1
|
Peng Y, Long XD. The role of the ceRNA network mediated by lncRNA SNHG3 in the progression of cancer. Discov Oncol 2024; 15:514. [PMID: 39349640 PMCID: PMC11442963 DOI: 10.1007/s12672-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a distinct class of RNAs with longer than 200 base pairs that are not translated into proteins. Small Nucleolar RNA Host Gene 3 (SNHG3) is a lncRNA and frequently dysregulated in various human cancers. OBJECTIVE This review provides a comprehensive analysis of current research on lncRNA SNHG3, focusing on its role within the competitive endogenous RNA (ceRNA) network and its implications in cancer. METHODS A systematic literature review was conducted using PubMed up to October 2023. The search strategy included keywords such as "lncRNA SNHG3", "competitive endogenous RNA", "cancer", and related terms. Studies were selected based on relevance to SNHG3's involvement in cancer pathogenesis and progression. RESULTS Disruptions in the ceRNA network involving lncRNA SNHG3 can impair normal cell growth and differentiation, significantly contributing to disease pathogenesis, particularly cancer. This review highlights SNHG3's substantial impact on various cancer processes and its potential as a diagnostic and therapeutic tool for aggressive cancers. CONCLUSION The findings underscore SNHG3's pivotal role in cancer prevention, diagnosis, and treatment, laying a foundation for future research in cancer management. Insights from this review emphasize the necessity for further exploration and development of SNHG3-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, the First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China.
- Department of Tumor Pathology, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Guangxi Zhuang Autonomous Region, Baise, 533000, China.
| |
Collapse
|
2
|
Zhu M, Zhu Z, Zhang N, Ma J, Huang N, He S, Lu X. Identification of miRNA, lncRNA and circRNA associated with gastric cancer metabolism through sequencing and bioinformatics analysis. Pathol Res Pract 2024; 254:155151. [PMID: 38290402 DOI: 10.1016/j.prp.2024.155151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Gastric cancer remains a highly prevalent malignancy worldwide with its molecular features poorly understood. To gain full insight into its genetic landscape, we performed whole-transcriptome sequencing on human tumors and adjacent non-tumors to predict the function of microRNA, long coding RNA, circular RNA, and mRNA, as well as estimate their correlation with gastric cancer characteristics through construction of ceRNA, WGCNA and PPI network. Functional enrichment analysis annotated nucleic acid binding, enzyme activity and binding related to differentially expressed miRNAs (dif-miRNAs); energy binding and enzyme binding related to dif-lncRNAs; protein binding and enzyme activity related to dif-circRNAs; protein digestion and absorption related to dif-mRNAs. The expression of key miR-135a-5p, lncRNAs-MSTRG.48856.1, ENST00000569981, MSTRG.22826.1, ENST00000564492, circRNAs-CCSER2, FNDC3B, CORO1C, FAM214A were validated by real-time PCR. The ceRNA network filtered 14 miRNAs, 30 lncRNAs, and 6 mRNA in the lncRNA-ceRNA axis and 8 miRNAs, 9 circRNAs, and 3 mRNA in the circRNA-ceRNA axis. Genes involved in ceRNA were annotated to be closely related to tumor material synthesis and metabolism. The WGCNA network filtered gene clusters related to TNM traits and extracted the hub genes CLDN10, CD177, newGene_35523, newGene_51201, CEACAM7, and newGene_46634. These genes were associated with cell proliferation, metabolism, and enzyme activity regulation. The PPI network analyzed the stable interaction relationships of the hub genes. Our research provides a valuable resource for understanding the molecular mechanisms of gastric cancer from the perspective of tumor metabolism.
Collapse
Affiliation(s)
- Meng Zhu
- College of Basic Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Zenghui Zhu
- College of Basic Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Ning Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jingwei Ma
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Ningbo Huang
- College of Basic Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Shuixiang He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, China
| | - Xinlan Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
3
|
Wang L, Xiao K, Dong Z, Meng T, Cheng X, Xu Y. A novel copper-induced cell death-related lncRNA prognostic signature associated with immune infiltration and clinical value in gastric cancer. J Cancer Res Clin Oncol 2023; 149:10543-10559. [PMID: 37291405 PMCID: PMC10423106 DOI: 10.1007/s00432-023-04916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most important malignancies and has a poor prognosis. Copper-induced cell death, recently termed cuproptosis, may directly affect the outcome of GC. Long noncoding RNAs (lncRNAs), possessing stable structures, can influence the prognosis of cancer and may serve as potential prognostic prediction factors for various cancers. However, the role of copper cell death-related lncRNAs (CRLs) in GC has not been thoroughly investigated. Here, we aim to elucidate the role of CRLs in predicting prognosis, diagnosis, and immunotherapy in GC patients. METHODS RNA expression data for 407 GC patients from The Cancer Genome Atlas (TCGA) were gathered, and differentially expressed CRLs were identified. Subsequently, the researchers applied univariate, LASSO, and multivariate Cox regression to construct a prognostic signature consisting of 5 lncRNAs based on the CRLs. Stratified by the median CRLSig risk score, Kaplan-Meier analysis was utilized to compare overall survival (OS) between the high- and low-risk groups. Among the two groups, gene set enrichment analysis (GSEA), tumor microenvironment (TME), drug sensitivity analysis, and immune checkpoint analysis were conducted. In addition, consensus clustering and nomogram analysis were performed to predict OS. Cell experiments and 112 human serum samples were employed to verify the effect of lncRNAs on GC. Furthermore, the diagnostic value of the CRLSig in the serum of GC patients was analyzed by the receiver operating characteristic (ROC) curve. RESULTS A prognostic signature for GC patients was constructed based on CRLs, composed of AC129926.1, AP002954.1, AC023511.1, LINC01537, and TMEM75. According to the K-M survival analysis, high-risk GC patients had a lower OS rate and progression-free survival rate than low-risk GC patients. Further support for the model's accuracy was provided by ROC, principal component analysis, and the validation set. The area under the curve (AUC) of 0.772 for GC patients showed a better prognostic value than any other clinicopathological variable. Furthermore, immune infiltration analysis showed that the high-risk group had greater antitumor immune responses in the tumor microenvironment. In the high-risk subgroup, 23 immune checkpoint genes had significantly higher expression levels than in the low-risk subgroup (p < 0.05). The half-maximal inhibitory concentrations (IC50) of 86 drugs were found to be significantly different in the two groups. Accordingly, the model is capable of predicting the effectiveness of immunotherapy. In addition, the five CRLs in GC serum exhibited statistically significant expression levels. The AUC of this signature in GC serum was 0.894, with a 95% CI of 0.822-0.944. Moreover, lncRNA AC129926.1 was significantly overexpressed in GC cell lines and the serum of GC patients. Importantly, colony formation, wound healing, and transwell assays further confirmed the oncogenic role of AC129926.1 in GC. CONCLUSION In this study, a prognostic signature model consisting of five CRLs was developed to improve OS prediction accuracy in GC patients. The model also has the potential to predict immune infiltration and immunotherapy effectiveness. Furthermore, the CRLSig might serve as a novel serum biomarker to differentiate GC patients from healthy individuals.
Collapse
Affiliation(s)
- Li Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ke Xiao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Tao Meng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiaowen Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Lin H, Ni R, Li D, Zhao M, Li Y, Li K, Zhang Q, Huang C, Huang S. LncRNA MIR155HG Overexpression Promotes Proliferation, Migration, and Chemoresistance in Gastric Cancer Cells. Int J Med Sci 2023; 20:933-942. [PMID: 37324190 PMCID: PMC10266045 DOI: 10.7150/ijms.82216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/14/2023] [Indexed: 06/17/2023] Open
Abstract
Long non-coding RNAs are thought to play a vital role in a variety of human malignancies. Studies have shown that MIR155 host gene (MIR155HG) acts as an oncogene in several cancers, but the function and its mechanism of MIR155HG in gastric cancer (GC) is still poorly understood. In this study, we determined the biological functions and underlying mechanisms of MIR155HG in GC cells. We found that expression levels of MIR155HG was increased markedly in GC patients' serum. In vitro and in vivo studies demonstrated that MIR155HG modulated the malignant phenotype of GC cells, such as cell proliferation, colony forming ability, cell migration ability, and tumor growth in nude mice. Next, our results revealed that NF-κB and STAT3 signaling pathways could be involved in regulating the malignant behavior of GC cells. Our rescue experiments showed that inhibiting NF-κB and STAT3 signaling pathways attenuated the phenotypes caused by MIR155HG overexpression. Moreover, cytotoxicity and apoptosis assays revealed overexpression of MIR155HG reduced the apotosis of GC cells induced by cisplatin and 5-FU. Together, our studies suggested that MIR155HG overexpression promoted proliferation, migration, and chemoresistance of GC cells. These results might provide a lncRNA-based target for GC treatment in future.
Collapse
Affiliation(s)
- Hong Lin
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Ruoxuan Ni
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Dongdong Li
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Mei Zhao
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yan Li
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Kexin Li
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Qiao Zhang
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis, State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Shengkai Huang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| |
Collapse
|
5
|
Zhang Z, Shi S, Li J, Costa M. Long Non-Coding RNA MEG3 in Metal Carcinogenesis. TOXICS 2023; 11:toxics11020157. [PMID: 36851033 PMCID: PMC9962265 DOI: 10.3390/toxics11020157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Most transcripts from human genomes are non-coding RNAs (ncRNAs) that are not translated into proteins. ncRNAs are divided into long (lncRNAs) and small non-coding RNAs (sncRNAs). LncRNAs regulate their target genes both transcriptionally and post-transcriptionally through interactions with proteins, RNAs, and DNAs. Maternally expressed gene 3 (MEG3), a lncRNA, functions as a tumor suppressor. MEG3 regulates cell proliferation, cell cycle, apoptosis, hypoxia, autophagy, and many other processes involved in tumor development. MEG3 is downregulated in various cancer cell lines and primary human cancers. Heavy metals, such as hexavalent chromium (Cr(VI)), arsenic, nickel, and cadmium, are confirmed human carcinogens. The exposure of cells to these metals causes a variety of cancers. Among them, lung cancer is the one that can be induced by exposure to all of these metals. In vitro studies have demonstrated that the chronic exposure of normal human bronchial epithelial cells (BEAS-2B) to these metals can cause malignant cell transformation. Metal-transformed cells have the capability to cause an increase in cell proliferation, resistance to apoptosis, elevated migration and invasion, and properties of cancer stem-like cells. Studies have revealed that MEG is downregulated in Cr(VI)-transformed cells, nickel-transformed cells, and cadmium (Cd)-transformed cells. The forced expression of MEG3 reduces the migration and invasion of Cr(VI)-transformed cells through the downregulation of the neuronal precursor of developmentally downregulated protein 9 (NEDD9). MEG3 suppresses the malignant cell transformation of nickel-transformed cells. The overexpression of MEG3 decreases Bcl-xL, causing reduced apoptosis resistance in Cd-transformed cells. This paper reviews the current knowledge of lncRNA MEG3 in metal carcinogenesis.
