1
|
Su X, Hu B, Yi J, Zhao Q, Zhou Y, Zhu X, Wu D, Fan Y, Lin J, Cao C, Deng Z. Crosstalk between circBMI1 and miR-338-5p/ID4 inhibits acute myeloid leukemia progression. J Leukoc Biol 2024; 116:1080-1093. [PMID: 38864460 DOI: 10.1093/jleuko/qiae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
BMI1 polycomb ring finger proto-oncogene (BMI1) is involved in the pathogenesis of different cancers, including acute myeloid leukemia (AML). However, the role of the circular RNA of BMI1 (circBMI1) has not been studied. Our study aimed to investigate the role and mechanism of circBMI1 in AML. circBMI1 was significantly decreased in bone marrow mononuclear cells aspirated from patients with AML. Receiver operating characteristic curve analysis showed that circBMI1 could distinguish patients with AML from controls. By overexpressing and knocking down circBMI1 in HL-60 cells, we found that circBMI1 inhibited cell proliferation, promoted apoptosis, and increased chemotherapeutic drug sensitivity in AML. Experiments using severe combined immune-deficient mice and circBMI1 transgenic mice showed that mice with circBMI1 overexpression had lower white blood cell counts, which suggested less severe AML invasion. RNA immunoprecipitation and dual-luciferase reporter assay revealed binding sites among circBMI1, miR-338-5p, and inhibitor of DNA-binding protein 4 (ID4). Rescue experiments proved that circBMI1 inhibited AML progression by binding to miR-338-5p, which affected the expression of ID4. By coculturing exosomes extracted from circBMI1-HL-60 and small interfering circBMI1-HL-60 cells with HL-60 cells, we found that exosomes from circBMI1-HL-60 cells showed tumor-suppressive effects, namely inhibiting HL-60 proliferation, promoting apoptosis, and increasing chemotherapeutic drug sensitivity. Exosomes from small interfering circBMI1-HL-60 cells showed the opposite effects. circBMI1 may act as an exosome-dependent tumor inhibitor. circBMI1, a potential biomarker for clinical diagnosis, acts as a tumor suppressor in AML by regulating miR-338-5p/ID4 and might affect the pathogenesis of AML by exosome secretion.
Collapse
Affiliation(s)
- Xiaoyu Su
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Biwen Hu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Jing Yi
- Department of Respiratory and Critical Care Medicine, Shaoxing People's Hospital, No. 568 Zhongxing North Road, Shaoxina, Zhejiang 312000, China
| | - Qian Zhao
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Yongqing Zhou
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Xin Zhu
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Delong Wu
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Yaohua Fan
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Jiang Lin
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
| | - Chenxi Cao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| | - Zhaoqun Deng
- Department of Laboratory Center, The Affiliated People's Hospital of Jiangsu University, No. 8 Dianli Road, Zhenjiang, Jiangsu 212000, China
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China
| |
Collapse
|
2
|
Liu X, Pang Y, Shan J, Wang Y, Zheng Y, Xue Y, Zhou X, Wang W, Sun Y, Yan X, Shi J, Wang X, Gu H, Zhang F. Beyond the base pairs: comparative genome-wide DNA methylation profiling across sequencing technologies. Brief Bioinform 2024; 25:bbae440. [PMID: 39256199 PMCID: PMC11387064 DOI: 10.1093/bib/bbae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Deoxyribonucleic acid (DNA) methylation plays a key role in gene regulation and is critical for development and human disease. Techniques such as whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) allow DNA methylation analysis at the genome scale, with Illumina NovaSeq 6000 and MGI Tech DNBSEQ-T7 being popular due to their efficiency and affordability. However, detailed comparative studies of their performance are not available. In this study, we constructed 60 WGBS and RRBS libraries for two platforms using different types of clinical samples and generated approximately 2.8 terabases of sequencing data. We systematically compared quality control metrics, genomic coverage, CpG methylation levels, intra- and interplatform correlations, and performance in detecting differentially methylated positions. Our results revealed that the DNBSEQ platform exhibited better raw read quality, although base quality recalibration indicated potential overestimation of base quality. The DNBSEQ platform also showed lower sequencing depth and less coverage uniformity in GC-rich regions than did the NovaSeq platform and tended to enrich methylated regions. Overall, both platforms demonstrated robust intra- and interplatform reproducibility for RRBS and WGBS, with NovaSeq performing better for WGBS, highlighting the importance of considering these factors when selecting a platform for bisulfite sequencing.
Collapse
Affiliation(s)
- Xin Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Junqi Shan
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunfei Wang
- Hangzhou ShengTing Biotech Co. Ltd, Hangzhou, Zhejiang Province 310018, China
| | - Yanhua Zheng
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Yuhang Xue
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Xuerong Zhou
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Wenjun Wang
- Hangzhou ShengTing Biotech Co. Ltd, Hangzhou, Zhejiang Province 310018, China
| | - Yanlai Sun
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaojing Yan
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, Shenyang, Liaoning province 110001, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Fan Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| |
Collapse
|
3
|
Chen XY, Wen XM, Zhao W, Chu MQ, Gu Y, Huang HH, Yuan Q, Xu ZJ, Qian J, Lin J. ALOX5AP is a new prognostic indicator in acute myeloid leukemia. Discov Oncol 2023; 14:210. [PMID: 37994961 PMCID: PMC10667204 DOI: 10.1007/s12672-023-00826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The overexpression of ALOX5AP has been observed in many types of cancer and has been identified as an oncogene. However, its role in acute myeloid leukemia (AML) has not been extensively studied. This study aimed to identify the expression and methylation patterns of ALOX5AP in bone marrow (BM) samples of AML patients, and further explore its clinical significance. METHODS Eighty-two de novo AML patients and 20 healthy donors were included in the study. Meanwhile, seven public datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were included to confirm the alteration of ALOX5AP. Receiver operating characteristic (ROC) curve analysis was applied to determine the discriminative capacity of ALOX5AP expression to discriminate AML. The prognostic value of ALOX5AP was identified by the Kaplan-Meier method and log-rank test. It was further validated in four independent cohorts (n = 1186). Significantly different genes associated with ALOX5AP expression were subsequently compared by LinkedOmics, and Metascape database. RESULTS The level of ALOX5AP expression was significantly increased in bone marrow cells of AML patients compared with healthy donors (P < 0.05). ROC curve analysis suggested that ALOX5AP expression might be a potential biomarker to discriminate AML from controls. ALOX5AP overexpression was associated with decreased overall survival (OS) in AML according to the TCGA data (P = 0.006), which was validated by other four independent cohorts. DNA methylation levels of ALOX5AP were significantly lower in AML patients compared to normal samples (P < 0.05), as confirmed in the Diseasemeth database and the independent cohort GSE63409. ALOX5AP level was positively associated with genes with proleukemic effects such as PAX2, HOX family, SOX11, H19, and microRNAs that act as oncogenes in leukemia, such as miR125b, miR-93, miR-494, miR-193b, while anti-leukemia-related genes and tumor suppressor microRNAs such as miR-582, miR-9 family and miR-205 were negatively correlated. CONCLUSION ALOX5AP overexpression, associated with its hypomethylation, predicts poorer prognosis in AML.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Wei Zhao
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming-Qiang Chu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Gu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hai-Hui Huang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
| | - Qian Yuan
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China.
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China.
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Boucher L, Sorel N, Desterke C, Chollet M, Rozalska L, Gallego Hernanz MP, Cayssials E, Raimbault A, Bennaceur-Griscelli A, Turhan AG, Chomel JC. Deciphering Potential Molecular Signatures to Differentiate Acute Myeloid Leukemia (AML) with BCR::ABL1 from Chronic Myeloid Leukemia (CML) in Blast Crisis. Int J Mol Sci 2023; 24:15441. [PMID: 37895120 PMCID: PMC10607477 DOI: 10.3390/ijms242015441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acute myeloid leukemia (AML) with BCR::ABL1 has recently been recognized as a distinct subtype in international classifications. Distinguishing it from myeloid blast crisis chronic myeloid leukemia (BC-CML) without evidence of a chronic phase (CP), remains challenging. We aimed to better characterize this entity by integrating clonal architecture analysis, mutational landscape assessment, and gene expression profiling. We analyzed a large retrospective cohort study including CML and AML patients. Two AML patients harboring a BCR::ABL1 fusion were included in the study. We identified BCR::ABL1 fusion as a primary event in one patient and a secondary one in the other. AML-specific variants were identified in both. Real-time RT-PCR experiments demonstrated that CD25 mRNA is overexpressed in advanced-phase CML compared to AML. Unsupervised principal component analysis showed that AML harboring a BCR::ABL1 fusion was clustered within AML. An AML vs. myeloid BC-CML differential expression signature was highlighted, and while ID4 (inhibitor of DNA binding 4) mRNA appears undetectable in most myeloid BC-CML samples, low levels are detected in AML samples. Therefore, CD25 and ID4 mRNA expression might differentiate AML with BCR::ABL1 from BC-CML and assign it to the AML group. A method for identifying this new WHO entity is then proposed. Finally, the hypothesis of AML with BCR::ABL1 arising from driver mutations on a BCR::ABL1 background behaving as a clonal hematopoiesis mutation is discussed. Validation of our data in larger cohorts and basic research are needed to better understand the molecular and cellular aspects of AML with a BCR::ABL1 entity.
Collapse
MESH Headings
- Humans
- Blast Crisis/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Retrospective Studies
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- RNA, Messenger
Collapse
Affiliation(s)
- Lara Boucher
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
| | - Nathalie Sorel
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
| | - Christophe Desterke
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
| | - Mélanie Chollet
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Laura Rozalska
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Maria Pilar Gallego Hernanz
- CHU de Poitiers, Service d’Oncologie Hématologique et Thérapie Cellulaire, F86000 Poitiers, France; (M.P.G.H.); (E.C.)
- INSERM, CIC-P 1402, F86000 Poitiers, France
| | - Emilie Cayssials
- CHU de Poitiers, Service d’Oncologie Hématologique et Thérapie Cellulaire, F86000 Poitiers, France; (M.P.G.H.); (E.C.)
