increase in oxidative damage compared to CS group. In 5/6NxE, we observed a restoration in exercise tolerance, accumulated misfolded proteins, UPS activity, protein synthesis/apoptosis signalling, derlin, HSPs protein levels as well as increase in ATF4, GRP78 genes and ATF6α protein levels accompanied by a decrease in oxidative damage and increased catalase and glutathione peroxidase activities. The results suggest a disruption of PQC in white muscle fibres of CKD rats previous to the atrophy. AET can rescue this disruption for the UPR, prevent accumulated misfolded proteins and reduce oxidative damage, HSPs protein levels and exercise tolerance.
Collapse
Affiliation(s)
- Wilson Max Almeida Monteiro De Moraes
- Biosciences Department, Federal University of Sao Paulo, Santos, Brazil.,Post-Graduation Program on Physical Education, Catholic University of Brasilia (UCB), Brasilia, Federal District, Brazil
| | | | | | | | | | - Andrea G Marshall
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - Jonato Prestes
- Post-Graduation Program on Physical Education, Catholic University of Brasilia (UCB), Brasilia, Federal District, Brazil
| | - Maria Claudia Irigoyen
- Hypertension Unit, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Patricia Chakur Brum
- Department of Post-graduation in Medicine, Nove de Julho University (UNINOVE), Sao Paulo, Brazil
| | | |
Collapse
|
33
|
Gouveia M, Xia K, Colón W, Vieira SI, Ribeiro F. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand? Ageing Res Rev 2017; 40:1-10. [PMID: 28757291 DOI: 10.1016/j.arr.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status.
Collapse
|
34
|
The Role of Endoplasmic Reticulum Stress in Cardiovascular Disease and Exercise. Int J Vasc Med 2017; 2017:2049217. [PMID: 28875043 PMCID: PMC5569752 DOI: 10.1155/2017/2049217] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, which is highly associated with cardiovascular disease, is triggered by a disturbance in ER function because of protein misfolding or an increase in protein secretion. Prolonged disruption of ER causes ER stress and activation of the unfolded protein response (UPR) and leads to various diseases. Eukaryotic cells respond to ER stress via three major sensors that are bound to the ER membrane: activating transcription factor 6 (ATF6), inositol-requiring protein 1α (IRE1α), and protein kinase RNA-like ER kinase (PERK). Chronic activation of ER stress causes damage in endothelial cells (EC) via apoptosis, inflammation, and oxidative stress signaling pathways. The alleviation of ER stress has recently been accepted as a potential therapeutic target to treat cardiovascular diseases such as heart failure, hypertension, and atherosclerosis. Exercise training is an effective nonpharmacological approach for preventing and alleviating cardiovascular disease. We here review the recent viewing of ER stress-mediated apoptosis and inflammation signaling pathways in cardiovascular disease and the role of exercise in ER stress-associated diseases.
Collapse
|
35
|
Bozi LH, Campos JC. Targeting the ubiquitin proteasome system in diabetic cardiomyopathy. J Mol Cell Cardiol 2017; 109:61-63. [DOI: 10.1016/j.yjmcc.2017.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
|
36
|
Abstract
The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.