Collapse
|
6
|
Askari N, Salek Esfahani B, Parvizpour S, Shafieipour S, Hadizadeh M. Long non-coding RNAs as potential biomarkers or therapeutic targets in gastric cancer. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2023; 16:297-306. [PMID: 37767321 PMCID: PMC10520387 DOI: 10.22037/ghfbb.v16i2.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/14/2023] [Indexed: 09/29/2023]
Abstract
Aim This study aimed to find lncRNAs and mRNAs that were expressed differently by combining microarray datasets from different studies. This was done to find important target genes in gastric cancer for anti-cancer therapy. Background Gastric cancer (GC) is the fourth most frequent and second-most deadly malignancy worldwide. Thus, genetic diagnosis and treatment should focus on genetic and epigenetic variables. Based on several studies, disordered expression of non-coding RNAs (ncRNAs), such as lncRNAs, regulate gastric cancer invasion and metastasis. Besides, lncRNAs cooperatively regulate gene expression and GC progression. Methods We obtained differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) from three GC tissue microarray datasets by meta-analysis and screened genes using the "Limma" package. Then, using the RNAInter database, we allocated DEmRNAs to each DElncRNA. ClusterProfiler and GOplot programs were used to analyze function enrichment pathways and gene ontologies for final DEmRNAs. Results A total of 9 differentially expressed lncRNAs (DElncRNAs) (5 up-regulated and 4 down-regulated), and 856 DEmRNAs (451 up-regulated and 405 down-regulated) between tumor and adjacent normal samples were found. Finally, 117 differentially expressed mRNAs were predicted as interactors of six DElncRNAs (H19, WT1-AS, EMX2OS, HOTAIR, ZEB1-AS1, and LINC00261). Conclusion In order to promote cancer therapeutics and give knowledge on the process of carcinogenesis, our study projected a network of drug-gene interactions for discovered genes and presented relevant prospective biomarkers for the prognosis of patients with stomach cancer.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, End of Haft Bagh-e-Alavi Highway, Kerman, Iran
| | - Behnaz Salek Esfahani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Shafieipour
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Nagaraju GP, Farran B, Luong T, El-Rayes BF. Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: A brief overview. Semin Cancer Biol 2023; 88:67-80. [PMID: 36535506 DOI: 10.1016/j.semcancer.2022.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is one of the most aggressive cancers worldwide due to the resistances to conventional therapies and early metastasis. Recent research has shown that cancer stem cell populations modulate invasiveness, recurrence, and drug resistance in various cancers, including pancreatic cancer. Pancreatic cancer stem cells (PaCSCs) are characterized by their high plasticity and self-renewal capacities that endow them with unique metabolic, metastatic, and chemoresistant properties. Understanding the exact molecular and signaling mechanisms that underlay malignant processes in PaCSCs is instrumental for developing novel therapeutic modalities that overcome the limitations of current therapeutic regimens. In this paper, we provide an updated review of the latest research in the field and summarize the current knowledge of PaCSCs characteristics, cellular metabolism, stemness, and drug resistance. We explore how the crosstalk between the TME and PaCSCs influences stemness. We also highlight some of the key signalling pathways involved in PaCSCs stemness and drug evasion. The aim of this review is to explore how PaCSCs develop, maintain their properties, and drive tumor relapse in PC. The last section explores some of the latest therapeutic strategies aimed at targeting PaCSCs.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
8
|
Zhou M, Lv S, Hou Y, Zhang R, Wang W, Yan Z, Li T, Gan W, Zeng Z, Zhang F, Yang M. Characterization of sialylation-related long noncoding RNAs to develop a novel signature for predicting prognosis, immune landscape, and chemotherapy response in colorectal cancer. Front Immunol 2022; 13:994874. [PMID: 36330513 PMCID: PMC9623420 DOI: 10.3389/fimmu.2022.994874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
Aberrant sialylation plays a key biological role in tumorigenesis and metastasis, including tumor cell survival and invasion, immune evasion, angiogenesis, and resistance to therapy. It has been proposed as a possible cancer biomarker and a potential therapeutic target of tumors. Nevertheless, the prognostic significance and biological features of sialylation-related long noncoding RNAs (lncRNAs) in colorectal cancer (CRC) remain unclear. This study aimed to develop a novel sialylation-related lncRNA signature to accurately evaluate the prognosis of patients with CRC and explore the potential molecular mechanisms of the sialylation-related lncRNAs. Here, we identified sialylation-related lncRNAs using the Pearson correlation analysis on The Cancer Genome Atlas (TCGA) dataset. Univariate and stepwise multivariable Cox analysis were used to establish a signature based on seven sialylation-related lncRNAs in the TCGA dataset, and the risk model was validated in the Gene Expression Omnibus dataset. Kaplan-Meier curve analysis revealed that CRC patients in the low-risk subgroup had a better survival outcome than those in the high-risk subgroup in the training set, testing set, and overall set. Multivariate analysis demonstrated that the sialylation-related lncRNA signature was an independent prognostic factor for overall survival, progression-free survival, and disease-specific survival prediction. The sialylation lncRNA signature-based nomogram exhibited a robust prognostic performance. Furthermore, enrichment analysis showed that cancer hallmarks and oncogenic signaling were enriched in the high-risk group, while inflammatory responses and immune-related pathways were enriched in the low-risk group. The comprehensive analysis suggested that low-risk patients had higher activity of immune response pathways, greater immune cell infiltration, and higher expression of immune stimulators. In addition, we determined the sialylation level in normal colonic cells and CRC cell lines by flow cytometry combined with immunofluorescence, and verified the expression levels of seven lncRNAs using real-time quantitative polymerase chain reaction. Finally, combined drug sensitivity analysis using the Genomics of Drug Sensitivity in Cancer, Cancer Therapeutics Response Portal, and Profiling Relative Inhibition Simultaneously in Mixtures indicated that the sialylation-related lncRNA signature could serve as a potential predictor for chemosensitivity. Collectively, this is the first sialylation lncRNA-based signature for predicting the prognosis, immune landscape, and chemotherapeutic response in CRC, and may provide vital guidance to facilitate risk stratification and optimize individualized therapy for CRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
10
|
Wu W, Wen K. Research progress on the interaction between long non‑coding RNAs and RNA‑binding proteins to influence the reprogramming of tumor glucose metabolism (Review). Oncol Rep 2022; 48:153. [PMID: 35856447 PMCID: PMC9350995 DOI: 10.3892/or.2022.8365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
As epigenetic regulators, long non-coding RNAs (lncRNAs) are involved in various important regulatory processes and typically interact with RNA-binding proteins (RBPs) to exert their core functional effects. An increasing number of studies have demonstrated that lncRNAs can regulate the occurrence and development of cancer through a variety of complex mechanisms and can also participate in tumor glucose metabolism by directly or indirectly regulating the Warburg effect. As one of the metabolic characteristics of tumor cells, the Warburg effect provides a large amount of energy and numerous intermediate products to meet the consumption demands of tumor metabolism, providing advantages for the occurrence and development of tumors. The present review article summarizes the regulatory effects of lncRNAs on the reprogramming of glucose metabolism after interacting with RBPs in tumors. The findings discussed herein may aid in the better understanding of the pathogenesis of malignancies, and may provide novel therapeutic targets, as well as new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Weizheng Wu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
11
|
Gao Y, Chen X, Zhang J. LncRNA MEG3 inhibits retinoblastoma invasion and metastasis by inducing β-catenin degradation. Am J Cancer Res 2022; 12:3111-3127. [PMID: 35968358 PMCID: PMC9360216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023] Open
Abstract
In our previous study, we found that low expression of LncRNA-MEG3 was closely associated with the invasion and metastasis of retinoblastomas. The molecular mechanism by which MEG3 inactivation induces the invasion and metastasis of retinoblastoma cell lines remains unclear. We used the GEO database to analyze the expression of MEG3 in retinoblastoma tissues and MEG3-related pathways. The scratch, transwell migration, mouse tumor metastasis, and mouse fluorescence live imaging assays were performed to detect migration and invasion of retinoblastoma cell lines. The RNA pull down, electrophoretic mobility shift, RIP, co-immunoprecipitation, and ubiquitination assays were performed to analyze the molecular mechanisms. The GEO database showed that the expression of MEG3 was low in retinoblastoma tissues and was closely associated with the invasion of retinoblastoma cells and activity of the Wnt pathway. Both in vivo and in vitro experiments confirmed that MEG3 inhibited the migration and invasion of retinoblastoma cells. Cell experiments confirmed that MEG3 could promote the binding of β-catenin and GSK-3β and induce phosphorylation, ubiquitination and degradation of β-catenin indirectly. In conclusion, MEG3 can promote the degradation of β-catenin via GSK-3β, which in turn inactivates the Wnt pathway and ultimately inhibits the invasion and metastasis of retinoblastoma cells.
Collapse
Affiliation(s)
- Yali Gao
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University)Shenzhen 518020, Guangdong, China
| | - Xiaona Chen
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University)Shenzhen 518020, Guangdong, China
| | - Jun Zhang
- Department of Reproductive Medicine, Obstetrics and Gynecology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University)Shenzhen 518020, Guangdong, China
| |
Collapse
|
12
|
Li B, Pang S, Dou J, Zhou C, Shen B, Zhou Y. The inhibitory effect of LINC00261 upregulation on the pancreatic cancer EMT process is mediated by KLF13 via the mTOR signaling pathway. Clin Transl Oncol 2022; 24:1059-1072. [PMID: 35066757 DOI: 10.1007/s12094-021-02747-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The long noncoding RNA LINC00261 was reported to be involved in carcinogenesis and has been validated as a tumor suppressor in pancreatic cancer (PC); however, how LINC00261 is regulated has not been fully examined. Here, we attempted to investigate the upstream and downstream targets of LINC00261 in PC. METHODS LINC00261 expression in PC tissues was examined by the Gene Expression Omnibus (GEO) datasets and the Gene Expression Profiling Interactive Analysis (GEPIA) database. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were performed to detect the expression level of LINC00261 in PC cells. The location of LINC00261 in PC cells was identified by RNA fluorescence in situ hybridization (RNA-FISH). Cell Counting Kit-8 (CCK-8), cell apoptosis assay, transwell invasion and migration assays testified the critical role of LINC00261 in PC. The luciferase reporter assay was applied to confirm the binding of LINC00261 to its upstream transcription factor KLF13. The changes in LINC00261 related target protein levels were analyzed by Western blotting assay. RESULTS LINC00261 was significantly lower in PC tissues and was mainly concentrated in the nucleus. Overexpression of LINC00261 inhibited the invasion and migration of PC cells. Mechanistically, transcription factor KLF13 was confirmed to inhibit the epithelial-mesenchymal transition (EMT) process of PC cells by promoting the transcription of LINC00261 and suppressing the expression of metastasis-associated proteins, such as matrix metalloproteinase MMP2 and vimentin, thus inhibiting the metastasis of PC. CONCLUSION LINC00261 regulates PC cell metastasis through the "KLF13-LINC00261-mTOR-P70S6K1-S6" signaling pathway, which provides a significant set of potential PC therapeutic targets.
Collapse
Affiliation(s)
- B Li
- School of Life Science and Technology, China Pharmaceutical University, Jiangsu, 211198, P.R. China
| | - S Pang
- School of Life Science and Technology, China Pharmaceutical University, Jiangsu, 211198, P.R. China
| | - J Dou
- School of Life Science and Technology, China Pharmaceutical University, Jiangsu, 211198, P.R. China
| | - C Zhou
- School of Life Science and Technology, China Pharmaceutical University, Jiangsu, 211198, P.R. China
| | - B Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P.R. China.
- Institute of Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, 200025, P.R. China.
| | - Y Zhou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P.R. China.
- Institute of Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, Shanghai, 200025, P.R. China.
| |
Collapse
|
13
|
PITPNA-AS1/miR-98-5p to Mediate the Cisplatin Resistance of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7981711. [PMID: 35578599 PMCID: PMC9107361 DOI: 10.1155/2022/7981711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
Abstract
Gastric cancer (GC) is the most deadly gastrointestinal malignancy with high incidence and mortality. Although, molecular mechanisms which drive gastric cancer progression are extensively investigated, the roles of long noncoding RNA (lncRNA) in gastric cancer growth and drug sensitivity remain unclear. Platinum is a mainstay to treat gastric cancer, and platinum resistance always leads to the local recurrence of gastric cancer. Therefore, it is important to identify biomarkers or therapeutic targets to sensitize gastric cancer to platinum. In this study, we employ noncoding RNA sequencing and found that lncRNA PITPNA-AS1 is overexpressed in gastric cancer tissues and associated with poor survival of gastric cancer patients. Kockdown of PITPNA-AS1 in gastric cancer cells significantly inhibited cell growth and triggered apoptotic cell death in gastric cancer cells. Also, cisplatin treatment could decrease PITPNA-AS1 levels in gastric cancer cells through inhibiting H3K27ac. Besides, PITPNA-AS1 is elevated in cisplatin-resistant gastric cancer cells and tissues, PITPNA-AS1 knockdown could sensitize gastric cancer cells to cisplatin treatment. Furthermore, we identified that PITPNA-AS1 directly interacts and inhibits miR-98-5p. Therefore, PITPNA-AS1 could be served as a potential biomarkers and curative therapeutic targets for gastric cancer progression.