- INSERM, CIC-P 1402, F86000 Poitiers, France
| | - Anna Raimbault
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Annelise Bennaceur-Griscelli
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
- INSERM U1310, F94807 Villejuif, France
- INGESTEM-ESTeam Paris Sud, F94800 Villejuif, France
- Service d’Onco-Hématologie, Hôpital Paul Brousse, AP-HP Université Paris Saclay, F94804 Villejuif, France
- Service d’Hématologie, Hôpital Bicêtre, AP-HP Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France
| | - Ali G. Turhan
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
- INSERM U1310, F94807 Villejuif, France
- INGESTEM-ESTeam Paris Sud, F94800 Villejuif, France
- Service d’Onco-Hématologie, Hôpital Paul Brousse, AP-HP Université Paris Saclay, F94804 Villejuif, France
- Service d’Hématologie, Hôpital Bicêtre, AP-HP Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France
| | - Jean-Claude Chomel
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
- INSERM U1310, F94807 Villejuif, France
| |
Collapse
|
5
|
Bănescu C, Tripon F, Muntean C. The Genetic Landscape of Myelodysplastic Neoplasm Progression to Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5734. [PMID: 36982819 PMCID: PMC10058431 DOI: 10.3390/ijms24065734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Myelodysplastic neoplasm (MDS) represents a heterogeneous group of myeloid disorders that originate from the hematopoietic stem and progenitor cells that lead to the development of clonal hematopoiesis. MDS was characterized by an increased risk of transformation into acute myeloid leukemia (AML). In recent years, with the aid of next-generation sequencing (NGS), an increasing number of molecular aberrations were discovered, such as recurrent mutations in FLT3, NPM1, DNMT3A, TP53, NRAS, and RUNX1 genes. During MDS progression to leukemia, the order of gene mutation acquisition is not random and is important when considering the prognostic impact. Moreover, the co-occurrence of certain gene mutations is not random; some of the combinations of gene mutations seem to have a high frequency (ASXL1 and U2AF1), while the co-occurrence of mutations in splicing factor genes is rarely observed. Recent progress in the understanding of molecular events has led to MDS transformation into AML and unraveling the genetic signature has paved the way for developing novel targeted and personalized treatments. This article reviews the genetic abnormalities that increase the risk of MDS transformation to AML, and the impact of genetic changes on evolution. Selected therapies for MDS and MDS progression to AML are also discussed.
Collapse
Affiliation(s)
- Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Florin Tripon
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Carmen Muntean
- Pediatric Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
6
|
Gu Y, Xu ZJ, Zhou JD, Wen XM, Jin Y, Yuan Q, Xia PH, Feng Y, Yang L, Lin J, Qian J. SLC22A3 methylation-mediated gene silencing predicts adverse prognosis in acute myeloid leukemia. Clin Epigenetics 2022; 14:162. [PMID: 36461046 PMCID: PMC9716704 DOI: 10.1186/s13148-022-01373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND We screened out several hypermethylated solute carrier (SLC) family genes in acute myeloid leukemia by reduced representation bisulfite sequencing. SLC22A3 encodes an organic cation transport protein, which is critical for drug transportation and cellular detoxification. SLC22A3 is significantly downregulated and associated with tumor progression and worse prognosis in a variety of solid tumors. However, there are no data available regarding the role of SLC22 in AML. This study aimed to explore the regulatory mechanism of DNA methylation on SLC22A3 expression, as well as its clinical significance in AML prognosis. RESULTS SLC22A3 was identified as the sole prognosis-associated gene among SLCs based on TCGA and Beat AML databases. Bone marrow mononuclear cells (BMMNCs) from AML, MDS patients, and healthy donors were enrolled in this study. SLC22A3 methylation was significantly increased in AML compared with controls and MDS patients; meanwhile, the expression level of SLC22A3 was decreased. SLC22A3 hypermethylation presented an obvious association with some specific clinical characteristics and affected the survival time of AML patients as an independent risk indicator. SLC22A3 expression changed regularly as the disease complete remissions and relapses. Demethylation drug 5-aza-2'-deoxycytidine (DAC) activated transcription and increased mRNA expression of SLC22A3 in leukemia cell lines and AML fresh BMMNCs. Knockdown of SLC22A3 in leukemia cells enhanced cell proliferation and suppressed cell apoptosis. Data from public programs were used for auxiliary screening of probable molecular mechanisms of SLC22A3 in the antileukemia effect. CONCLUSIONS Our results showed that increased methylation and decreased expression of SLC22A3 may be indicators of poor prognosis in AML. Methylation-silenced SLC22A3 expression may have potential guiding significance on antileukemia effect of DAC.
Collapse
Affiliation(s)
- Yu Gu
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Zi-jun Xu
- Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Jing-dong Zhou
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Xiang-mei Wen
- Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Ye Jin
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Qian Yuan
- Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Pei-hui Xia
- Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Yuan Feng
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Lei Yang
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Jun Qian
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| |
Collapse
|
7
|
Zhao Q, Wang Y, Yu D, Leng JY, Zhao Y, Chu M, Xu Z, Ding H, Zhou J, Zhang T. Comprehensive analysis of ID genes reveals the clinical and prognostic value of ID3 expression in acute myeloid leukemia using bioinformatics identification and experimental validation. BMC Cancer 2022; 22:1229. [PMID: 36443709 PMCID: PMC9707109 DOI: 10.1186/s12885-022-10352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Dysregulation of inhibitor of differentiation/DNA binding (ID) genes is linked to cancer growth, angiogenesis, invasiveness, metastasis and patient survival. Nevertheless, few investigations have systematically determined the expression and prognostic value of ID genes in acute myeloid leukemia (AML). METHODS The expression and clinical prognostic value of ID genes in AML were first identified by public databases and further validated by our research cohort. RESULTS Using public data, the expression of ID1/ID3 was markedly downregulated in AML, and the expression of ID2 was greatly upregulated in AML, whereas ID4 showed no significant difference. Among the ID genes, only ID3 expression may be the most valuable prognostic biomarker in both total AML and cytogenetically normal AML (CN-AML) and especially in CN-AML. Clinically, reduced ID3 expression was greatly associated with higher white blood cell counts, peripheral blood/bone marrow blasts, normal karyotypes and intermediate cytogenetic risk. In addition, low ID3 expression was markedly related to FLT3 and NPM1 mutations as well as wild-type TP53. Despite these associations, multivariate Cox regression analysis revealed that ID3 expression was an independent risk factor affecting overall survival (OS) and disease free survival (DFS) in CN-AML patients. Biologically, a total of 839 mRNAs/lncRNAs and 72 microRNAs were found to be associated with ID3 expression in AML. Importantly, the expression of ID3 with discriminative value in AML was further confirmed in our research cohort. CONCLUSION The bioinformatics analysis and experimental verification demonstrate that low ID3 expression independently affects OS and DFS in patients with CN-AML, which might be seen as a potential prognostic indicator in CN-AML.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China.,Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Yun Wang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Di Yu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China
| | - Yangjing Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 212013, Zhenjiang, Jiangsu, P. R. China
| | - Mingqiang Chu
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China.,Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Zijun Xu
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 212002, Zhenjiang, Jiangsu, P. R. China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.
| | - Jingdong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China. .,Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China. .,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China.
| | - Tingjuan Zhang
- Zhenjiang Clinical Research Center of Hematology, 212002, Zhenjiang, Jiangsu, P. R. China. .,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Jiangsu, 212002, Zhenjiang, P. R. China. .,Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, P. R. China.
| |
Collapse
|
8
|
Wu DL, Wang Y, Zhang TJ, Chu MQ, Xu ZJ, Yuan Q, Ma JC, Lin J, Qian J, Zhou JD. SLIT2 promoter hypermethylation predicts disease progression in chronic myeloid leukemia. Eur J Med Res 2022; 27:259. [PMID: 36411451 PMCID: PMC9677675 DOI: 10.1186/s40001-022-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation plays a crucial role in the progression of myeloid neoplasms. Previously, our literature reported that slit guidance ligand 2 (SLIT2) promoter methylation was associated with disease progression and indicated a poor prognosis in patients with myelodysplastic syndrome. Herein, we further investigated the clinical implications and role of SLIT2 promoter methylation in patients with chronic myeloid leukemia (CML). METHODS The level of SLIT2 promoter methylation was determined in 104 CML patients, and its clinical significance was analyzed. Moreover, demethylation studies were performed in K562 cells to determine the epigenetic mechanism by which SLIT2 promoter methylation is regulated in CML. RESULTS The level of SLIT2 promoter methylation was similar between CML patients and controls. However, deeper analysis revealed that the SLIT2 promoter methylation level in the accelerated phase (AP) and blast crisis (BC) was markedly higher than that in the chronic phase (CP) and controls. Additionally, a marked difference was identified between the SLIT2 promoter hypermethylated and non-hypermethylated groups among CML patients grouped by clinical stage. The frequency of SLIT2 hypermethylation was markedly increased with the progression of clinical stage, that is, it was the lowest in CP samples (12/80, 15%), higher in AP samples (4/8, 50%) and the highest in BC samples (11/16, 69%). Importantly, the level/density of SLIT2 promoter methylation was significantly higher in the advanced stage than in the early stage among the 6 tested paired CML patients. Epigenetically, the expression of the SLIT2-embedded non-coding genes SLIT2-IT1 and miR-218 expression was decreased in patients with CML. SLIT2 promoter hypermethylated cases had a markedly lower SLIT2-IT1 expression level than SLIT2 promoter non-hypermethylated cases. Moreover, SLIT2-IT1 and miR-218 expression was remarkably upregulated in a dose-dependent manner after demethylation treatment of K562 cells. CONCLUSIONS Hypermethylation of the SLIT2 promoter is correlated with disease progression in CML. Furthermore, SLIT2 promoter methylation may function by regulating the expression of the SLIT2-embedded non-coding genes SLIT2-IT1 and miR-218 during CML progression.