Collapse
Affiliation(s)
- Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
37
|
Pinto AP, da Rocha AL, Oliveira LDC, Morais GP, de Vicente LG, Cintra DE, Pauli JR, Moura LP, Ropelle ER, da Silva ASR. Levels of Hepatic Activating Transcription Factor 6 and Caspase-3 Are Downregulated in Mice after Excessive Training. Front Endocrinol (Lausanne) 2017; 8:247. [PMID: 29018408 PMCID: PMC5622940 DOI: 10.3389/fendo.2017.00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Recently, we demonstrated that different running overtraining (OT) protocols with the same external load, but performed downhill (OTR/down), uphill (OTR/up), and without inclination (OTR), led to hepatic fat accumulation. As the disruption of endoplasmic reticulum (ER) homeostasis is linked to animal models of fatty liver disease, we investigated the effects of these OT models on the proteins related to ER stress (i.e., BiP, inositol-requiring enzyme 1, protein kinase RNA-like endoplasmic reticulum kinase, eIF2alpha, ATF6beta, and glucose-regulated protein 94) and apoptosis (C/EBP-homologous protein, Caspase-3, 4, and 12, Bax, and tumor necrosis factor receptor-associated factor 2) in livers of C57BL/6 mice. Also, aerobic training can attenuate cardiac ER stress and improve exercise capacity. Therefore, we investigated whether the decrease in performance induced by our OT protocols is linked to ER stress and apoptosis in mouse hearts. The rodents were divided into six groups: naïve (N, sedentary mice), control (CT, sedentary mice submitted to the performance evaluations), trained (TR), OTR/down, OTR/up, and OTR groups. Rotarod, incremental load, exhaustive, and grip force tests were used to evaluate performance. After the grip force test, the livers and cardiac muscles (i.e., left ventricle) were removed and used for immunoblotting. All of the OT protocols led to similar responses in the performance parameters and displayed significantly lower hepatic ATF6beta values compared to the N group. The OTR/down group exhibited lower liver cleaved caspase-3 values compared to the CT group. However, the other proteins related to ER stress and apoptosis were not modulated. Also, the cardiac proteins related to ER stress and apoptosis were not modulated in the experimental groups. In conclusion, the OT protocols decreased the levels of hepatic ATF6beta, and the OTR/down group decreased the levels of hepatic cleaved caspase-3. Also, the decrease in performance induced by our OT models is not associated with ER stress and apoptosis in mice hearts.
Collapse
Affiliation(s)
- Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Luciana da C. Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Gustavo P. Morais
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Larissa G. de Vicente
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dennys E. Cintra
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - José R. Pauli
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Leandro P. Moura
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Eduardo R. Ropelle
- Sport Sciences Course, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- *Correspondence: Adelino S. R. da Silva,
| |
Collapse
|
38
|
Ding S, Gan T, Song M, Dai Q, Huang H, Xu Y, Zhong C. C/EBPB-CITED4 in Exercised Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:247-259. [PMID: 29098625 DOI: 10.1007/978-981-10-4304-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C/EBPB is a crucial transcription factor, participating in a variety of biological processes including cell proliferation, differentiation and development. In the cardiovascular system, C/EBPB-CITED4 signaling is known as a signaling pathway mediating exercise-induced cardiac growth. After its exact role in exercised heart firstly reported in 2010, more and more evidence confirmed that. MicroRNA (e.g. miR-222) and many molecules (e.g. Alpha-lipoic acid) can regulate this pathway and then involve in the cardiac protection effect induced by endurance exercise training. In addition, in cardiac growth during pregnancy, C/EBPB is also a required regulator. This chapter will give an introduction of the C/EBPB-CITED4 signaling and the regulatory network based on this signaling pathway in exercised heart.
Collapse
Affiliation(s)
- Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Tianyi Gan
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, China
| | - Qiying Dai
- Metrowest Medical Center, Framingham, 01702, MA, USA.,Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yiming Xu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
39
|
Santos TM, Kolling J, Siebert C, Biasibetti H, Bertó CG, Grun LK, Dalmaz C, Barbé‐Tuana FM, Wyse AT. Effects of previous physical exercise to chronic stress on long‐term aversive memory and oxidative stress in amygdala and hippocampus of rats. Int J Dev Neurosci 2016; 56:58-67. [DOI: 10.1016/j.ijdevneu.2016.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/31/2016] [Accepted: 12/04/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tiago Marcon Santos
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Janaína Kolling
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Cassiana Siebert
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Helena Biasibetti
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Carolina Gessinger Bertó
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Lucas Kich Grun
- Laboratório de Biologia MolecularDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Carla Dalmaz
- Laboratório de Neurobiologia do EstresseDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Florencia María Barbé‐Tuana
- Laboratório de Biologia MolecularDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Angela T.S. Wyse
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| |
Collapse
|