Collapse
|
14
|
Linc00261 Inhibited High-Grade Serous Ovarian Cancer Progression through miR-552-ATG10-EMT Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9450353. [PMID: 35465017 PMCID: PMC9019445 DOI: 10.1155/2022/9450353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/05/2022]
Abstract
In recent years, long non-coding RNAs (lncRNAs) play an important role in a multitude of pathways across species; however, their functions are still unknown. In this study, we demonstrate that Linc00261 is downregulation in high-grade serous ovarian cancer (HGSOC) and can inhibit cell proliferation and migration of high-grade serous ovarian cancer cells. We further validate the targeting interactions among Linc00261, miR-552, and ATG10. Interestingly, they all play important roles for regulating epithelial-mesenchymal transition (EMT) progression. Collectively, these findings suggest that Linc00261, a mediator of EMT progression, can target oncogenic miR-552, elevating ATG10 expression, to prevent high-grade serous ovarian cancer tumorigenesis and may serve as a potential novel therapeutic target.
Collapse
|
15
|
Chen Z, Xiang L, Li L, Ou H, Fang Y, Xu Y, Liu Q, Hu Z, Huang Y, Li X, Yang D. TGF-β1 induced deficiency of linc00261 promotes epithelial–mesenchymal-transition and stemness of hepatocellular carcinoma via modulating SMAD3. J Transl Med 2022; 20:75. [PMID: 35123494 PMCID: PMC8818189 DOI: 10.1186/s12967-022-03276-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the metastasis and recurrence of hepatocellular carcinoma (HCC). A kinds of lncRNAs were found to be involved in regulating epithelial–mesenchymal transition (EMT) or stem-like traits in human cancers, however, the molecular mechanism and signaling pathways targeting EMT and stemness remains largely unknown. Previously, we found that linc00261 was down-regulated in HCC and associated with multiple worse clinical pathological parameters and poor prognosis. Here, we show that linc00261 was down-regulated in TGF-β1 stimulated cells, and forced expression of linc00261 attenuated EMT and stem-like traits in HCC. Linc00261 also inhibited the tumor sphere forming in vitro and decreased the tumorigenicity in vivo. Furthermore, we revealed that linc00261 suppressed the expression and phosphorylation of SMAD3 (p-SMAD3), which could be core transcriptional modulator in TGF-β1 signaling mediated EMT and the acquisition of stemness traits. A negative correlation between linc00261 and p-SMAD3 was determined in HCC samples. Conclusion: Our study revealed that linc00261 suppressed EMT and stem-like traits in HCC cells by inhibiting TGF-β1/SMAD3 signaling.
Collapse
|
16
|
Zou J, Pei X, Xing D, Wu X, Chen S. LINC00261 elevation inhibits angiogenesis and cell cycle progression of pancreatic cancer cells by upregulating SCP2 via targeting FOXP3. J Cell Mol Med 2021; 25:9826-9836. [PMID: 34541823 PMCID: PMC8505824 DOI: 10.1111/jcmm.16930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 01/13/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) biological functions and molecular mechanisms associated with pancreatic cancer (PC) remain to be poorly elucidated. We aimed to clarify the role of lncRNA LINC00261 (LINC00261) in PC and confirm its regulatory mechanisms. Bioinformatics analysis, RNA pull-down and RIP assays were performed to investigate relationship between LINC00261 and forkhead box P3 (FOXP3). Further, dual-luciferase reporter gene and ChIP assays were employed to confirm the relationship among LINC00261, FOXP3 and sterol carrier protein-2 (SCP2). PC cells were introduced with a series of vectors to verify the effects of LINC00261 and SCP2 on the viability, cell cycle progression, migration and angiogenesis of PC cells. Nude mice with the xenograft tumour were used to evaluate the effects LINC00261 on the tumourigenicity. LINC00261 was lowly expressed in PC tissues and cells. SCP2 was inhibited by LINC00261 through FOXP3. Functionally, upregulated LINC00261 or downregulated SCP2 led to reduced cell viability, migration, angiogenesis and tumourigenicity potentials. This study demonstrated the inhibitory role of LINC00261 in the angiogenesis and cell cycle progression of PC cells. It acts through the negative regulation of SCP2 via targeting FOXP3. Findings in this study highlight a potentially biomarker for PC treatment.
Collapse
Affiliation(s)
- Jun Zou
- Department of abdominal surgeryJiangxi Cancer HospitalNanchangChina
| | - Xuanzeng Pei
- Department of General SurgeryAffiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Dan Xing
- Department of General SurgeryAffiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Xiaojun Wu
- Department of General SurgeryAffiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Shuai Chen
- Department of General SurgeryAffiliated Hospital of Jiaxing UniversityJiaxingChina
| |
Collapse
|
17
|
Zhou W, Kui Y, Jin P, Li P. Long noncoding RNA TUG1 promotes tumor progression and aggressiveness by regulating micro26b in gastric cancer. Minerva Gastroenterol (Torino) 2021; 68:244-245. [PMID: 34581555 DOI: 10.23736/s2724-5985.21.02978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weidong Zhou
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China -
| | - Yiwen Kui
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Peihua Jin
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Peifei Li
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
18
|
Long noncoding RNA LINC00261 upregulates ITIH5 to impair tumorigenic ability of pancreatic cancer stem cells. Cell Death Discov 2021; 7:220. [PMID: 34446696 PMCID: PMC8390744 DOI: 10.1038/s41420-021-00575-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated tumor development in a range of different cancers, including pancreatic cancer (PC). Cancer stem cells (CSCs), a drug-resistant cancer cell subset, drive tumor progression in PC. In this work, we aimed to investigate the mechanism by which lncRNA LINC00261 affects the biological functions of CSCs during the progression of PC. Microarray analysis of differentially expressed genes and lncRNAs suggested that LINC00261 is downregulated in PC. Both LINC00261 and ITIH5 were confirmed to be downregulated in PC cells and PC stem cells. Gain-of-function and loss-of-function investigations were performed to analyze their effects on cell proliferation, drug resistance, cell cycle distribution, self-renewal, invasion, and ultimately overall tumorigenicity. These experiments revealed that the expression of stem cell markers was reduced, and cell proliferation, self-renewal ability, cell invasion, drug resistance, and tumorigenicity were all suppressed by upregulation of LINC00261 or ITIH5. The results of dual-luciferase reporter gene, ChIP, and RIP assays indicated that LINC00261 binds directly to GATA6, increasing its activity at the ITIH5 promoter. The presence of LINC00261 and GATA6 inhibited the self-renewal and tumorigenesis of PC stem cells, while silence of ITIH5 rescued those functions. Collectively, this study identifies the tumor suppressive activity of LINC00261 in PC, showing that this lncRNA limits the functions of PC stem through an ITIH5/GATA6 regulatory pathway.
Collapse
|
19
|
Han G, Guo Q, Ma N, Bi W, Xu M, Jia J. Apatinib inhibits cell proliferation and migration of osteosarcoma via activating LINC00261/miR-620/PTEN axis. Cell Cycle 2021; 20:1785-1798. [PMID: 34424120 DOI: 10.1080/15384101.2021.1949132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Apatinib has been recently identified as a potential treatment option for osteosarcoma (OS). Nonetheless, the molecular mechanism of Apatinib in regulating OS progression remains unclear. To explore the downstream molecules that mediated the tumor-suppressive effect of Apatinib on OS. Expression levels of genes were detected by RT-qPCR and western blot assays. Functional assays including Transwell assay were applied to detect the proliferation, apoptosis and migration of OS cells. Molecular interactions were detected by luciferase reporter assay and RIP assay. Apatinib inhibited the proliferation and migration of OS cells. LINC00261 was down-regulated in OS cells but then up-regulated after the treatment by Apatinib. Silencing LINC00261 abrogated the suppressive effect of Apatinib on OS cell proliferation and migration. MicroRNA-620 (miR-620) could be sponged by LINC00261. Besides, miR-620 was up-regulated in OS cells and Apatinib treatment reduced miR-620 expression. Furthermore, LINC00261 acted as a competitive endogenous RNA (ceRNA) by sequestering miR-620 to up-regulate the expression of phosphatase and tensin homolog (PTEN). Moreover, Apatinib hindered in vitro cell proliferation and migration as well as the in vivo tumorigenesis of OS through LINC00261/miR-620/PTEN axis. Apatinib-enhanced LINC00261 restrained OS via miR-620/PTEN axis, indicating LINC00261 might promote the efficacy of Apatinib on OS.
Collapse
Affiliation(s)
- Gang Han
- Department of Orthopedics, The First Medical Center of General Hospital of PLA, Beijing, China
| | - Quanyi Guo
- Department of Orthopedics, The First Medical Center of General Hospital of PLA, Beijing, China
| | - Ning Ma
- Department of Orthopedics, The First Medical Center of General Hospital of PLA, Beijing, China
| | - Wenzhi Bi
- Department of Orthopedics, The First Medical Center of General Hospital of PLA, Beijing, China
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of General Hospital of PLA, Beijing, China
| | - Jinpeng Jia
- Department of Orthopedics, The First Medical Center of General Hospital of PLA, Beijing, China
| |
Collapse
|
20
|
Doan P, Nguyen P, Murugesan A, Subramanian K, Konda Mani S, Kalimuthu V, Abraham BG, Stringer BW, Balamuthu K, Yli-Harja O, Kandhavelu M. Targeting Orphan G Protein-Coupled Receptor 17 with T0 Ligand Impairs Glioblastoma Growth. Cancers (Basel) 2021; 13:cancers13153773. [PMID: 34359676 PMCID: PMC8345100 DOI: 10.3390/cancers13153773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM), or glioblastoma chemotherapy, has one of the poorest improvements across all types of cancers. Despite the different rationales explored in targeted therapy for taming the GBM aggressiveness, its phenotypic plasticity, drug toxicity, and adaptive resistance mechanisms pose many challenges in finding an effective cure. Our manuscript reports the expression and prognostic role of orphan receptor GPR17 in glioma, the molecular mechanism of action of the novel ligand of GPR17, and provides evidence how the T0 agonist promotes glioblastoma cell death through modulation of the MAPK/ERK, PI3K–Akt, STAT, and NF-κB pathways. The highlights are as follows: GPR17 expression is associated with greater survival for both low-grade glioma (LGG) and GBM; GA-T0, a potent GPR17 receptor agonist, causes significant GBM cell death and apoptosis; GPR17 signaling promotes cell cycle arrest at the G1 phase in GBM cells; key genes are modulated in the signaling pathways that inhibit GBM cell proliferation; and GA-T0 crosses the blood–brain barrier and reduces tumor volume. Abstract Glioblastoma, an invasive high-grade brain cancer, exhibits numerous treatment challenges. Amongst the current therapies, targeting functional receptors and active signaling pathways were found to be a potential approach for treating GBM. We exploited the role of endogenous expression of GPR17, a G protein-coupled receptor (GPCR), with agonist GA-T0 in the survival and treatment of GBM. RNA sequencing was performed to understand the association of GPR17 expression with LGG and GBM. RT-PCR and immunoblotting were performed to confirm the endogenous expression of GPR17 mRNA and its encoded protein. Biological functions of GPR17 in the GBM cells was assessed by in vitro analysis. HPLC and histopathology in wild mice and an acute-toxicity analysis in a patient-derived xenograft model were performed to understand the clinical implication of GA-T0 targeting GPR17. We observed the upregulation of GPR17 in association with improved survival of LGG and GBM, confirming it as a predictive biomarker. GA-T0-stimulated GPR17 leads to the inhibition of cyclic AMP and calcium flux. GPR17 signaling activation enhances cytotoxicity against GBM cells and, in patient tissue-derived mesenchymal subtype GBM cells, induces apoptosis and prevents proliferation by stoppage of the cell cycle at the G1 phase. Modulation of the key genes involved in DNA damage, cell cycle arrest, and in several signaling pathways, including MAPK/ERK, PI3K–Akt, STAT, and NF-κB, prevents tumor regression. In vivo activation of GPR17 by GA-T0 reduces the tumor volume, uncovering the potential of GA-T0–GPR17 as a targeted therapy for GBM treatment. Conclusion: Our analysis suggests that GA-T0 targeting the GPR17 receptor presents a novel therapy for treating glioblastoma.