Collapse
Affiliation(s)
- De-long Wu
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,Department of Oncology, Dongtai People’s Hospital, Dongtai, Jiangsu People’s Republic of China
| | - Yun Wang
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Ting-juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Department of Oncology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Ming-qiang Chu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Zi-jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Qian Yuan
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Ji-chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China ,grid.452247.2Laboratory Center, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China
| | - Jun Qian
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| | - Jing-dong Zhou
- grid.452247.2Department of Hematology, Affiliated People’s Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People’s Republic of China ,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu People’s Republic of China ,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People’s Republic of China
| |
Collapse
|
9
|
Zhang TJ, Xu ZJ, Wen XM, Gu Y, Ma JC, Yuan Q, Lin J, Zhou JD, Qian J. SLIT2 promoter hypermethylation-mediated SLIT2-IT1/miR-218 repression drives leukemogenesis and predicts adverse prognosis in myelodysplastic neoplasm. Leukemia 2022; 36:2488-2498. [PMID: 35906386 DOI: 10.1038/s41375-022-01659-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Epigenetic modifications have been found to play crucial roles in myelodysplastic neoplasm (MDS) progression. Previously, we investigated genome-wide DNA methylation alterations during MDS evolution to acute myeloid leukemia (AML) by next-generation sequencing (NGS). Herein, we further determined the role and clinical implications of an evident methylation change in CpG islands at the SLIT2 promoter identified by NGS. First, increased SLIT2 promoter methylation was validated in 11 paired MDS/AML patients during disease evolution. Additionally, SLIT2 promoter methylation was markedly increased in MDS/AML patients compared with controls and was correlated with poor clinical phenotype and outcome. Interestingly, SLIT2 expression was particularly upregulated in AML patients and was not correlated with SLIT2 promoter methylation. However, the SLIT2-embedded genes SLIT2-IT1 and miR-218 were downregulated in AML patients, which was negatively associated with SLIT2 promoter methylation and further validated by demethylation studies. Functionally, SLIT2-IT1/miR-218 overexpression exhibited antileukemic effects by affecting cell proliferation, apoptosis and colony formation in vitro and in vivo. Mechanistically, SLIT2-IT1 may function as a competing endogenous RNA by sponging miR-3156-3p to regulate BMF expression, whereas miR-218 may directly target HOXA1 in MDS progression. In summary, our findings demonstrate that SLIT2 promoter hypermethylation is associated with disease evolution in MDS and predicts poor prognoses in both MDS and AML. Epigenetic inactivation of SLIT2-IT1/miR-218 by SLIT2 promoter hypermethylation could be a promising therapeutic target in MDS.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Department of Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Qian Yuan
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Zhou JD, Xu ZJ, Jin Y, Zhang XL, Gu Y, Ma JC, Wen XM, Lin J, Zhang TJ, Qian J. Whole-Genome DNA Methylation Sequencing Reveals Epigenetic Changes in Myelodysplastic Syndromes. Front Oncol 2022; 12:897898. [PMID: 35847864 PMCID: PMC9277050 DOI: 10.3389/fonc.2022.897898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic dysregulation of cancer-associated genes has been identified to contribute to the pathogenesis of myelodysplastic syndromes (MDS). However, few studies have elucidated the whole-genome DNA methylation in the initiation pathogenesis of MDS. Reduced representation bisulfite sequencing was performed in five de novo MDS patients and four controls to investigate epigenetic alterations in MDS pathogenesis. The mean global methylation in five MDS patients showed no significant difference compared with the four controls. In depth, a total of 1,459 differentially methylated fragments, including 759 hypermethylated and 700 hypomethylated fragments, were identified between MDS patients and controls. Targeted bisulfite sequencing further identified that hypermethylation of DLEU7, FOXR1, LEP, and PANX2 were frequent events in an additional cohort of MDS patients. Subsequently, LEP hypermethylation was confirmed by real-time quantitative methylation-specific PCR in an expanded cohort of larger MDS patients. In clinics, LEP hypermethylation tended to be associated with lower bone marrow blasts and was significantly correlated with U2AF1 mutation. Survival analysis indicated that LEP hypermethylation was associated with a markedly longer survival time but was not an independent prognostic biomarker in MDS patients. Functional studies revealed pro-proliferative and anti-apoptotic effects of leptin in the MDS cell line SKM-1, and it was significantly associated with cell growth and death as well as the Toll-like receptor and NF-kappa B signaling pathways. Collectively, our findings demonstrated that whole-genome DNA methylation analysis identified novel epigenetic alterations such as DLEU7, FOXR1, LEP, and PANX2 methylations as frequent events in MDS. Moreover, LEP might play a role in MDS pathogenesis, and LEP hypermethylation was associated with longer survival but not as an independent prognostic biomarker in MDS.
Collapse
Affiliation(s)
- Jing-dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Zi-jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ye Jin
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Xin-long Zhang
- Department of Hematology, The People’s Hospital of Danyang, Zhenjiang, China
| | - Yu Gu
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Ji-chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang-mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| | - Ting-juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Oncology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| |
Collapse
|
11
|
Reduced expression of lncRNA DLEU7-AS1 is a novel favorable prognostic factor in acute myeloid leukemia. Biosci Rep 2022; 42:231264. [PMID: 35506368 PMCID: PMC9118369 DOI: 10.1042/bsr20212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
The objective of our study was to measure DLEU7-AS1 expression in de novo acute myeloid leukemia (AML) whilst also analyzing its clinical relevance. We used gene expression data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Cancer Cell Line Encyclopedia (CCLE) and Genotype-Tissue Expression project (GTEx) to assess the expression profile of DLEU7-AS1 in pan-cancers, cancer cell lines and normal tissues. Reverse transcription-quantitative PCR was used to measure DLEU7-AS1 expression in bone marrow from 30 normal individuals and 110 patients with de novo AML. DLEU7-AS1 expression was found to be markedly reduced in the AML samples of the TCGA pan-cancer datasets. In our PCR validation, DLEU7-AS1 expression was significantly decreased in the AML samples compared with that in controls (P<0.001). Low DLEU7-AS1 expression (DLEU7-AS1low) correlated positively with lower blood platelet counts (P=0.029). In addition, low DLEU7-AS1 expression was more frequently observed in the intermediate (58%; 44/76) and favorable karyotypes (65%; 15/23) compared with that in the poor karyotype (10%; 1/10; P=0.005). In particular, patients with high expression levels of DLEU7-AS1 (DLEU7-AS1high) showed lower complete remission rates (P=0.002) than patients with DLEU7-AS1low. Survival analysis revealed that patients with DLEU7-AS1low had longer overall survival (OS) than patients with DLEU7-AS1high (P<0.05). Multivariate Cox analysis demonstrated that in patients with non-acute promyelocytic leukemia (non-M3) who were ≤60 years old, DLEU7-AS1 expression was an independent prognostic factor for OS. Furthermore, we found distinct correlations among the expression of DLEU7-AS1, infiltration by immune cells and immune checkpoint genes in AML.
Collapse
|
12
|
Sun GK, Xu ZJ, Nan FY, Tang LJ, Yao DM. Dysregulation of LINC00324 associated with methylation facilitates leukemogenesis in de novo acute myeloid leukemia. Int J Lab Hematol 2022; 44:567-575. [PMID: 35218157 DOI: 10.1111/ijlh.13809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
INTRODUCTION LINC00324 was overexpressed and facilitated carcinogenesis in various solid malignant tumors. However, the role of LINC00324 in leukemogenesis remains to be elucidated. METHODS The relative expression and unmethylation levels of LINC00324 were detected by real-time quantitative PCR (RT-qPCR) and real-time quantitative methylation-specific PCR (RT-qMSP). Cell proliferation experimental and flow cytometer (FCM) was used to detect the change of proliferation and apoptosis in leukemia cell lines after overexpression of LINC00324. RESULTS The results showed that the expression of LINC00324 and the methylation level of the promoter region were significantly negatively correlated in AML patients. Moreover, patients with lower LINC00324 expression showed more prolonged overall survival (OS). Remarkably, overexpression of LINC00324 in leukemia cell lines promoted the proliferation of target cells and inhibited their apoptosis. CONCLUSION Our findings firstly identified that the hypomethylation of LINC00324 was a common molecular event in de novo AML patients. The abnormally upregulated LINC00324 promotes proliferation and inhibits apoptosis in leukemia cells.
Collapse
Affiliation(s)
- Guo-Kang Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
| | - Fang-Yu Nan
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| |
Collapse
|
13
|
Zhou Q, Mei YD, Yang HJ, Tao YL. Inhibitor of DNA-binding family regulates the prognosis of ovarian cancer. Future Oncol 2021; 17:1889-1906. [PMID: 33728938 DOI: 10.2217/fon-2020-1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The mechanistic role of inhibitor of DNA binding or differentiation (ID) family in ovarian cancer (OC) has remained unclear. Materials & methods: We used the Oncomine, GEPIA, Kaplan-Meier Plotter, cBioPortal, SurvExpress, PROGgene V2, TIMER, and FunRich to evaluate the prognostic value of IDs in patients with OC. Results: the mRNA transcripts of all IDs were markedly downregulated in OC compared with normal tissue. The prognostic value of IDs was also explored within the subtypes, pathological stages, clinical stages and TP53 mutational status. The group with low-risk IDs showed relatively good overall survival (OS) compared with the high-risk group. Conclusion: ID1/3/4 may be exploited as promising prognostic biomarkers and therapeutic targets in OC patients.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Gynecology & Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Hubei, 443000, PR China
| | - Ye-Dong Mei
- Department of Obstetrics & Gynecology, The People's Hospital of Wufeng Tujia Autonomous County, Yi Chang, Hubei, 443000, PR China
| | - Huai-Jie Yang
- Department of Gynecology & Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Hubei, 443000, PR China
| | - Ya-Ling Tao
- Department of Gynecology & Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Hubei, 443000, PR China
| |
Collapse
|
14
|
Manasa P, Sidhanth C, Krishnapriya S, Vasudevan S, Ganesan TS. Oncogenes in high grade serous adenocarcinoma of the ovary. Genes Cancer 2020; 11:122-136. [PMID: 33488950 PMCID: PMC7805537 DOI: 10.18632/genesandcancer.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
High grade serous ovarian cancer is characterized by relatively few mutations occurring at low frequency, except in TP53. However other genetic aberrations such as copy number variation alter numerous oncogenes and tumor suppressor genes. Oncogenes are positive regulators of tumorigenesis and play a critical role in cancer cell growth, proliferation, and survival. Accumulating evidence suggests that they are crucial for the development and the progression of high grade serous ovarian carcinoma (HGSOC). Though many oncogenes have been identified, no successful inhibitors targeting these molecules and their associated pathways are available. This review discusses oncogenes that have been identified recently in HGSOC using different screening strategies. All the genes discussed in this review have been functionally characterized both in vitro and in vivo and some of them are able to transform immortalized ovarian surface epithelial and fallopian tube cells upon overexpression. However, it is necessary to delineate the molecular pathways affected by these oncogenes for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pacharla Manasa
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| |
Collapse
|
15
|
Zhou JD, Zhang TJ, Xu ZJ, Deng ZQ, Gu Y, Ma JC, Wen XM, Leng JY, Lin J, Chen SN, Qian J. Genome-wide methylation sequencing identifies progression-related epigenetic drivers in myelodysplastic syndromes. Cell Death Dis 2020; 11:997. [PMID: 33219204 PMCID: PMC7679421 DOI: 10.1038/s41419-020-03213-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
The potential mechanism of myelodysplastic syndromes (MDS) progressing to acute myeloid leukemia (AML) remains poorly elucidated. It has been proved that epigenetic alterations play crucial roles in the pathogenesis of cancer progression including MDS. However, fewer studies explored the whole-genome methylation alterations during MDS progression. Reduced representation bisulfite sequencing was conducted in four paired MDS/secondary AML (MDS/sAML) patients and intended to explore the underlying methylation-associated epigenetic drivers in MDS progression. In four paired MDS/sAML patients, cases at sAML stage exhibited significantly increased methylation level as compared with the matched MDS stage. A total of 1090 differentially methylated fragments (DMFs) (441 hypermethylated and 649 hypomethylated) were identified involving in MDS pathogenesis, whereas 103 DMFs (96 hypermethylated and 7 hypomethylated) were involved in MDS progression. Targeted bisulfite sequencing further identified that aberrant GFRA1, IRX1, NPY, and ZNF300 methylation were frequent events in an additional group of de novo MDS and AML patients, of which only ZNF300 methylation was associated with ZNF300 expression. Subsequently, ZNF300 hypermethylation in larger cohorts of de novo MDS and AML patients was confirmed by real-time quantitative methylation-specific PCR. It was illustrated that ZNF300 methylation could act as a potential biomarker for the diagnosis and prognosis in MDS and AML patients. Functional experiments demonstrated the anti-proliferative and pro-apoptotic role of ZNF300 overexpression in MDS-derived AML cell-line SKM-1. Collectively, genome-wide DNA hypermethylation were frequent events during MDS progression. Among these changes, ZNF300 methylation, a regulator of ZNF300 expression, acted as an epigenetic driver in MDS progression. These findings provided a theoretical basis for the usage of demethylation drugs in MDS patients against disease progression.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| | - Su-Ning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China. .,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Ma BB, Zhang TJ, Wang CZ, Xu ZJ, Zhou JD, Gu Y, Ma JC, Deng ZQ, Lin J, Qian J. Methylation-independent CRIP1 expression is a potential biomarker affecting prognosis in cytogenetically normal acute myeloid leukemia. Am J Transl Res 2020; 12:4840-4852. [PMID: 33042393 PMCID: PMC7540098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Abnormal expression of CRIP1 has been identified in numerous solid tumors. However, CRIP1 expression and its regulation are little known in acute myeloid leukemia (AML). The purpose of this study was to evaluate the expression and regulation of CRIP1 and the clinical implications of CRIP1 aberration in AML. Real-time quantitative PCR was carried out to detect the level of CRIP1 expression in 138 AML patients and 38 controls. CRIP1 methylation was detected by methylation-specific PCR and bisulfite sequencing PCR. Five public available AML datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were further analyzed. The level of CRIP1 expression was up-regulated in AML patients compared with controls (P = 0.045). CRIP1 high patients had a significantly lower complete remission (CR) rate than CRIP1 low patients (P = 0.020). CRIP1 high group had a shorter overall survival (OS) and leukemia-free survival (LFS) than CRIP1 low group in cytogenetically normal AML (CN-AML) patients (P = 0.007 and 0.012, respectively). Multivariate analysis further confirmed that high CRIP1 expression was an independent risk factor for LFS in CN-AML patients (P = 0.005). However, we found that CRIP1 expression was not associated with the status of its promoter, which was nearly fully unmethylated both in controls and AML patients. Furthermore, our results were validated using the published GEO datasets and TCGA datasets. Our findings suggest that high CRIP1 expression is independently related with unfavorable prognosis in CN-AML.
Collapse
Affiliation(s)
- Bei-Bei Ma
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Cui-Zhu Wang
- Department of Oncology, Hai’an People’s Hospital Affiliated to Nantong UniversityNantong, Jiangsu, People’s Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
17
|
Li L, Li F, Xia Y, Yang X, Lv Q, Fang F, Wang Q, Bu W, Wang Y, Zhang K, Wu Y, Shen J, Jiang M. UVB induces cutaneous squamous cell carcinoma progression by de novo ID4 methylation via methylation regulating enzymes. EBioMedicine 2020; 57:102835. [PMID: 32574963 PMCID: PMC7317242 DOI: 10.1016/j.ebiom.2020.102835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about whether UVB can directly influence epigenetic regulatory pathways to induce cutaneous squamous cell carcinoma (CSCC). This study aimed to identify epigenetic-regulated signalling pathways through global methylation and gene expression profiling and to elucidate their function in CSCC development. METHODS Global DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) and genome-wide gene expression analysis by RNA sequencing (RNA-seq) in eight pairs of matched CSCC and adjacent normal skin tissues were used to investigate the potential candidate gene(s). Clinical samples, animal models, cell lines, and UVB irradiation were applied to validate the mechanism and function of the genes of interest. FINDINGS We identified the downregulation of the TGF-β/BMP-SMAD-ID4 signalling pathway in CSCC and increased methylation of inhibitor of DNA binding/differentiation 4 (ID4). In normal human and mouse skin tissues and cutaneous cell lines, UVB exposure induced ID4 DNA methylation, upregulated DNMT1 and downregulated ten-eleven translocation (TETs). Similarly, we detected the upregulation of DNMT1 and downregulation of TETs accompanying ID4 DNA methylation in CSCC tissues. Silencing of DNMT1 and overexpression of TET1 and TET2 in A431 and Colo16 cells led to increased ID4 expression. Finally, we showed that overexpression of ID4 reduced cell proliferation, migration, and invasion, and increased apoptosis in CSCC cell lines and reduced tumourigenesis in mouse models. INTERPRETATION The results indicate that ID4 is downregulated by UVB irradiation via DNA methylation. ID4 acts as a tumour suppressor gene in CSCC development. FUNDING CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-021, 2017-I2M-1-017), the Natural Science Foundation of Jiangsu Province (BK20191136), and the Fundamental Research Funds for the Central Universities (3332019104).