Collapse
Affiliation(s)
- Phuong Doan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Phung Nguyen
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Kumar Subramanian
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | | | - Vignesh Kalimuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (V.K.); (K.B.)
| | - Bobin George Abraham
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland;
| | - Brett W. Stringer
- College of Medicine and Public Health, Flinders University, Sturt Rd., Bedford Park, SA 5042, Australia;
| | - Kadalmani Balamuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (V.K.); (K.B.)
| | - Olli Yli-Harja
- Computational Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland;
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; (P.D.); (P.N.); (A.M.); (K.S.)
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, USA
- Correspondence: ; Tel.: +358-504721724
| |
Collapse
|
21
|
Di Fiore R, Suleiman S, Felix A, O’Toole SA, O’Leary JJ, Ward MP, Beirne J, Sabol M, Ozretić P, Yordanov A, Vasileva-Slaveva M, Kostov S, Nikolova M, Said-Huntingford I, Ayers D, Ellul B, Pentimalli F, Giordano A, Calleja-Agius J. An Overview of the Role of Long Non-Coding RNAs in Human Choriocarcinoma. Int J Mol Sci 2021; 22:ijms22126506. [PMID: 34204445 PMCID: PMC8235025 DOI: 10.3390/ijms22126506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Choriocarcinoma (CC), a subtype of trophoblastic disease, is a rare and highly aggressive neoplasm. There are two main CC subtypes: gestational and non-gestational, (so called when it develops as a component of a germ cell tumor or is related to a somatic mutation of a poorly differentiated carcinoma), each with very diverse biological activity. A therapeutic approach is highly effective in patients with early-stage CC. The advanced stage of the disease also has a good prognosis with around 95% of patients cured following chemotherapy. However, advancements in diagnosis and treatment are always needed to improve outcomes for patients with CC. Long non-coding (lnc) RNAs are non-coding transcripts that are longer than 200 nucleotides. LncRNAs can act as oncogenes or tumor suppressor genes. Deregulation of their expression has a key role in tumor development, angiogenesis, differentiation, migration, apoptosis, and proliferation. Furthermore, detection of cancer-associated lncRNAs in body fluids, such as blood, saliva, and urine of cancer patients, is emerging as a novel method for cancer diagnosis. Although there is evidence for the potential role of lncRNAs in a number of cancers of the female genital tract, their role in CC is poorly understood. This review summarizes the current knowledge of lncRNAs in gestational CC and how this may be applied to future therapeutic strategies in the treatment of this rare cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Correspondence: (R.D.F.); (J.C.-A.); Tel.: +356-2340-3871 (R.D.F.); +356-2340-1892 (J.C.-A.)
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Ana Felix
- Department of Pathology, Campo dos Mártires da Pátria, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, UNL, 130, 1169-056 Lisboa, Portugal;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Trinity St James’s Cancer Institute, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity College Dublin, Trinity St James’s Cancer Institute, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - James Beirne
- Department of Gynaecological Oncology, Trinity St James Cancer Institute, St James Hospital, 8 Dublin, Ireland;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Stoyan Kostov
- Department of Gynecology, Medical University Varna “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria;
| | - Margarita Nikolova
- Saint Marina University Hospital—Pleven, Medical University Pleven, 5800 Pleven, Bulgaria;
| | - Ian Said-Huntingford
- Department of Histopathology, Mater Dei Hospital, Birkirkara Bypass, MSD 2090 Msida, Malta;
| | - Duncan Ayers
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta; (D.A.); (B.E.)
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Bridget Ellul
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta; (D.A.); (B.E.)
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Correspondence: (R.D.F.); (J.C.-A.); Tel.: +356-2340-3871 (R.D.F.); +356-2340-1892 (J.C.-A.)
| |
Collapse
|
22
|
Zhang M, Gao F, Yu X, Zhang Q, Sun Z, He Y, Guo W. LINC00261: a burgeoning long noncoding RNA related to cancer. Cancer Cell Int 2021; 21:274. [PMID: 34022894 PMCID: PMC8141177 DOI: 10.1186/s12935-021-01988-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), are transcripts longer than 200 nucleotides that are considered to be vital regulators of many cellular processes, particularly in tumorigenesis and cancer progression. long intergenic non-protein coding RNA 261 (LINC00261), a recently discovered lncRNA, is abnormally expressed in a variety of human malignancies, including pancreatic cancer, gastric cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, breast cancer, laryngeal carcinoma, endometrial carcinoma, esophageal cancer, prostate cancer, choriocarcinoma, and cholangiocarcinoma. LINC00261 mainly functions as a tumor suppressor that regulates a variety of biological processes in the above-mentioned cancers, such as cell proliferation, apoptosis, motility, chemoresistance, and tumorigenesis. In addition, the up-regulation of LINC00261 is closely correlated with both favorable prognoses and many clinical characteristics. In the present review, we summarize recent research documenting the expression and biological mechanisms of LINC00261 in tumor development. These findings suggest that LINC00261, as a tumor suppressor, has bright prospects both as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Binzhou, 256600, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
23
|
Qu L, Chen Y, Zhang F, He L. The lncRNA DLGAP1-AS1/miR-149-5p/TGFB2 axis contributes to colorectal cancer progression and 5-FU resistance by regulating smad2 pathway. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:607-624. [PMID: 33816780 PMCID: PMC7985718 DOI: 10.1016/j.omto.2021.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Colorectal carcinoma (CRC) ranks as the third most common malignancy. Long non-coding RNA DLGAP1-AS1 was reported to be dysregulated and to play a pivotal role in hepatocellular carcinoma (HCC). This work aims to analyze the functions and molecular basis of DLGAP1-AS1 in CRC progression and 5-fluorouracil resistance. Cell Counting Kit-8 (CCK-8) assay, Transwell assay, flow cytometry, and western blot were utilized to measure the CRC cell activity, invasiveness, and apoptosis. RNA immunoprecipitation (RIP) and dual-luciferase reporter gene assay were adopted to verify the direct mutual action between DLGAP1-AS1 and miR-149-5p. The effect of DLGAP1-AS1 knockdown on tumor growth and chemosensitivity of 5-fluorouracil (5-FU) were investigated in the mouse CRC xenograft models. Functional assays showed that silencing DLGAP1-AS1 expression remarkably inhibited cell proliferation and aggressiveness ability and enhanced apoptosis rate and cell chemosensitivity to 5-FU. In addition, miR-149-5p was identified as a tumor suppressor and a direct downstream target of DLGAP1-AS1 in CRC. Furthermore, miR-149-5p was confirmed to directly bind to TGFB2 and DLGAP1-AS1 could regulate the expression of TGFB2 signaling pathway via miR-149-5p in CRC. These new findings indicate that DLGAP1-AS1 knockdown inhibited the progression of CRC and enhanced the 5-FU sensitivity of CRC cells through miR-149-5p/TGFB2 regulatory axis, suggesting that DLGAP1-AS1 may be a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Linlin Qu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Fan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Liang He
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
24
|
Chen Z, Xiang L, Hu Z, Ou H, Liu X, Yu L, Chen W, Jiang L, Yu Q, Fang Y, Xu Y, Liu Q, Huang Y, Li X, Yang D. Epigenetically silenced linc00261 contributes to the metastasis of hepatocellular carcinoma via inducing the deficiency of FOXA2 transcription. Am J Cancer Res 2021; 11:277-296. [PMID: 33520374 PMCID: PMC7840721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. In recent decades, long non-coding RNAs (lncRNAs) have attracted increasing attention and have been reported to play important roles in human cancers, making them ideal candidates for precise disease assessment and treatment. Our previous study found that the loss of linc00261 was significantly correlated with the malignant biological behaviors of HCC, particularly MVI, and serves as an excellent independent prognostic factor for recurrence-free survival. In this study, our in-depth research demonstrated that linc00261 inhibits epithelial-mesenchymal transition (EMT) in liver cancer cells, thereby suppressing migration, invasion, and the formation of lung metastatic lesions. Moreover, linc00261 and its neighbor gene FOXA2 were positively correlated in HCC, the gain- and loss-of-function analyses indicated that linc00261 transcriptionally promotes the expression of FOXA2. Additionally, bioinformatic analysis and rescue assays confirmed that linc00261 partially suppresses migration, invasion, and EMT by upregulating FOXA2 expression. Molecular mechanism studies showed that linc00261 transcriptionally upregulates FOXA2 in cis by recruiting SMAD3. Finally, we identified EZH2 is responsible for linc00261 transcription repression via modulating trimethylation of H3K27 at Lys27 (H3K27Me3), both EZH2 and H3K27Me3 were negatively correlated with linc00261 expression in HCC. In conclusion, these findings demonstrated a crucial role of linc00261 in HCC metastasis, and that EZH2/linc00261/FOXA2 axis might reveal potential prognostic factors and be applied as therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Zhanjun Chen
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
- Department of General Surgery, Affiliated Baoan Hospital of Shenzhen, Southern Medical UniversityShenzhen 518101, Guangdong Province, China
| | - Leyang Xiang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Zhigang Hu
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Huohui Ou
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)Foshan 528308, Guangdong Province, China
| | - Xiao Liu
- Department of General Surgery, Foresea Life Insurance Guangzhou General HospitalGuangzhou 511356, Guangdong Province, China
| | - Lili Yu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Wancheng Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Lei Jiang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Qiangfeng Yu
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Yinghao Fang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Yuyan Xu
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Qin Liu
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Yu Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Xianghong Li
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Dinghua Yang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| |
Collapse
|
25
|
Identification of the 3-lncRNA Signature as a Prognostic Biomarker for Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21249359. [PMID: 33302562 PMCID: PMC7764807 DOI: 10.3390/ijms21249359] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant carcinomas in the world, and metastasis is the main cause of CRC-related death. However, the molecular network involved in CRC metastasis remains poorly understood. Long noncoding RNA (lncRNA) plays a vital role in tumorigenesis and may act as a competing endogenous RNA (ceRNA) to affect the expression of mRNA by suppressing miRNA function. In this study, we identified 628 mRNAs, 144 lncRNAs, and 25 miRNAs that are differentially expressed (DE) in metastatic CRC patients compared with nonmetastatic CRC patients from the Cancer Genome Atlas (TCGA) database. Functional enrichment analyses confirmed that the identified DE mRNAs are extensively involved in CRC tumorigenesis and migration. By bioinformatics analysis, we constructed a metastasis-associated ceRNA network for CRC that includes 28 mRNAs, 12 lncRNAs, and 15 miRNAs. We then performed multivariate Cox regression analysis on the ceRNA-related DE lncRNAs and identified a 3-lncRNA signature (LINC00114, LINC00261, and HOTAIR) with the greatest prognostic value for CRC. Clinical feature analysis and functional enrichment analysis further proved that these three lncRNAs are involved in CRC tumorigenesis. Finally, we used Transwell, Cell Counting Kit (CCK)-8, and colony formation assays to clarify that the inhibition of LINC00114 promotes the migratory, invasive, and proliferative abilities of CRC cells. The results of the luciferase assay suggest that LINC00114 is the direct target of miR-135a, which also verified the ceRNA network. In summary, this study provides a metastasis-associated ceRNA network for CRC and suggests that the 3-lncRNA signature may be a useful candidate for the diagnosis and prognosis of CRC.
Collapse
|
26
|
Yang Y, Deng X, Li Q, Wang F, Miao L, Jiang Q. Emerging roles of long noncoding RNAs in cholangiocarcinoma: Advances and challenges. Cancer Commun (Lond) 2020; 40:655-680. [PMID: 33142045 PMCID: PMC7743012 DOI: 10.1002/cac2.12109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA), a cancer with a relatively low incidence rate, is usually associated with poor prognosis. Current modalities for the diagnosis and treatment of CCA patients are still far from satisfactory. In recent years, numerous long noncoding RNAs (lncRNAs) have been identified as crucial players in the development of various cancers, including CCA. Abnormally expressed lncRNAs in CCA, regulated by some upstream molecules, significantly influence the biological behavior of tumor cells and are involved in tumor development through various mechanisms, including interactions with functional proteins, participation in competing for endogenous RNA (ceRNA) regulatory networks, activation of cancer‐related signaling pathways and epigenetic modification of gene expression. Furthermore, several lncRNAs are closely associated with the clinicopathological features of CCA patients, and are promising biomarkers for diagnosing and prognostication of CCA. Some of these lncRNAs play an important role in chemotherapy drug resistance. In addition, lncRNAs have also been shown to be involved in the inflammation microenvironment of CCA and malignant outcome of CCA risk factors, such as cholestatic liver diseases. In view of the difficulty of diagnosing CCA, more attention should be paid to detectable lncRNAs in the serum or bile. This review summarizes the recent knowledge on lncRNAs in CCA and provides a new outlook on the molecular mechanisms of CCA development from the perspective of lncRNAs. Moreover, we also discussed the limitations of the current studies and differential expression of lncRNAs in different types of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Quanpeng Li
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Fei Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Qi Jiang
- Department of Gastroenterology, Dongtai People's Hospital, Yancheng, Jiangsu, 224000, P. R. China
| |
Collapse
|
27
|
Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B, Deng X. Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene 2020; 40:277-291. [PMID: 33122827 PMCID: PMC7808938 DOI: 10.1038/s41388-020-01525-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs have been identified as key regulators in the progression of various cancers. LINC00261 has been reported as a tumor suppressor in multiple cancers. However, its function and underlying mechanisms in pancreatic cancer remain largely unclear. Quantitative real-time PCR was performed to detect RNA expression. In situ hybridization was used to discover the subcellular location. The direct binding of LINC00261 to miR-222-3p was verified using a dual-luciferase reporter assay and RNA immunoprecipitation. LINC00261-binding proteins were detected using an RNA pulldown assay. LINC00261 was downregulated in pancreatic cancer tissues and cell lines. Its reduced expression was correlated with advanced pathological stage and poor prognosis. Forced expression of LINC00261 suppressed pancreatic cancer glycolysis and proliferation and induced cell cycle arrest and apoptosis. Mechanistically, downregulation of LINC00261 was caused by hypermethylation of the CpG island in the promoter region and EZH2-mediated histone H3 lysine 27 trimethylation. Moreover, LINC00261 exerted its biological function by binding to miR-222-3p to activate the HIPK2/ERK/c-myc pathway. In addition, LINC00261 could also reduce c-myc expression by sequestering IGF2BP1. Our study suggests that LINC00261 functions as a tumor suppressor in pancreatic cancer and identifies novel epigenetic and posttranscriptional regulatory mechanisms of LINC00261, which contribute to the targeted therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
28
|
Li Y, Li H, Wei X. Long noncoding RNA LINC00261 suppresses prostate cancer tumorigenesis through upregulation of GATA6-mediated DKK3. Cancer Cell Int 2020; 20:474. [PMID: 33013201 PMCID: PMC7526381 DOI: 10.1186/s12935-020-01484-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 01/16/2023] Open
Abstract
Background Prostate cancer is one of the leading causes of cancer death in males. Recent studies have reported aberrant expression of lncRNAs in prostate cancer. This study explores the role of LINC00261 in prostate cancer progression. Methods The differentially expressed genes, transcription factors, and lncRNAs related to prostate cancer were predicted by bioinformatics analysis. Prostate cancer tissue samples and cell lines were collected for the determination of the expression of LINC00261 by reverse transcription quantitative polymerase chain reaction. The binding capacity of LINC00261 to the transcription factor GATA6 was detected by RIP, and GATA6 binding to the DKK3 promoter region was assessed by ChIP. In addition, luciferase reporter system was used to verify whether LINC00261 was present at the DKK3 promoter. After gain- and loss-of function approaches, the effect of LINC00261 on prostate cancer in vitro and in vivo was assessed by the determination of cell proliferation, invasion and migration as well as angiogenesis. Results LINC00261, GATA6, and DKK3 were poorly expressed in prostate cancer. LINC00261 could inhibit transcriptional expression of DKK3 by recruiting GATA6. Overexpression of LINC00261 inhibited prostate cancer cells proliferation, migration, and invasion as well as angiogenesis, which could be reversed by silencing DKK3. Furthermore, LINC00261 could also suppress the tumorigenicity of cancer cells in vivo. Conclusions Our study demonstrates the inhibitory role of LINC00261 in prostate cancer progression, providing a novel biomarker for early detection of prostate cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin People's Republic of China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin People's Republic of China
| | - Xin Wei
- Department of Urology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin People's Republic of China
| |
Collapse
|
29
|
Zhu J, Deng J, Zhang L, Zhao J, Zhou F, Liu N, Cai R, Wu J, Shu B, Qi S. Reconstruction of lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional lncRNAs in skin cutaneous melanoma. BMC Cancer 2020; 20:927. [PMID: 32993558 PMCID: PMC7523354 DOI: 10.1186/s12885-020-07302-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human skin cutaneous melanoma is the most common and dangerous skin tumour, but its pathogenesis is still unclear. Although some progress has been made in genetic research, no molecular indicators related to the treatment and prognosis of melanoma have been found. In various diseases, dysregulation of lncRNA is common, but its role has not been fully elucidated. In recent years, the birth of the "competitive endogenous RNA" theory has promoted our understanding of lncRNAs. METHODS To identify the key lncRNAs in melanoma, we reconstructed a global triple network based on the "competitive endogenous RNA" theory. Gene Ontology and KEGG pathway analysis were performed using DAVID (Database for Annotation, Visualization, and Integration Discovery). Our findings were validated through qRT-PCR assays. Moreover, to determine whether the identified hub gene signature is capable of predicting the survival of cutaneous melanoma patients, a multivariate Cox regression model was performed. RESULTS According to the "competitive endogenous RNA" theory, 898 differentially expressed mRNAs, 53 differentially expressed lncRNAs and 16 differentially expressed miRNAs were selected to reconstruct the competitive endogenous RNA network. MALAT1, LINC00943, and LINC00261 were selected as hub genes and are responsible for the tumorigenesis and prognosis of cutaneous melanoma. CONCLUSIONS MALAT1, LINC00943, and LINC00261 may be closely related to tumorigenesis in cutaneous melanoma. In addition, MALAT1 and LINC00943 may be independent risk factors for the prognosis of patients with this condition and might become predictive molecules for the long-term treatment of melanoma and potential therapeutic targets.
Collapse
Affiliation(s)
- Junyou Zhu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jin Deng
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095 People’s Republic of China
| | - Lijun Zhang
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jingling Zhao
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Fei Zhou
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Ning Liu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Ruizhao Cai
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jun Wu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Bin Shu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Shaohai Qi
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| |
Collapse
|
30
|
Landeros N, Santoro PM, Carrasco-Avino G, Corvalan AH. Competing Endogenous RNA Networks in the Epithelial to Mesenchymal Transition in Diffuse-Type of Gastric Cancer. Cancers (Basel) 2020; 12:cancers12102741. [PMID: 32987716 PMCID: PMC7598708 DOI: 10.3390/cancers12102741] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The diffuse-type of gastric cancer is associated with epithelial to mesenchymal transition. Loss of E-cadherin expression is the hallmark of this process and is largely due to the upregulation of the transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, miRNA and lncRNAs can also participate through these transcription factors which directly target E-cadherin. The competing endogenous RNA (ceRNA) network hypothesis state that lncRNA can sponge the miRNA pool that targets these transcripts. Based on the lack of said networks in the epithelial to mesenchymal transition, we performed a prediction analysis that resulted in novel ceRNA networks which will expand our knowledge of the molecular basis of the diffuse-type of gastric cancer. Abstract The diffuse-type of gastric cancer (DGC), molecularly associated with epithelial to mesenchymal transition (EMT), is increasing in incidence. Loss of E-cadherin expression is the hallmark of the EMT process and is largely due to the upregulation of the EMT-inducing transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, ncRNA, such as miRNA and lncRNAs, can also participate in the EMT process through the direct targeting of E-cadherin and other EMT-inducing transcription factors. Additionally, lncRNA can sponge the miRNA pool that targets these transcripts through competing endogenous RNA (ceRNA) networks. In this review, we focus on the role of ncRNA in the direct deregulation of E-cadherin, as well as EMT-inducing transcription factors. Based on the relevance of the ceRNA network hypothesis, and the lack of said networks in EMT, we performed a prediction analysis for all miRNAs and lncRNAs that target E-cadherin, as well as EMT-inducing transcription factors. This analysis resulted in novel predicted ceRNA networks for E-cadherin and EMT-inducing transcription factors (EMT-TFs), as well as the expansion of the molecular basis of the DGC.
Collapse
Affiliation(s)
- Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Pablo M. Santoro
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Gonzalo Carrasco-Avino
- Department of Pathology, Hospital Clinico Universidad de Chile and Clinica Las Condes, Santiago 7550000, Chile;
| | - Alejandro H. Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-2235-48289
| |
Collapse
|
31
|
Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Oncogene 2020; 39:6513-6528. [PMID: 32901105 DOI: 10.1038/s41388-020-01442-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/19/2020] [Accepted: 08/21/2020] [Indexed: 01/26/2023]
Abstract
Current reports refer to the role of long noncoding RNA (lncRNA) prostate androgen-regulated transcript 1 (PART1) as a tumor suppressor in some types of cancer but as an oncogene in other kinds of cancer. In gastric cancer, it had been reported to be downregulated. However, the clinical significance and underlying mechanism of PART1 function in gastric cancer remains undefined. Here, seven differential expression levels of noncoding RNAs (DE-lncRNAs) were screened from gastric cancer through a probe reannotation of a human exon array. PART1 was selected for further study because of its high fold change number. In our cohort, PART1 was identified as a significant downregulated lncRNA in gastric cancer tissues by qPCR and in situ hybridization (ISH), and its low expression was significantly correlated with postoperative metastasis and short overall survival time after surgery. Through the results of gain-of-function experiments, PART1 was confirmed as a tumor suppressor that can decrease not only cell viability, migration, and invasion in vitro but also tumorigenesis and tumor metastasis in vivo. Mechanistically, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) showed that PART1 interacts with androgen receptor (AR), and then, promyelocytic leukemia zinc finger (PLZF) is upregulated in an androgen-independent manner. In a chain reaction, chromatin immunoprecipitation (ChIP) assay additionally illustrated that PLZF upregulation increased the enrichment of EZH2 and H3K27 trimethylation in the platelet-derived growth factor (PDGFB) promotor, thereby inhibition of PDGFB and the subsequent PDGFRβ/PI3K/Akt signaling pathway. Based on these findings, we showed PART1 plays a tumor suppressor role by promoting PLZF expression followed by recruitment of EZH2 to mediate epigenetic PDGFB silencing and downstream PI3K/Akt inhibition, suggesting that PART1 has a key role in restraining the aggressive ability of GC cells and providing a novel perspective on lncRNAs in GC progression.