Collapse
Affiliation(s)
- Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fengjuan Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yudong Xia
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Xueyuan Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qun Lv
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fang Fang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qiang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Wenbo Bu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yan Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Ke Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yi Wu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junfang Shen
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Mingjun Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
18
|
Zhou JD, Li XX, Zhang TJ, Xu ZJ, Zhang ZH, Gu Y, Wen XM, Zhang W, Ji RB, Deng ZQ, Lin J, Qian J. MicroRNA-335/ ID4 dysregulation predicts clinical outcome and facilitates leukemogenesis by activating PI3K/Akt signaling pathway in acute myeloid leukemia. Aging (Albany NY) 2020; 11:3376-3391. [PMID: 31147526 PMCID: PMC6555456 DOI: 10.18632/aging.101991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022]
Abstract
MircoRNA-335 (miR-335) has been reported as a significant cancer-associated microRNA, which was often epigenetically silenced and acted as a tumor suppressor gene in diverse human solid tumors. Conversely, recent studies show that miR-335 overexpression was identified in both adult and pediatric acute myeloid leukemia (AML), suggesting that it might play an oncogenic role of miR-335 in AML. However, the role of miR-335 during leukemogenesis remains to be elucidated. MiR-335/ID4 expression was detected by real-time quantitative PCR and/or western blot. Survival analysis was performed to explore the association between miR-335/ID4 expression and the prognosis, and further validated by public databases. Gain-of-function experiments determined by cell proliferation, apoptosis, and differentiation were conducted to investigate the biological functions of miR-335/ID4. Herein, we found that miR-335 expression, independent of its methylation, was significantly increased and negatively correlated with reduced ID4 expression in AML. Moreover, aberrant miR-335/ID4 expression independently affected chemotherapy response and leukemia-free/overall survival in patients with AML. Gain-of-function experiments in vitro showed the oncogenic role of miR-335 by affecting cell apoptosis and proliferation in AML, and could be rescued by ID4 restoration. Mechanistically, we identified and verified that miR-335/ID4 contributed to leukemogenesis through activating PI3K/Akt signaling pathway. Collectively, aberrant miR-335/ID4 expression was an independent prognostic biomarker in AML. MiR-335/ID4 dysregulation facilitated leukemogenesis through the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Zhi-Hui Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| | - Run-Bi Ji
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| |
Collapse
|
19
|
Zhang TJ, Xu ZJ, Gu Y, Wen XM, Ma JC, Zhang W, Deng ZQ, Leng JY, Qian J, Lin J, Zhou JD. Identification and validation of prognosis-related DLX5 methylation as an epigenetic driver in myeloid neoplasms. Clin Transl Med 2020; 10:e29. [PMID: 32508046 PMCID: PMC7403826 DOI: 10.1002/ctm2.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
The deregulated DLX gene family members DLX1/2/3/4/5/6 (DLXs) caused by DNA methylation has been demonstrated in various cancers with therapeutic target value. However, the potential role of DLXs methylation in myeloid neoplasms such as acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) remains to be elucidated. Clinical significance of DLXs methylation/expression was analyzed in patient with AML and MDS. The functional roles of DLXs were determined in vitro. In the identification stage, we found that lower DLX5 expression was correlated with prognosis in AML among all DLXs analyzed by The Cancer Genome Atlas datasets. In the validation stage, we revealed that reduced DLX5 expression was frequently occurred, and was also correlated with promoter hypermethylation in AML evaluated by targeted bisulfite sequencing. Epigenetic studies also showed that DLX5 promoter DNA methylation was associated with its expression. By quantitative polymerase chain reaction, we also validated that DLX5 hypermethylation was frequent event in both AML and MDS, and also correlated with MDS transformation to leukemia. Moreover, DLX5 hypermethylation was associated with lower rate of complete remission and shorter time of leukemia‐free/overall survival, and was also confirmed by Logistic/Cox regression analysis. Functional studies revealed the antiproliferative and pro‐apoptotic effects of DLX5 in MDS‐derived AML cell‐line SKM‐1. Finally, bioinformatics analysis demonstrated that DLX5 functioned in leukemogenesis may be through the association with PI3K/Akt signaling pathway. Collectively, our findings demonstrated that DLX5 methylation, negatively correlated DLX5 expression, was a potential prognostic and predictive indicator in patients with AML and MDS, which could also act as an epigenetic driver in myeloid neoplasms.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, P. R. China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, P. R. China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Neoplasms of Zhenjiang City, Zhenjiang, P. R. China
| |
Collapse
|
20
|
Hospital MA, Vey N. Myelodysplastic Syndromes: How to Recognize Risk and Avoid Acute Myeloid Leukemia Transformation. Curr Oncol Rep 2020; 22:4. [PMID: 31974774 DOI: 10.1007/s11912-020-0869-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW To understand how myelodysplastic syndromes (MDS) transform to AML and to describe how transformation can be predicted and prevented. RECENT FINDINGS Recent genomic analyses have shown that MDS progression to AML is associated with clonal expansion and clonal evolution. Mutation profiles of MDS change during progression and new mutations in signaling genes and transcription factors emerge. AML transformation can be predicted by several parameters including International Prognostic Scoring System IPSS risk category and transfusion requirements. The prognostic relevance of the acquisition of some gene mutations (i.e., IDH1 and 2, CBL, FT3, RAS, NPM1, TP53, and ASXL1) has to be prospectively validated. The most effective preventive therapy for AML transformation is allogeneic stem cell transplantation. Hypomethylating agents have been associated with prolonged time to AML transformation even in patients who did not achieve an objective response. The recent progress in the understanding of the molecular events leading to transformation and the event of new effective therapies open new avenues for a better prediction and prevention of AML transformation in patients with MDS.
Collapse
Affiliation(s)
| | - Norbert Vey
- Aix-Marseille Univ, Inserm, CNRS, CRCM, Institut Paoli-Calmettes, 232 Bvd Sainte Marguerite, 13009, Marseille, France.
| |
Collapse
|
21
|
Yang M, Li Y, Wei W. MicroRNA-188-5p Promotes Epithelial-Mesenchymal Transition by Targeting ID4 Through Wnt/β‑catenin Signaling in Retinoblastoma. Onco Targets Ther 2019; 12:10251-10262. [PMID: 31819510 PMCID: PMC6885564 DOI: 10.2147/ott.s229739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Here, we investigated the involvement of the miR-188-5p/inhibitor of the DNA binding 4 (ID4) axis in retinoblastoma (Rb). PATIENTS AND METHODS We included 35 Rb tissues and the corresponding adjacent normal tissues. RT-qPCR, Western blot, lentivirus transfection, measurement of cell migration in vitro, and chip analysis were performed during the study. Mouse Rb models were established to investigate the in vivo mechanisms. RESULTS We showed that miR-188-5p was upregulated in Rb tissues; moreover, we identified a pathway involving the upregulation of miR-188-5p and its downstream target, ID4, in vitro. Cell experiments revealed that the overexpression of miR-188-5p significantly downregulated the expression of ID4 and the underlying mechanism involved direct targeting of the ID4 3'-UTR. The levels of ID4 are lower in Rb tissues; it plays an antitumor role by inhibiting Rb metastasis in vitro and in vivo. Further investigation revealed that the miR-188-5p/ID4 axis regulated metastasis by promoting epithelial-mesenchymal transition (EMT). We demonstrated that microRNA-188-5p promoted EMT by targeting ID4 through Wnt/β catenin signaling in Rb. CONCLUSION miRNA-188-5p can promote EMT by targeting ID4 through the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Ming Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing100730, People’s Republic of China
| |
Collapse
|
22
|
Cunningham I, Hamele‐Bena D, Guo Y, Shiomi T, Papp AC, Chakravarti B, Yang J, Shyr Y, Fisher RA. Extramedullary leukemia behaving as solid cancer: clinical, histologic, and genetic clues to chemoresistance in organ sites. Am J Hematol 2019; 94:1200-1207. [PMID: 31353508 DOI: 10.1002/ajh.25594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 01/14/2023]
Abstract
Recent studies of leukemic tumors in individual extramedullary sites showed they adopt the clinical and metastatic behavior of solid cancers originating in those sites. To elucidate features of leukemic tumors that render them resistant to agents effective against marrow leukemia, we analyzed a series of AML breast tumors by histology, immunohistochemistry, and RNA sequencing. Striking histologic similarities to solid cancers were found: a single-filing architectural pattern virtually identical to that of invasive lobular breast carcinoma and dense desmoplastic keloid-like fibrosis similar to colon, gallbladder, and pancreas carcinomas. Sequencing found 2157 genes significantly downregulated in AML breast tumors compared to normal breast. Comparison to triple-negative breast cancer found 859 genes similarly downregulated. At least 30 of these genes have been associated with poor prognosis in breast cancers. Five were reported in AML marrow studies to correlate with poor prognosis. The findings of this pilot study suggest the seed-and-soil interaction recognized in solid cancer growth may help explain how leukemic cells, in some patients, adopt solid tumor behavior in non-marrow sites. Transformed cells that metastasize from tumor to marrow can impart chemoresistance and be an unrecognized cause of treatment failure and death. Further studies comparing leukemic tumor to simultaneous marrow could potentially identify biomarkers that predict extramedullary resistance and lead to new therapeutic targets. Recognizing the potential for leukemia to adopt solid tumor phenotype, and implementation of body scanning and ablative tumor treatment, could decrease the persistently high rates of marrow resistance and treatment failure.
Collapse
Affiliation(s)
- Isabel Cunningham
- Division of Hematology OncologyColumbia University Vagelos College of Physicians and Surgeons New York New York
| | - Diane Hamele‐Bena
- Department of Pathology and Cell BiologyColumbia University Vagelos College of Physicians and Surgeons New York New York
| | - Yan Guo
- BioinformaticsUniversity of New Mexico Albuquerque New Mexico
| | - Takayuki Shiomi
- Department of PathologyInternational University of Health and Welfare Chiba Japan
| | - Audrey C. Papp
- Center for PharmacogenomicsOhio State University Columbus Ohio
| | | | - Jianqi Yang
- Department of PharmacologyUniversity of Iowa Iowa City Iowa
| | - Yu Shyr
- Department of BiostatisticsVanderbilt University Nashville Tennessee
| | - Rory A. Fisher
- Department of PharmacologyUniversity of Iowa Iowa City Iowa
| |
Collapse
|
23
|
Sun GK, Tang LJ, Zhou JD, Xu ZJ, Yang L, Yuan Q, Ma JC, Liu XH, Lin J, Qian J, Yao DM. DOK6 promoter methylation serves as a potential biomarker affecting prognosis in de novo acute myeloid leukemia. Cancer Med 2019; 8:6393-6402. [PMID: 31486300 PMCID: PMC6797566 DOI: 10.1002/cam4.2540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Downstream of tyrosine kinase 6 (DOK6), which is specifically expressed in the nervous system, was previously recognized as an adapter only in neurite outgrowth. Recent studies also demonstrated the potential role of DOK6 in solid tumors such as gastric cancer and breast cancer. However, previous studies of DOK6 have not dealt with its roles in myeloid malignancies. Herein, we verified the promoter methylation status of DOK6 and further explored its clinical implication in de novo acute myeloid leukemia (AML). METHODS A total of 100 newly diagnosed adult AML patients were involved in the current study. DOK6 expression and methylation were detected by real-time qPCR and methylation-specific PCR (MSP), respectively. Bisulfite sequencing PCR (BSP) was performed to assess the methylation density of the DOK6 promoter. RESULTS Downstream of tyrosine kinase 6 promoter methylation was significantly increased in AML patients compared to controls (P = .037), whereas DOK6 expression significantly decreased in AML patients (P < .001). The expression of DOK6 was markedly up-regulated after treated by 5-aza-2'-deoxycytidine (5-aza-dC) in THP-1 cell lines. The methylation status of the DOK6 promoter was associated with French-American-British classifications (P = .037). There was no significant correlation existed between DOK6 expression and its promoter methylation (R = .077, P = .635). Interestingly, of whole-AML and non-APL AML patients, both have a tendency pertaining to the DOK6 methylation group and a significantly longer overall survival (OS) than the DOK6 unmethylation group (P = .042 and .036, respectively). CONCLUSION Our study suggested that DOK6 promoter hypermethylation was a common molecular event in de novo AML patients. Remarkably, DOK6 promoter methylation could serve as an independent and integrated prognostic biomarker not only in non-APL AML patients but also in AML patients who are less than 60 years old.