Collapse
|
32
|
Glaß M, Dorn A, Hüttelmaier S, Haemmerle M, Gutschner T. Comprehensive Analysis of LincRNAs in Classical and Basal-Like Subtypes of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082077. [PMID: 32727085 PMCID: PMC7464731 DOI: 10.3390/cancers12082077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) belong to the deadliest malignancies in the western world. Mutations in TP53 and KRAS genes along with some other frequent polymorphisms occur almost universally and are major drivers of tumour initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses and differences in overall survival observed in PDAC patients. Thus, recent classifications of PDAC tumour samples have leveraged transcriptome-wide gene expression data to account for epigenetic, transcriptional and post-transcriptional mechanisms that may contribute to this deadly disease. Intriguingly, long intervening RNAs (lincRNAs) are a special class of long non-coding RNAs (lncRNAs) that can control gene expression programs on multiple levels thereby contributing to cancer progression. However, their subtype-specific expression and function as well as molecular interactions in PDAC are not fully understood yet. In this study, we systematically investigated the expression of lincRNAs in pancreatic cancer and its molecular subtypes using publicly available data from large-scale studies. We identified 27 deregulated lincRNAs that showed a significant different expression pattern in PDAC subtypes suggesting context-dependent roles. We further analyzed these lincRNAs regarding their common expression patterns. Moreover, we inferred clues on their functions based on correlation analyses and predicted interactions with RNA-binding proteins, microRNAs, and mRNAs. In summary, we identified several PDAC-associated lincRNAs of prognostic relevance and potential context-dependent functions and molecular interactions. Hence, our study provides a valuable resource for future investigations to decipher the role of lincRNAs in pancreatic cancer.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Agnes Dorn
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
- Correspondence: (M.H.); (T.G.)
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Correspondence: (M.H.); (T.G.)
| |
Collapse
|
33
|
Guo C, Shi H, Shang Y, Zhang Y, Cui J, Yu H. LncRNA LINC00261 overexpression suppresses the growth and metastasis of lung cancer via regulating miR-1269a/FOXO1 axis. Cancer Cell Int 2020; 20:275. [PMID: 32607060 PMCID: PMC7318380 DOI: 10.1186/s12935-020-01332-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/09/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND LncRNAs are key regulators in cancer. The current study explored the role of lncRNA LINC00261 (LINC00261) in lung cancer (LC). METHODS Expression of LINC00261 in LC tissues and cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Pearson's Chi square test and Kaplan-Meier analysis were performed to evaluate the correlations between LINC00261 expression and clinical characteristics, and overall survival time. A549 and SPC-A1 cells were transfected with LINC00261 overexpression plasmid, cell viability, cell number, and apoptosis were detected by CCK-8 assay, colony formation, and flow cytometry. Moreover, wound-healing and transwell assay were performed to detect cell metastasis and invasion. Expressions of proteins related to cell proliferation and metastasis were determined by Western blot. Xenograft was constructed, and tumor size and weight were measured and the effects of LINC00261 overexpression on tumor growth were detected. Bioinformatics analysis, dual-luciferase reporter assay, qRT-PCR, correlation analysis, and functional rescue experiments were conducted on clinical cases and LC cells to explore the molecular mechanism of LINC00261 in LC. RESULTS In LC, LINC00261 expression was down-regulated, and was associated with more advanced TNM stage, metastasis and a shorter survival time. LINC00261 overexpression inhibited the growth and metastasis of LC cells in vitro and tumor growth in vivo. Furthermore, miR-1269a directly interacted with LINC00261 and FOXO1. The expressions of miR-1269a and FOXO1 were dysregulated by LINC00261 in LC. Additionally, miR-1269a promoted the progression of LC through targeting FOXO1. CONCLUSIONS Down-regulation of LINC00261 expression has a prognostic value in LC, and overexpression LINC00261 inhibits LC progression via targeting miR-1269a/FOXO1 axis.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Respiratory Medicine, Henan Provincial Chest Hospital, No.1, Weiwu Road, Zhengzhou, 450000 Henan Province China
| | - Hongmei Shi
- Department of Respiratory Medicine, Henan Provincial Chest Hospital, No.1, Weiwu Road, Zhengzhou, 450000 Henan Province China
| | - Yuli Shang
- Department of Respiratory Medicine, Henan Provincial Chest Hospital, No.1, Weiwu Road, Zhengzhou, 450000 Henan Province China
| | - Yafei Zhang
- Department of Respiratory Medicine, Henan Provincial Chest Hospital, No.1, Weiwu Road, Zhengzhou, 450000 Henan Province China
| | - Jiajia Cui
- Department of Respiratory Medicine, Henan Provincial Chest Hospital, No.1, Weiwu Road, Zhengzhou, 450000 Henan Province China
| | - Hongtao Yu
- Department of Respiratory Medicine, Henan Provincial Chest Hospital, No.1, Weiwu Road, Zhengzhou, 450000 Henan Province China
| |
Collapse
|
34
|
Zhang R, Li Y, Liu X, Qin S, Guo B, Chang L, Huang L, Liu S. FOXO3a-mediated long non-coding RNA LINC00261 resists cardiomyocyte hypoxia/reoxygenation injury via targeting miR23b-3p/NRF2 axis. J Cell Mol Med 2020; 24:8368-8378. [PMID: 32558131 PMCID: PMC7412708 DOI: 10.1111/jcmm.15292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemia/reperfusion (I/R)‐mediated acute myocardial infarction (AMI) is a major pathological factor implicated in the progression of ischemic heart disease (IHD). Long non‐coding RNA plays an important role in regulating the occurrence and development of cardiovascular disease. The aim of this study was to investigate the regulating role of LINC00261 in hypoxia/reoxygenation (H/R)‐induced cardiomyocyte apoptosis. The relative expression of LINC00261, miR‐23b‐3p and NRF2 were determined in rats I/R myocardial tissues and H/R‐induced cardiomyocytes. The rat model and cell model of LINC00261 overexpression were established to investigate the biological function of LINC00261 on H9C2 cell. The interaction between LINC00261, miR‐23b‐3p, NRF2 and FOXO3a was identified using bioinformatics analysis, luciferase reporter assay, RNA immunoprecipitation (RIP) assay, chromatin immunoprecipitation (CHIP) assay and qRT‐PCR. The expression of LINC00261 was significantly down‐regulated in myocardial tissues and H9C2 cell. Overexpression of LINC00261 improves cardiac function and reduces myocardium apoptosis. Interestingly, transcription factor FOXO3a was found to promote LINC00261 transcription. Moreover, LINC00261 was confirmed as a spong of miR23b‐3p and thereby positively regulates NRF2 expression in cardiomyocytes. Our findings reveal a novel role for LINC00261 in regulating H/R cardiomyocyte apoptosis and the potency of the LINC00261/miR‐23b‐3p/NRF2 axis as a therapeutic target for the treatment of MIRI.
Collapse
Affiliation(s)
- Ruining Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Xiaopeng Liu
- The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China.,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Qin
- The Graduate School, GuiZhou medical university, GuiYang, China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Liang Chang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Liu Huang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| | - Suyun Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, HeBei, China.,The Hebei Institute of Cardiovascular and Cerebrovascular Diseases (YL), Shijiazhuang, China
| |
Collapse
|
35
|
Dorn A, Glaß M, Neu CT, Heydel B, Hüttelmaier S, Gutschner T, Haemmerle M. LINC00261 Is Differentially Expressed in Pancreatic Cancer Subtypes and Regulates a Pro-Epithelial Cell Identity. Cancers (Basel) 2020; 12:cancers12051227. [PMID: 32414223 PMCID: PMC7281485 DOI: 10.3390/cancers12051227] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the major causes of cancer-associated deaths worldwide, with a dismal prognosis that has not significantly changed over the last decades. Transcriptional analysis has provided valuable insights into pancreatic tumorigenesis. Specifically, pancreatic cancer subtypes were identified, characterized by specific mutations and gene expression changes associated with differences in patient survival. In addition to differentially regulated mRNAs, non-coding RNAs, including long non-coding RNAs (lncRNAs), were shown to have subtype-specific expression patterns. Hence, we aimed to characterize prognostic lncRNAs with deregulated expression in the squamous subtype of PDAC, which has the worst prognosis. Extensive in silico analyses followed by in vitro experiments identified long intergenic non-coding RNA 261 (LINC00261) as a downregulated lncRNA in the squamous subtype of PDAC, which is generally associated with transforming growth factor β (TGFβ) signaling in human cancer cells. Its genomic neighbor, the transcription factor forkhead box protein A2 (FOXA2), regulated LINC00261 expression by direct binding of the LINC00261 promoter. CRISPR-mediated knockdown and promoter knockout validated the importance of LINC00261 in TGFβ-mediated epithelial–mesenchymal transition (EMT) and established the epithelial marker E-cadherin, an important cell adhesion protein, as a downstream target of LINC00261. Consequently, depletion of LINC00261 enhanced motility and invasiveness of PANC-1 cells in vitro. Altogether, our data suggest that LINC00261 is an important tumor-suppressive lncRNA in PDAC that is involved in maintaining a pro-epithelial state associated with favorable disease outcome.
Collapse
Affiliation(s)
- Agnes Dorn
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Carolin T. Neu
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Beate Heydel
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Cell Biology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (M.G.); (S.H.)
| | - Tony Gutschner
- Junior Research Group ‘RNA biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Correspondence: (T.G.); (M.H.); Tel.: +49-345-5573945 (T.G.); +49-345-5573964 (M.H.)
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (A.D.); (C.T.N.); (B.H.)
- Correspondence: (T.G.); (M.H.); Tel.: +49-345-5573945 (T.G.); +49-345-5573964 (M.H.)