Collapse
Affiliation(s)
- Guo-Kang Sun
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Lan Yang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Yuan
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Zhou JD, Zhang TJ, Xu ZJ, Gu Y, Ma JC, Li XX, Guo H, Wen XM, Zhang W, Yang L, Liu XH, Lin J, Qian J. BCL2 overexpression: clinical implication and biological insights in acute myeloid leukemia. Diagn Pathol 2019; 14:68. [PMID: 31253168 PMCID: PMC6599255 DOI: 10.1186/s13000-019-0841-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 02/19/2023] Open
Abstract
Background BCL2 protein inhibitor venetoclax (ABT-199) has been authorized by Food and Drug Administration for relapsed/refractory chronic lymphoid leukemia with 17p deletion. Although venetoclax/ABT-199 also caused cell death in acute myeloid leukemia (AML), whether it could be applied to clinical treatment needs further studies. Here, we revealed clinical implication of BCL2 overexpression in de novo adult AML, and may provide theoretical basis for targeted therapy using venetoclax. Methods BCL2 expression was analyzed in adult AML patients from public datasets The Cancer Genome Atlas (TCGA) and confirmed by another independent cohort from our own data. Results BCL2 expression showed up-regulated in AML patients among TCGA data and confirmed by our own data. BCL2 overexpression was correlated with FAB-M0/M1, whereas BCL2 under-expression was related to FAB-M5. However, BCL2 expression has no effect on overall survival (OS) and leukemia-free survival (LFS) of AML patients (determined in BCL2low and BCL2high groups). Interestingly, in the BCL2low group, patients undergoing autologous or allogeneic hematopoietic stem cell transplantation (auto/allo-HSCT) had significantly better OS and LFS compared with patients only received chemotherapy, whereas, no significant difference was found in OS and LFS between chemotherapy and auto/allo-HSCT patients in the BCL2high group. BCL2 expression was found positively correlated with HOX family gene, and negatively correlated with tumor suppressor microRNA such as miR-195, miR-497, and miR-193b. Conclusions BCL2 overexpression identified specific FAB subtypes of AML, but it did not affect prognosis. Patients with BCL2 overexpression did not benefit from auto/allo-HSCT among whole-cohort-AML and cytogenetically normal AML. Electronic supplementary material The online version of this article (10.1186/s13000-019-0841-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hong Guo
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002, Zhenjiang, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Zhang TJ, Wen XM, Zhou JD, Gu Y, Xu ZJ, Guo H, Ma JC, Yuan Q, Chen Q, Lin J, Qian J. SOX30 methylation correlates with disease progression in patients with chronic myeloid leukemia. Onco Targets Ther 2019; 12:4789-4794. [PMID: 31417278 PMCID: PMC6592060 DOI: 10.2147/ott.s210168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/28/2019] [Indexed: 11/23/2022] Open
Abstract
Background Our previous study has reported that aberrant SOX30 methylation was associated with poor prognosis in AML, and it correlated with disease progression in MDS. Herein, we further determined SOX30 methylation and its clinical significance in the other myeloid malignance - chronic myeloid leukemia (CML). Methods SOX30 methylation was examined by real-time quantitative methylation-specific PCR and bisulfite sequencing PCR, whereas SOX30 expression was detected by real-time quantitative PCR. Results SOX30 methylation was identified in 11% (10/95) CML patients. SOX30 methylation was associated with lower hemoglobin and platelets (P=0.006 and 0.032, respectively). Importantly, significant differences were observed in the distributions of clinical stages and cytogenetics (P=0.006 and 0.002, respectively). The frequency of SOX30 methylation in chronic phase (CP) stage occurred with lowest frequency (4/74, 5%), higher in accelerated phase (AP) stage (1/7, 14%), and the highest in blast crisis (BC) stage (12/31, 39%). In addition, SOX30 methylated patients tended to have a higher level of BCR-ABL transcript than SOX30 non-methylated patients (P=0.063). In two paired CML patients, SOX30 methylation showed lower density in CP stage (19% and 17%, respectively), and was significantly increased in BC stage (89% and 69%, respectively) during disease progression. Additionally, SOX30 methylated CML patients presented a lower SOX30 transcript level than SOX30 non-methylated CML patients (P=0.046). Conclusion Our study revealed that SOX30 methylation correlated with disease progression in chronic myeloid leukemia.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hong Guo
- Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Yuan
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China
| | - Qin Chen
- Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology , Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City , Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
26
|
Li XX, Zhou JD, Wen XM, Zhang TJ, Wu DH, Deng ZQ, Zhang ZH, Lian XY, He PF, Yao XY, Lin J, Qian J. Increased MCL-1 expression predicts poor prognosis and disease recurrence in acute myeloid leukemia. Onco Targets Ther 2019; 12:3295-3304. [PMID: 31118680 PMCID: PMC6503339 DOI: 10.2147/ott.s194549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/05/2019] [Indexed: 02/03/2023] Open
Abstract
Background: Altered expression of the BCL-2 family member MCL-1 has been linked to the progression and outcome of various malignancies. Recently, MCL-1 inhibitor S63845 was reported to kill MCL-1-dependent cancer cells and has potential value in clinical application. Purpose: Herein, we reported MCL-1 expression pattern in Chinese de novo acute myeloid leukemia (AML) and its impact on prognosis and may provide theoretical basis for AML patients using MCL-1 inhibitor in clinics. Real-time quantitative PCR was carried out to detect the transcript of MCL-1 in AML patients. Results: MCL-1 expression was significantly up-regulated in AML compared with controls (P=0.042). We divided the patients into two groups (higher and lower expression of MCL-1) based on the median level. Among both non-acute promyelocytic leukemia (APL) and cytogenetically normal AML (CN-AML), patients with higher expression of MCL-1 correlated with lower complete remission (CR) rate (P=0.031 and 0.004, respectively) and shorter overall survival (OS) time (P=0.008 and 0.004, respectively) compared with those with lower expression of MCL-1. Meanwhile, Cox regression analyses revealed that overexpression of MCL-1 acted as an independent risk factor for OS in non-APL patients and CN-AML patients (P=0.011 and 0.045, respectively). In follow-up patients, MCL-1 expression level decreased after CR compared with newly diagnosis time (P=0.020) and increased after relapse (P=0.004). Conclusion: Our findings suggest that higher expression of MCL-1 predicts poor prognosis and can be used for disease monitoring.
Collapse
Affiliation(s)
- Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of KunShan City, 215300 Kunshan, People's Republic of China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhi-Hui Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yue Lian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Pin-Fang He
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yu Yao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Dai K, Zhang Q, Li Y, Wu L, Zhang S, Yu K. Plasma fibrinogen levels correlate with prognosis and treatment outcome in patients with non-M3 acute myeloid leukemia. Leuk Lymphoma 2019; 60:1503-1511. [PMID: 30732501 DOI: 10.1080/10428194.2018.1535116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To assess plasma fibrinogen levels as a biomarker to predict the prognosis and treatment outcome in acute myeloid leukemia (AML), a retrospective study of 215 patients with AML excluding M3 was conducted in a single center. Patients were divided into low and high group according to the cutoff value of 3.775 g/L obtained by analyzing the receiver operating characteristic (ROC) curve of fibrinogen at diagnosis. Importantly, overall survival (OS) was markedly better in low fibrinogen group (p=.006) as well as disease-free survival (DFS) (p= .045). Furthermore, when patients achieved complete remission (CR), the median plasma fibrinogen levels were dramatically decreased in high fibrinogen group but increased in low fibrinogen group. In conclusion, our data suggest that initial plasma FBG levels can be used as an independent prognostic biomarker affecting OS and DFS, as well as a potential parameter reflecting the treatment outcome in patients with non-M3 AML.
Collapse
Affiliation(s)
- Kanchun Dai
- a Department of Hematology, Wenzhou Key Laboratory of Hematology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Qianying Zhang
- a Department of Hematology, Wenzhou Key Laboratory of Hematology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Yingying Li
- a Department of Hematology, Wenzhou Key Laboratory of Hematology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,b Department of Hematology/Oncology , Wenzhou People's Hospital , Wenzhou , China
| | - Luyi Wu
- a Department of Hematology, Wenzhou Key Laboratory of Hematology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Shenghui Zhang
- a Department of Hematology, Wenzhou Key Laboratory of Hematology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,c Division of Clinical Research , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Kang Yu
- a Department of Hematology, Wenzhou Key Laboratory of Hematology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
28
|
Yang L, Zhou JD, Zhang TJ, Ma JC, Xiao GF, Chen Q, Deng ZQ, Lin J, Qian J, Yao DM. Overexpression of lncRNA PANDAR predicts adverse prognosis in acute myeloid leukemia. Cancer Manag Res 2018; 10:4999-5007. [PMID: 30464600 PMCID: PMC6214337 DOI: 10.2147/cmar.s180150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background and purpose Abundant studies have shown that lncRNA PANDAR plays an oncogenic role in human solid tumors. Although abnormal expression of PANDAR has been well investigated in solid tumors, it was rarely studied in hematologic diseases. Hence, the aim of this study was to determine the PANDAR expression level and its clinical significance in patients with acute myeloid leukemia (AML). Materials and methods For detecting the expression level of PANDAR in 119 AML patients and 26 controls, real-time quantitative PCR was used in this study. The prognostic values were evaluated by using Kaplan-Meier analysis, Cox regression analyses, and logistic regression analysis. Results PANDAR was significantly overexpressed in AML and might be a promising biomarker which could distinguish AML from normal samples (P<0.001). Patients with high expression of PANDAR (PANDAR high) were older and showed higher bone marrow blasts than patients in PANDAR low group (P=0.029 and 0.032, respectively). Significant differences between these groups were also detected regarding risk group and karyotype finding (P=0.009 and 0.041, respectively). Importantly, PANDAR high patients presented a significant lower complete remission rate compared to PANDAR low patients (P<0.001). Furthermore, Kaplan-Meier analysis showed that PANDAR high patients had shorter overall survival compared to PANDAR low patients observing the whole AML cohort, and also in the non-M3 group of patients (P<0.001 and P=0.005, respectively). Multivariate analysis of Cox and logistic regression analysis confirmed that high PANDAR expression was an independent unfavorable risk factor for overall survival and complete remission in both observed patient groups. Conclusion These results revealed that PANDAR was overexpressed in AML, and that higher PANDAR expression was associated with poor clinical outcome. Our study therefore suggests that PANDAR expression is a promising biomarker for prognostic prediction for AML.
Collapse
Affiliation(s)
- Lan Yang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Jing-Dong Zhou
- The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, , .,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China,
| | - Ting-Juan Zhang
- The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, , .,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China,
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Gao-Fei Xiao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Qin Chen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| | - Jun Qian
- The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, , .,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China,
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China, .,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China, ,
| |
Collapse
|
29
|
Zhou JD, Wang YX, Zhang TJ, Li XX, Gu Y, Zhang W, Ma JC, Lin J, Qian J. Identification and validation of SRY-box containing gene family member SOX30 methylation as a prognostic and predictive biomarker in myeloid malignancies. Clin Epigenetics 2018; 10:92. [PMID: 30002740 PMCID: PMC6034269 DOI: 10.1186/s13148-018-0523-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/21/2018] [Indexed: 12/28/2022] Open
Abstract
Background Methylation-associated SOX family genes have been proved to be involved in multiple essential processes during carcinogenesis and act as potential biomarkers for cancer diagnosis, staging, prediction of prognosis, and monitoring of response to therapy. Herein, we revealed SOX30 methylation and its clinical implication in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Results In the discovery stage, we identified that SOX30 methylation, a frequent event in AML, was negatively associated with SOX30 expression and correlated with overall survival (OS) and leukemia-free survival (LFS) in cytogenetically normal AML among SOX family members from The Cancer Genome Atlas (TCGA) datasets. In the validation stage, we verified that SOX30 methylation level was significantly higher in AML even in MDS-derived AML compared to controls, whereas SOX30 hypermethylation was not a frequent event in MDS. SOX30 methylation was inversely correlated with SOX30 expression in AML patients. Survival analysis showed that SOX30 hypermethylation was negatively associated with complete remission (CR), OS, and LFS in AML, where it only affected LFS in MDS. Notably, among MDS/AML paired patients, SOX30 methylation level was significantly increased in AML stage than in MDS stage. In addition, SOX30 methylation was found to be significantly decreased in AML achieved CR when compared to diagnosis time and markedly increased in relapsed AML when compared to the CR population. Conclusions Our findings revealed that SOX30 methylation was associated with disease progression in MDS and acted as an independent prognostic and predictive biomarker in AML. Electronic supplementary material The online version of this article (10.1186/s13148-018-0523-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002 Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Yu-Xin Wang
- 3Department of Nephrology and Endocrinology, Traditional Chinese Medicine Hospital of Kunshan City, Kunshan, Jiangsu People's Republic of China
| | - Ting-Juan Zhang
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002 Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Xi-Xi Li
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002 Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Yu Gu
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002 Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Wei Zhang
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002 Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China.,4Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., 212002 Zhenjiang, People's Republic of China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China.,4Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., 212002 Zhenjiang, People's Republic of China
| | - Jun Qian
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, 212002 Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| |
Collapse
|
30
|
Zhou JD, Zhang LC, Zhang TJ, Gu Y, Wu DH, Zhang W, Ma JC, Wen XM, Guo H, Lin J, Qian J. Dysregulation of miR-200s clusters as potential prognostic biomarkers in acute myeloid leukemia. J Transl Med 2018; 16:135. [PMID: 29784043 PMCID: PMC5963159 DOI: 10.1186/s12967-018-1494-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022] Open
Abstract
Background Increasing studies showed that miR-200 family (miR-200s) clusters are aberrantly expressed in multiple human cancers, and miR-200s clusters function as tumor suppressor genes by affecting cell proliferation, self-renewal, differentiation, division and apoptosis. Herein, we aimed to investigate the expression and clinical implication of miR-200s clusters in acute myeloid leukemia (AML). Methods RT-qPCR was performed to detect expression of miR-200s clusters in 19 healthy donors, 98 newly diagnosed AML patients, and 35 AML patients achieved complete remission (CR). Results Expression of miR-200a/200b/429 cluster but not miR-200c/141 cluster was decreased in newly diagnosed AML patients as compared to healthy donors and AML patients achieved CR. Although no significant differences were observed between miR-200s clusters and most of the features, low expression of miR-200s clusters seems to be associated with higher white blood cells especially for miR-200a/200b. Of the five members of miR-200s clusters, low expression of miR-200b/429/200c was found to be associated with lower CR rate. Logistic regression analysis further revealed that low expression of miR-429 acted as an independent risk factor for CR in AML. Based on Kaplan–Meier analysis, low expression of miR-200b/429/200c was associated with shorter OS, whereas miR-200a/141 had a trend. Moreover, multivariate analysis of Cox regression models confirmed the independently prognostic value of miR-200b expression for OS in AML. Conclusions Expression of miR-200a/200b/429 cluster was frequently down-regulated in AML, and low expression of miR-429 as an independent risk factor for CR, whereas low expression of miR-200b as an independent prognostic biomarker for OS. Electronic supplementary material The online version of this article (10.1186/s12967-018-1494-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Liu-Chao Zhang
- Jingjiang College of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of Kunshan City, Kunshan, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Hong Guo
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
31
|
Zhang TJ, Zhou JD, Zhang W, Lin J, Ma JC, Wen XM, Yuan Q, Li XX, Xu ZJ, Qian J. H19 overexpression promotes leukemogenesis and predicts unfavorable prognosis in acute myeloid leukemia. Clin Epigenetics 2018; 10:47. [PMID: 29643943 PMCID: PMC5891930 DOI: 10.1186/s13148-018-0486-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/02/2018] [Indexed: 12/29/2022] Open
Abstract
Background The long non-coding RNA H19 plays a crucial role in solid tumor initiation and progression. However, the potential role of H19 and its clinical significance in acute myeloid leukemia (AML) remain largely elusive. Methods H19 expression was detected by qPCR, and clinical significance in AML patients was further analyzed. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data for AML were used as validation cohorts. The roles of H19 in cell proliferation and apoptosis were determined by cell proliferation assay and flow cytometry analysis. Results H19 expression was significantly increased in AML patients but not associated with embedded miR-675 expression. Moreover, H19 overexpression was not dependent on the methylation pattern in H19 differentially methylated region/imprinting control region. Strong association was observed between H19 overexpression and patients’ characteristics including sex, higher white blood cells, older age, and intermediate karyotype, FLT3-ITD, and DNMT3A mutations. In addition, H19 overexpression correlated with lower complete remission (CR) rate and shorter overall survival, and further confirmed by multivariate analyses. Importantly, the prognostic effect of H19 expression was validated by TCGA and GEO data. In the follow-up of patients, H19 expression in CR phase was lower than diagnosis time and returned at relapse time. Loss-of-function experiments showed that H19 exhibited anti-proliferative and pro-apoptotic effects in leukemic cell HL60. Furthermore, H19 expression was positively correlated with potential downstream gene ID2 in AML. Conclusions Our findings revealed that methylation-independent H19 was a prognostic and predictive biomarker in AML, and H19/ID2 played crucial roles in leukemogenesis with potential therapeutic target value. Electronic supplementary material The online version of this article (10.1186/s13148-018-0486-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People's Republic of China.,2School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Jing-Dong Zhou
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People's Republic of China.,2School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Wei Zhang
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Jiang Lin
- 2School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China.,4Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu People's Republic of China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China.,4Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu People's Republic of China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China.,4Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu People's Republic of China
| | - Qian Yuan
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People's Republic of China.,4Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu People's Republic of China
| | - Xi-Xi Li
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People's Republic of China.,2School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Zi-Jun Xu
- 2School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China.,4Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu People's Republic of China
| | - Jun Qian
- 1Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 Jiangsu People's Republic of China.,2School of Medicine, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| |
Collapse
|
32
|
Zhang TJ, Qian Z, Wen XM, Zhou JD, Li XX, Xu ZJ, Ma JC, Zhang ZH, Lin J, Qian J. Lower expression of bone marrow miR-122 is an independent risk factor for overall survival in cytogenetically normal acute myeloid leukemia. Pathol Res Pract 2018; 214:896-901. [PMID: 29627222 DOI: 10.1016/j.prp.2018.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/19/2018] [Accepted: 03/31/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The liver-enriched microRNA-122 (miR-122) plays a crucial role in pathogenesis of hepatocellular carcinoma (HCC) with prognostic value. Recently, miR-122 was also found to be related to many other cancers besides HCC. However, less study determined miR-122 expression and its clinical significance in acute myeloid leukemia (AML). METHODS Real-time quantitative PCR was performed to detect the level of bone marrow (BM) miR-122 in de novo AML patients. The clinical significance of miR-122 expression in AML was further investigated. RESULTS Among whole-cohort AML, lower expression of BM miR-122 was associated with male patients, higher hemoglobin and favorable-karyotypes (P = 0.038, 0.006, and 0.038, respectively). Among cytogenetically normal AML (CN-AML), lower expression of BM miR-122 was correlated with DNMT3A wild type (P = 0.043). Moreover, patients with lower expression of BM miR-122 presented lower complete remission (CR) rate and shorter overall survival (OS) than those with higher expression of BM miR-122 in CN-AML (P = 0.025 and 0.013, respectively). Cox regression analyses further confirmed the prognostic value of BM miR-122 expression in CN-AML (P = 0.024). In follow-up patients, BM miR-122 expression level in CR time was increased compared to diagnosis time, and was returned to primary level when in relapse time again (P = 0.062 and 0.049, respectively). CONCLUSIONS Our findings indicated that lower expression of BM miR-122 acted as an independent risk factor for OS in CN-AML.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhen Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhi-Hui Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