| |
Collapse
|
36
|
Guo G, Dai S, Chen Q. Long Noncoding RNA LINC00261 Reduces Proliferation and Migration of Breast Cancer Cells via the NME1-EMT Pathway. Cancer Manag Res 2020; 12:3081-3089. [PMID: 32440206 PMCID: PMC7210026 DOI: 10.2147/cmar.s237197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Long noncoding RNAs (lncRNAs) are emerging as a class of important biological regulators. lncRNAs participate in diverse biological functions and disease processes, especially those leading to tumorigenesis. In this study, we investigate the role of linc00261 in the pathogenesis of breast cancer. Methods linc00261 and NME1 expression levels were determined in breast cancer tissue and adjacent normal tissue using qRT-PCR. Cell proliferation and migration were analyzed using MTT and transwell assays, respectively. Epithelial–mesenchymal transition markers were examined via Western blotting assay. RNA pull-down was used to examine the interaction between linc00261 and the NME1 mRNA transcript. Results linc00261 is expressed in lower levels on breast cancer tissues than in para-carcinoma tissues. Reintroduction of linc00261 can inhibit the migration of breast cancer cells and arrest their proliferation. Additionally, linc00261 knockdown is sufficient to cause breast carcinoma tumorigenesis. We also found that linc00261 interacts with NME1 mRNA, protecting it from degradation. This protection leads to increased cellular levels of NME1, which functions as suppressor of tumor metastasis. Conclusion Taken together, these data demonstrate detailed mechanistic links between the linc00261/NME1 axis and tumorigenesis and show that linc00261 might serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Guangxiu Guo
- Department of Pathology, The People's Hospital of Ganzhou, Gannan, People's Republic of China
| | - Sujuan Dai
- Department of Pathology, The People's Hospital of Ganzhou, Gannan, People's Republic of China
| | - Qing Chen
- Department of Pathology, The People's Hospital of Ganzhou, Gannan, People's Republic of China
| |
Collapse
|
37
|
LINC00619 restricts gastric cancer progression by preventing microRNA-224-5p-mediated inhibition of OPCML. Arch Biochem Biophys 2020; 689:108390. [PMID: 32359894 DOI: 10.1016/j.abb.2020.108390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Several long intergenic noncoding RNAs (lincRNAs) have been linked to carcinogenesis; however, little is known about the role of LINC00619 in gastric cancer (GC). LINC00619 was identified among differentially expressed lncRNAs linked to gastric cancer based on microarray analysis and its relationships with miR-224-5p and opioid binding protein/cell adhesion molecule-like gene (OPCML) were investigated. LINC00619, miR-224-5p, and OPCML expression were measured in GC tissues and cells. Ectopic expression and depletion experiments were conducted to assess the effects of LINC00619, miR-224-5p and OPCML on cell proliferation, invasion, migration and apoptosis as well as their effects on the expression of apoptosis- and metastasis-related genes (Bcl-2, Bax, MMP-2 and MMP-9). Tumorigenicity in the nude mice was also examined. Gastric cancer was characterized by downregulation of LINC00619 and OPCML and upregulation of miR-224-5p. Additionally, we found that miR-224-5p could interact with both LINC00619 and OPCML. Upregulation of LINC00619, which binds to miR-224-5p, led to decreased miR-224-5p expression while increasing the expression of OPCML, a target gene of miR-224-5p. Overexpression of LINC00619 or OPCML or downregulation of miR-224-5p suppressed cell proliferation, invasion, migration and tumorigenicity while promoting apoptosis in GC. Our results indicated that LINC00619 functions as a tumor suppressor in GC by impairing miR-224-5p-mediated inhibition of OPCML.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Although extensively studied for over a decade, gene expression programs established at the epigenetic and/or transcriptional levels do not fully characterize cancer stem cells (CSC). This review will highlight the latest advances regarding the functional relevance of different key post-transcriptional regulations and how they are coordinated to control CSC homeostasis. RECENT FINDINGS In the past 2 years, several groups have identified master post-transcriptional regulators of CSC genetic programs, including RNA modifications, RNA-binding proteins, microRNAs and long noncoding RNAs. Of particular interest, these studies reveal that different post-transcriptional mechanisms are coordinated to control key signalling pathways and transcription factors to either support or suppress CSC homeostasis. SUMMARY Deciphering molecular mechanisms coordinating plasticity, survival and tumourigenic capacities of CSCs in adult and paediatric cancers is essential to design new antitumour therapies. An entire field of research focusing on post-transcriptional gene expression regulation is currently emerging and will significantly improve our understanding of the complexity of the molecular circuitries driving CSC behaviours and of druggable CSC weaknesses.
Collapse
|
39
|
Chen T, Lei S, Zeng Z, Zhang J, Xue Y, Sun Y, Lan J, Xu S, Mao D, Guo B. Linc00261 inhibits metastasis and the WNT signaling pathway of pancreatic cancer by regulating a miR‑552‑5p/FOXO3 axis. Oncol Rep 2020; 43:930-942. [PMID: 32020223 PMCID: PMC7041108 DOI: 10.3892/or.2020.7480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
The biological function of long non-coding RNA00261 (Linc00261) has been widely investigated in various types of cancer. The aim of the present study was to explore the role of Linc00261 in pancreatic cancer (PC). The expression of Linc00261 in patients with PC and PC cell lines was assessed using reverse transcription-quantitative PCR and the association of Linc00261 expression with survival was analyzed in the online database, GEPIA. The effects of Linc00261 on PC cell metastasis in vitro and in vivo were determined using a wound healing assay, Transwell invasion assays and a nude mouse model of liver metastasis. The relationship between Linc00261, the miR-552-5p/forkhead box O3 (FOXO3) axis and the Wnt signaling pathway were determined using bioinformatics analysis, dual luciferase assay and western blotting. Linc00261 expression was significantly decreased in PC tissues and cell lines, and reduced expression was associated with less favorable outcomes in patients with PC. Linc00261 overexpression inhibited migration and invasion of PC cells in vitro, whereas knockdown of Linc00261 increased migration and invasion. Linc00261 overexpression also decreased metastasis of PC cells in vivo. Linc00261 was revealed to directly bind to microRNA (miR)-552-5p and to decrease the expression of miR-552-5p. In addition, Linc00261 overexpression increased the expression of FOXO3, a target gene of miR-552-5p, as well as inhibited the Wnt signaling pathway. Overexpression of miR-552-5p in Linc00261-overexpressing PC cells increased migration and invasion, as well as decreased the expression of FOXO3 and members of the Wnt signaling pathway. Collectively, the present study demonstrated that Linc00261 inhibited metastasis and the Wnt signaling pathway of PC by regulating the miR-552-5p/FOXO3 axis. Linc00261 may suppress the development of PC, and serve as a potential biomarker and effective target for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Tengxiang Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Jinjuan Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yan Xue
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yuanmei Sun
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Jinzhi Lan
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Su Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Dahua Mao
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medical Science, Guiyang, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| |
Collapse
|
40
|
Ghafouri-Fard S, Taheri M. Long non-coding RNA signature in gastric cancer. Exp Mol Pathol 2019; 113:104365. [PMID: 31899194 DOI: 10.1016/j.yexmp.2019.104365] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer as a common human malignancy has been associated with aberrant expressions of several coding and non-coding genes. Long non-coding RNAs (lncRNAs) as regulators of gene expressions at different genomic, transcriptomic and post-transcriptomic levels are among putative biomarkers and therapeutic targets in gastric cancer. In the present study, we have searched available literature and listed lncRNAs that are involved in the pathogenesis of gastric cancer. In addition, we discuss associations between expressions of these lncRNAs and tumoral features or risk factors for gastric cancer. Based on the established role of lncRNAs in regulation of genomic stability, cell cycle, apoptosis, angiogenesis and other aspects of cell physiology, the potential of these transcripts as therapeutic targets in gastric cancer should be evaluated in future studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Hadziselimovic F, Verkauskas G, Vincel B, Stadler MB. Testicular expression of long non-coding RNAs is affected by curative GnRHa treatment of cryptorchidism. Basic Clin Androl 2019; 29:18. [PMID: 31890219 PMCID: PMC6933710 DOI: 10.1186/s12610-019-0097-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Background Cryptorchidism is a frequent endocrinopathy in boys that has been associated with an increased risk of developing testicular cancer and infertility. The condition is curable by combined surgery and hormonal treatment during early pre-pubertal stages using gonadotropin releasing hormone agonist (GnRHa). However, whether the treatment also alters the expression of testicular long non-coding RNAs (lncRNAs) is unknown. To gain insight into the effect of GnRHa on testicular lncRNA levels, we re-analyzed an expression dataset generated from testicular biopsies obtained during orchidopexy for bilateral cryptorchidism. Results We identified EGFR-AS1, Linc-ROR, LINC00221, LINC00261, LINC00282, LINC00293, LINC00303, LINC00898, LINC00994, LINC01121, LINC01553, and MTOR-AS1 as potentially relevant for the stimulation of cell proliferation mediated by GnRHa based on their direct or indirect association with rapidly dividing cells in normal and pathological tissues. Surgery alone failed to alter the expression of these transcripts. Conclusion Given that lncRNAs can cooperate with chromatin-modifying enzymes to promote epigenetic regulation of genes, GnRHa treatment may act as a surrogate for mini-puberty by triggering the differentiation of Ad spermatogonia via lncRNA-mediated epigenetic effects. Our work provides additional molecular evidence that infertility and azoospermia in cryptorchidism, resulting from defective mini-puberty cannot be cured with successful orchidopexy alone.
Collapse
Affiliation(s)
- Faruk Hadziselimovic
- Cryptorchidism Research Institute, Children's Day Care Center, 4410 Liestal, Switzerland
| | - Gilvydas Verkauskas
- 2Children's Surgery Centre, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Beata Vincel
- 3Children's Surgery Centre, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Michael B Stadler
- 4Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,5Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
42
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
43
|
Zhang R, Liu Y, Liu H, Chen W, Fan HN, Zhang J, Zhu JS. The long non-coding RNA SNHG12 promotes gastric cancer by activating the phosphatidylinositol 3-kinase/AKT pathway. Aging (Albany NY) 2019; 11:10902-10922. [PMID: 31808752 PMCID: PMC6932881 DOI: 10.18632/aging.102493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs contribute to the development of human cancers. We compared the long non-coding RNA levels in gastric cancer (GC) and para-cancerous tissues in the Gene Expression Omnibus, and found that small nucleolar RNA host gene 12 (SNHG12) was upregulated in GC tissues. Fluorescence in situ hybridization confirmed that SNHG12 is overexpressed in GC tissues. We then used data from The Cancer Genome Atlas to assess the association of SNHG12 expression with the clinicopathological characteristics and prognosis of GC patients and found that higher SNHG12 expression was associated with a greater tumor invasion depth and poorer survival. In vitro, silencing SNHG12 suppressed GC cell proliferation, migration and invasion, but induced apoptosis and cell cycle arrest. Overexpressing SNHG12 had the opposite effects. In xenografted mice, knocking down SNHG12 reduced GC tumor growth. Taken together, cancer pathway microarray and bioinformatics analyses, RNA pulldown assays, Western blotting and immunohistochemistry revealed that SNHG12 induces GC tumorigenesis by activating the phosphatidylinositol 3-kinase/AKT pathway. SNHG12 may thus be a useful marker for predicting poor survival in GC patients.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuan Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
44
|
Shuai Y, Ma Z, Lu J, Feng J. LncRNA SNHG15: A new budding star in human cancers. Cell Prolif 2019; 53:e12716. [PMID: 31774607 PMCID: PMC6985667 DOI: 10.1111/cpr.12716] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) represent an important group of non-coding RNAs (ncRNAs) with more than 200 nucleotides in length that are transcribed from the so-called genomic "dark matter." Mounting evidence has shown that lncRNAs have manifested a paramount function in the pathophysiology of human diseases, especially in the pathogenesis and progression of cancers. Despite the exponential growth in lncRNA publications, our understanding of regulatory mechanism of lncRNAs is still limited, and a lot of controversies remain in the current lncRNA knowledge.The purpose of this article is to explore the clinical significance and molecular mechanism of SNHG15 in tumors. MATERIALS & METHODS We have systematically searched the Pubmed, Web of Science, Embase and Cochrane databases. We provide an overview of current evidence concerning the functional role, mechanistic models and clinical utilities of SNHG15 in human cancers in this review. RESULTS Small nucleolar RNA host gene 15 (SNHG15), a novel lncRNA, is identified as a key regulator in tumorigenesis and progression of various human cancers, including colorectal cancer (CRC), gastric cancer (GC), pancreatic cancer (PC) and hepatocellular carcinoma (HCC). Dysregulation of SNHG15 has been revealed to be dramatically correlated with advanced clinicopathological factors and predicts poor prognosis, suggesting its potential clinical value as a promising biomarker and therapeutic target for cancer patients. CONCLUSIONS LncRNA SNHG15 may serve as a prospective and novel biomarker for molecular diagnosis and therapeutics in patients with cancer.
Collapse
Affiliation(s)
- You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Gao J, Qin W, Kang P, Xu Y, Leng K, Li Z, Huang L, Cui Y, Zhong X. Up-regulated LINC00261 predicts a poor prognosis and promotes a metastasis by EMT process in cholangiocarcinoma. Pathol Res Pract 2019; 216:152733. [PMID: 31812439 DOI: 10.1016/j.prp.2019.152733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE LINC00261 plays a vital role in tumorigenesis and metastasis of digestive system cancer. However, an influence of LINC00261 on cholangiocarcinoma has a little research. There, we investigated clinical role and molecular mechanisms of LINC00261 in cholangiocarcinoma. METHODS The qRT-PCR was performed for the detection of LINC00261 level in 50 paired specimens from CCA patients and six cell lines. Cell proliferation were explored by CCK-8 and colony formation assays in QBC939 and RBE cells after transfected with si-LINC00261 or si-NC. Then, AO/EB double fluorescence staining and flow cytometric assays were performed to assess cell apoptosis. Transwell and wound healing assays were selected to evaluate migratory and invasive property of cells. Protein levels, such as PCNA, Bax, Bcl-2, and several epithelial-to-mesenchymal transition markers, including E-cadherin, N-cadherin and Vimentin, were detected by western blot assays. Furthermore, we use a R2 platform to evaluate the correlation between LINC00261 and EMT makers and predict the overall survival and relapse-free survival for CCA patients by the expression of LINC00261/ EMT makers. RESULTS LINC00261 was overexpressed in cancerous tissues and CCA cell lines compared with adjacent tissues and HIBEC, respectively. Up-regulation of LINC00261 was related to larger tumor size (p = 0.009), positive lymph node metastasis (p = 0.021), advanced TNM stages (p = 0.017) and higher postoperative recurrence (p = 0.009) for CCA patients. Additionally, univariate and multivariate analysis displayed that LINC00261 an independent prognostic factor in CCA patients. Knockdown of LINC00261 expression in RBE and QBC939 cell lines inhibited cell proliferation, migration and invasion property and increased cell apoptosis and the EMT progression. Moreover, there was a strong correlation between LINC00261 and E-cadherin (CDH1) (p < 0.05), and low expression of E-cadherin (CDH1) has a poor overall survival and relapse-free survival in CCA patients (p < 0.05). CONCLUSION Overall, high level of LINC00261 in CCA predicts a poor prognosis, and promotes a metastasis via EMT process. Thus, LINC00261 could be a promising biomarker and therapeutic target for CCA, and in the high level of LINC00261 in CCA, E-cadherin or CDH1 might be an effective factor for tumor metastasis or poor prognosis.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Qin
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China
| | - Kaiming Leng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China
| | - Zhenglong Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China
| | - Lining Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
46
|
Zhao X, Liu J, Liu S, Yang F, Chen E. Construction and Validation of an Immune-Related Prognostic Model Based on TP53 Status in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11111722. [PMID: 31689990 PMCID: PMC6895875 DOI: 10.3390/cancers11111722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Growing evidence has indicated that prognostic biomarkers have a pivotal role in tumor and immunity biological processes. TP53 mutation can cause a range of changes in immune response, progression, and prognosis of colorectal cancer (CRC). Thus, we aim to build an immunoscore prognostic model that may enhance the prognosis of CRC from an immunological perspective. We estimated the proportion of immune cells in the GSE39582 public dataset using the CIBERSORT (Cell type identification by estimating relative subset of known RNA transcripts) algorithm. Prognostic genes that were used to establish the immunoscore model were generated by the LASSO (Least absolute shrinkage and selection operator) Cox regression model. We established and validated the immunoscore model in GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) cohorts, respectively; significant differences of overall survival analysis were found between the low and high immunoscore groups or TP53 subgroups. In the multivariable Cox analysis, we observed that the immunoscore was an independent prognostic factor both in the GEO cohort (HR (Hazard ratio) 1.76, 95% CI (confidence intervals): 1.26-2.46) and the TCGA cohort (HR 1.95, 95% CI: 1.20-3.18). Furthermore, we established a nomogram for clinical application, and the results suggest that the nomogram is a better predictive model for prognosis than immunoscore or TNM staging.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Jianzhong Liu
- College of Environmental and Resource Science, Shanxi University, Taiyuan 030000, China.
| | - Shuzhen Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Fangfang Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
47
|
Qi L, Zhang T, Yao Y, Zhuang J, Liu C, Liu R, Sun C. Identification of lncRNAs associated with lung squamous cell carcinoma prognosis in the competitive endogenous RNA network. PeerJ 2019; 7:e7727. [PMID: 31576252 PMCID: PMC6753923 DOI: 10.7717/peerj.7727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play a role in the formation, development, and prognosis of various cancers. Our study aimed to identify prognostic-related lncRNAs in lung squamous cell carcinoma (LUSC), which may provide new perspectives for individualized treatment of patients. Materials and Methods The RNA sequencing (lncRNA, microRNA (miRNA), mRNA) data and clinical information related to LUSC were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed RNA sequences were used to construct the competitive endogenous RNA (ceRNA) network. In present study, we mainly used two prognostic verification methods, Cox analysis and survival analysis, to identify the prognostic relevance of specific lncRNAs and construct prognostic model of lncRNA. Results Datasets on 551 samples of lncRNA and mRNA and 523 miRNA samples were retrieved from the TCGA database. Analysis of the normal and LUSC samples identified 170 DElncRNAs, 331 DEmiRNAs, and 417 DEmRNAs differentially expressed RNAs. The ceRNA network contained 27 lncRNAs, 43 miRNAs, and 11 mRNAs. Furthermore, we identified seven specific lncRNAs (ERVH48-1, HCG9, SEC62-AS1, AC022148.1, LINC00460, C5orf17, LINC00261) as potential prognostic factors after correlation analysis, and five of the seven lncRNAs (AC022148.1, HCG9, LINC00460, C5orf17, LINC00261) constructed a prognostic model of LUSC. Conclusion In present study, we identified seven lncRNAs in the ceRNA network that are associated with potential prognosis in LUSC patients, and constructed a prognostic model of LUSC which can be used to assess the prognosis risk of clinical patients. Further biological experiments are needed to elucidate the specific molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Lingyu Qi
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Yao
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
48
|
Long J, Xiong J, Bai Y, Mao J, Lin J, Xu W, Zhang H, Chen S, Zhao H. Construction and Investigation of a lncRNA-Associated ceRNA Regulatory Network in Cholangiocarcinoma. Front Oncol 2019; 9:649. [PMID: 31448221 PMCID: PMC6696726 DOI: 10.3389/fonc.2019.00649] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background/Aims: As a type of malignant tumor commonly found in the bile duct, cholangiocarcinoma (CCA) has a poor prognosis. Long non-coding RNA (lncRNA) has recently drawn increasing attention because it functions as a competing endogenous RNA (ceRNA) to hinder miRNA functions that participate in posttranscriptional regulatory networks in tumors. Therefore, to investigate the mechanisms of CCA carcinogenesis and to enhance treatment efficiency, the expression profiles, including lncRNA, miRNA, and mRNA data, were comprehensively integrated and analyzed in this study. Methods: A comprehensive comparison was performed on the RNA-sequencing and miRNA profiles data of 36 CCA samples and 9 normal samples from The Cancer Genome Atlas (TCGA) database. Then, a dysregulated lncRNA-related ceRNA network was established by using four public databases. Results: In summary, 1,410 lncRNAs, 64 miRNAs, and 3,494 mRNAs appeared as genes that were aberrantly expressed in CCA. Then, a dysregulated ceRNA network related to the lncRNAs was constructed. The network included 116 lncRNAs, 13 miRNAs and 60 mRNAs specific to CCA. The survival analysis showed that, among them, 26 lncRNAs, 3 miRNAs, and 13 mRNAs were prognostic biomarkers for patients with CCA. Finally, three mRNAs were selected for validation of their expression levels in the Gene Expression Omnibus (GEO) database. The results indicated that the expression of those genes was highly consistent between the TCGA and GEO databases. Conclusions: The findings in this study provide a better understanding of the ceRNA network involved in CCA biology and lay a solid foundation for improving CCA diagnosis and prognosis.
Collapse
Affiliation(s)
- Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianping Xiong
- Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinzhu Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiyu Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Cheng D, Jiang S, Chen J, Li J, Ao L, Zhang Y. Upregulated long noncoding RNA Linc00261 in pre-eclampsia and its effect on trophoblast invasion and migration via regulating miR-558/TIMP4 signaling pathway. J Cell Biochem 2019; 120:13243-13253. [PMID: 30891826 DOI: 10.1002/jcb.28598] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/12/2023]
Abstract
Pre-eclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality but the exact underlying mechanisms of PE pathogenesis remain elusive. Accumulated data suggested that the long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of PE. The present study identified the changes of lncRNA Linc00261 in PE and its effects on trophoblasts invasion and migration. Our results showed that the expression of Linc00261 was upregulated in placental tissues of PE women compared with those of healthy pregnant women. Overexpression of Linc00261 suppressed cell invasion and migration, induced cell apoptosis, and caused cell-cycle arrest at G0 /G1 phase of HTR-8/SVneo cells; while knockdown of Linc00261 had the opposite effects on the HTR-8/SVneo cells. Mechanistic studies showed Linc00261 functioned as a competing endogenous RNA for miR-558 in HTR-8/SVneo cells, and miR-558 was negatively regulated by Linc00261. The expression level of miR-558 in the PE group was significantly lower than the control group, and the expression level of Linc00261 was negatively correlated with the expression level of miR-558 in the placental tissues of women with PE. Furthermore, miR-558 was found to negatively regulate the expression of TIMP metallopeptidase inhibitor 4 (TIMP4) via targeting the 3' untranslated region in the HTR-8/SVneo cells. Overexpression of miR-558 increased HTR-8/SVneo cell invasion and migration, which was attenuated by TIMP4 overexpression. More importantly, both overexpression of miR-558 and knockdown of TIMP4 partially reversed the suppressive effects of Linc00261 overexpression on cell invasion and migration of HTR-8/SVneo cells. Collectively, our results for the first time showed the upregulation of Linc00261 in the placental tissues of severe PE patients. The mechanistic results indicated that Linc00261 exerted the suppressive effects on the trophoblast invasion and migration via targeting miR-558/TIMP4 axis, which may involve in the pathogenesis of PE.
Collapse
Affiliation(s)
- Dan Cheng
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Shan Jiang
- Department of Dermatology, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Jiao Chen
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Jie Li
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Liangfei Ao
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Ying Zhang
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| |
Collapse
|
50
|
Sun Z, He C, Xiao M, Wei B, Zhu Y, Zhang G, Zhou H, Yuan J, Hu X, Yi Y. LncRNA FOXC2 antisense transcript accelerates non-small-cell lung cancer tumorigenesis via silencing p15. Am J Transl Res 2019; 11:4552-4560. [PMID: 31396359 PMCID: PMC6684883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/05/2019] [Indexed: 06/10/2023]
Abstract
Non-coding RNAs (ncRNAs) have been demonstrated to modulate the oncogenesis of non-small cell lung cancer (NSCLC), especially the long non-coding RNAs (lncRNAs). However, the role of lncRNA FOXC2-AS1 in the NSCLC is still unclear. In this research, we find that lncRNA FOXC2-AS1 is involved to NSCLC oncogenesis. The ectopic high-expression level of FOXC2-AS1 is closely correlated with the limited NSCLC patients' survival. In the functional experiments, the knockdown of FOXC2-AS1 dramatically suppressed the NSCLC cells' (A549, H460) proliferation, accelerated the apoptosis and induced the cycle arrest at G0/G1 phase. Mechanistic experiments revealed that FOXC2-AS1 repressed the p15 expression via recruiting the polycomb repressive complex 2 (PRC2) to the promoter of p15. The interaction within FOXC2-AS1 and p15 was validated using the rescue experiments. In conclusion, the results in this work confirmed that FOXC2-AS1 could aggravate NSCLC oncogenesis through repressing p15 expression via interacting EZH2, which provide new idea for the NSCLC therapeutic strategy.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Oncology, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, China
| | - Chaozhu He
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| | - Miao Xiao
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| | - Binbin Wei
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| | - Yuanzhe Zhu
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| | - Guangxing Zhang
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| | - Huyan Zhou
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| | - Jun Yuan
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| | - Xiaju Hu
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| | - Yuli Yi
- Jiangxi Medical College, Nanchang UniversityNanchang 330006, China
| |
Collapse
|