33
|
He P, Xu Z, Zhou J, Li X, Zhang W, Wu D, Zhang Z, Lian X, Yao X, Deng Z, Lin J, Qian J. Methylation‐associated
DOK1
and
DOK2
down‐regulation: Potential biomarkers for predicting adverse prognosis in acute myeloid leukemia. J Cell Physiol 2018; 233:6604-6614. [PMID: 29150948 DOI: 10.1002/jcp.26271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Pin‐Fang He
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Zi‐Jun Xu
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jing‐Dong Zhou
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xi‐Xi Li
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Wei Zhang
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - De‐Hong Wu
- Department of HematologyThe Third People's Hospital of KunShan CityKunshanJiangsuP.R. China
| | - Zhi‐Hui Zhang
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xin‐Yue Lian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xin‐Yu Yao
- School of medicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Zhao‐Qun Deng
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jiang Lin
- Laboratory CenterAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
| | - Jun Qian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiangJiangsuP.R. China
- Department of HematologyAffiliated People's Hospital of Jiangsu UniversityZhenjiangJiangsuP.R. China
| |
Collapse
|
34
|
Zhang ZH, Zhang W, Zhou JD, Zhang TJ, Ma JC, Xu ZJ, Lian XY, Wu DH, Wen XM, Deng ZQ, Lin J, Qian J. Decreased SCIN expression, associated with promoter methylation, is a valuable predictor for prognosis in acute myeloid leukemia. Mol Carcinog 2018; 57:735-744. [PMID: 29457658 DOI: 10.1002/mc.22794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
The present study was aimed to investigate SCIN expression as well as promoter methylation and further explore their clinical relevance in acute myeloid leukemia (AML) patients. Real-time quantitative PCR was carried out to detect the expression level of SCIN in 119 AML patients and 37 healthy controls. Real-time quantitative methylation-specific PCR and bisulfite sequencing PCR were carried out to detect SCIN promoter methylation levels in 103 AML patients and 29 controls. As compared with controls, the level of SCIN transcript was significantly down-regulated in AML patients (P = 0.001), and the level of methylated SCIN promoter was significantly higher in AML patients (P = 0.001). Moreover, the level of promoter methylation was weakly negatively correlated with SCIN expression in AML patients (R = -0.265, P = 0.027). Demethylation of SCIN promoter by 5-aza-2'-deoxycytidine could restore its expression in leukemic cell line THP1. The age of SCINlow patients was significantly higher and C/EBPA mutation was significantly less than SCINhigh patients (P = 0.039 and 0.038, respectively). Moreover, the rate of complete remission (CR) of SCINlow patients was significantly lower than SCINhigh patients (P = 0.009). Kaplan-Meier analysis showed that low SCIN expression was associated with shorter overall survival (P = 0.036). Cox regression analysis demonstrated low SCIN expression was an independent poor prognostic factor (P = 0.047). Furthermore, SCIN expression was restored in those patients who achieved CR after induction therapy (P = 0.003). These findings indicate that decreased SCIN expression associated with its promoter methylation is a valuable biomarker for predicting adverse prognosis in AML patients.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yue Lian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of KunShan City, Kunshan, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Zhang TJ, Zhou JD, Yang DQ, Wang YX, Wen XM, Guo H, Yang L, Lian XY, Lin J, Qian J. TET2 expression is a potential prognostic and predictive biomarker in cytogenetically normal acute myeloid leukemia. J Cell Physiol 2018; 233:5838-5846. [PMID: 29219176 DOI: 10.1002/jcp.26373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/03/2017] [Indexed: 12/13/2022]
Abstract
TET2 (Ten-Eleven Translocation 2) gene is a member of TET family that can modify DNA through catalyzing the conversion of 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC). Although TET2 mutation has been disclosed in a variety of hematopoietic malignancies, the prognostic implication of TET2 expression in acute myeloid leukemia (AML) remains largely elusive. In this study, real-time quantitative PCR was carried out to detect the level of TET2 transcript in 134 de novo AML patients and 35 healthy donors. TET2 mRNA level was significantly down-regulated in AML patients compared with controls (p = 0.010). Among the French-American-British (FAB) subtypes, the incidence of TET2 under-expression in M0/M1 subtypes was significantly higher than in the other subtypes M2/M3/M4/M5/M6 (p = 0.017), and also markedly higher than in the other granulocyte subtypes M2/M3 (p = 0.005). TET2 low-expressed patients showed a significantly higher frequency of NPM1 mutations than TET2 high-expressed patients. Although there was no significant difference in complete remission rate between two groups (low and high TET2 expression), patients with low TET2 expression had markedly shorter overall survival (OS) in both non-M3 and cytogenetically normal AML (CN-AML) (p = 0.016 and 0.044, respectively). Furthermore, multivariate analysis confirmed the prognostic value of TET2 expression on OS among CN-AML patients (p = 0.049). Importantly, TET2 expression in complete remission (CR) time was significantly higher than newly diagnosis time (p = 0.001), and was returned to lower level when in relapse time (p < 0.001). These findings indicated that down-regulation of TET2 expression was a common event and acted as a prognostic and predictive biomarker in CN-AML patients.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dong-Qin Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu-Xin Wang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hong Guo
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yue Lian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
36
|
Zhou JD, Zhang TJ, Li XX, Ma JC, Guo H, Wen XM, Yao DM, Zhang W, Lin J, Qian J. Methylation-independent CHFR expression is a potential biomarker affecting prognosis in acute myeloid leukemia. J Cell Physiol 2018; 233:4707-4714. [PMID: 29115660 DOI: 10.1002/jcp.26253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
| | - Ting-Juan Zhang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
| | - Xi-Xi Li
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Hong Guo
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Dong-Ming Yao
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Wei Zhang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
| | - Jun Qian
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu P.R. China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu P.R. China
| |
Collapse
|
37
|
Zhang TJ, Lin J, Zhou JD, Li XX, Zhang W, Guo H, Xu ZJ, Yan Y, Ma JC, Qian J. High bone marrow miR-19b level predicts poor prognosis and disease recurrence in de novo acute myeloid leukemia. Gene 2018; 640:79-85. [DOI: 10.1016/j.gene.2017.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
38
|
Zhang TJ, Guo H, Zhou JD, Li XX, Zhang W, Ma JC, Wen XM, Yao XY, Lin J, Qian J. Bone marrow miR-10a overexpression is associated with genetic events but not affects clinical outcome in acute myeloid leukemia. Pathol Res Pract 2017; 214:169-173. [PMID: 29254789 DOI: 10.1016/j.prp.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Accumulating studies have linked the disruptions of microRNA-10 (miR-10) to acute myeloid leukemia (AML) with NPM1 mutation. However, miR-10 expression and its clinical implication in AML remain poorly defined. Although a recent report showed high serum level of miR-10a was associated with adverse prognosis in AML, herein, we found bone marrow (BM) miR-10 overexpression was not a prognostic biomarker in AML. METHODS BM miR-10 expression was examined by real-time quantitative PCR in BM mononuclear cells in 115 de novo AML patients and 45 controls. RESULTS BM miR-10 (miR-10a/b) expression was significantly up-regulated in AML patients, and was positively correlated with each other. Overexpression of miR-10a was associated with lower percentage of BM blasts, whereas miR-10b overexpression tended to correlate with higher percentage of BM blasts. Importantly, miR-10a overexpression was significantly associated with FAB-M3/t(15;17) subtypes and NPM1 mutation, meanwhile, overexpression of miR-10b was correlated with NPM1 and DNMT3A mutations. However, miR-10a/b overexpression was not associated with complete remission rate, and did not have an impact on both leukemia free survival and overall survival time in non-M3 AML patients without NPM1 mutation. CONCLUSIONS BM miR-10 overexpression is associated with genetic events but not affects clinical outcome in AML.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xin-Yu Yao
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China; The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
39
|
Zhang TJ, Wu DH, Zhou JD, Li XX, Zhang W, Guo H, Ma JC, Deng ZQ, Lin J, Qian J. Overexpression ofmiR-216b: Prognostic and predictive value in acute myeloid leukemia. J Cell Physiol 2017; 233:3274-3281. [PMID: 28884855 DOI: 10.1002/jcp.26171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Ting-juan Zhang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| | - De-hong Wu
- Department of Hematology; The Third People's Hospital of KunShan City; Suzhou Jiangsu People's Republic of China
| | - Jing-dong Zhou
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| | - Xi-xi Li
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| | - Wei Zhang
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| | - Hong Guo
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
| | - Ji-chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
| | - Zhao-qun Deng
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
- Laboratory Center; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
| | - Jun Qian
- Department of Hematology; Affiliated People's Hospital of Jiangsu University; Zhenjiang Jiangsu People's Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City; Zhenjiang Jiangsu People's Republic of China
| |
Collapse
|
40
|
DNA Methylation Events as Markers for Diagnosis and Management of Acute Myeloid Leukemia and Myelodysplastic Syndrome. DISEASE MARKERS 2017; 2017:5472893. [PMID: 29038614 PMCID: PMC5606093 DOI: 10.1155/2017/5472893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 01/18/2023]
Abstract
During the onset and progression of hematological malignancies, many changes occur in cellular epigenome, such as hypo- or hypermethylation of CpG islands in promoter regions. DNA methylation is an epigenetic modification that regulates gene expression and is a key event for tumorigenesis. The continuous search for biomarkers that signal early disease, indicate prognosis, and act as therapeutic targets has led to studies investigating the role of DNA in cancer onset and progression. This review focuses on DNA methylation changes as potential biomarkers for diagnosis, prognosis, response to treatment, and early toxicity in acute myeloid leukemia and myelodysplastic syndrome. Here, we report that distinct changes in DNA methylation may alter gene function and drive malignant cellular transformation during several stages of leukemogenesis. Most of these modifications occur at an early stage of disease and may predict myeloid/lymphoid transformation or response to therapy, which justifies its use as a biomarker for disease onset and progression. Methylation patterns, or its dynamic change during treatment, may also be used as markers for patient stratification, disease prognosis, and response to treatment. Further investigations of methylation modifications as therapeutic biomarkers, which may correlate with therapeutic response and/or predict treatment toxicity, are still warranted.
Collapse
|
41
|
Zhou JD, Ma JC, Zhang TJ, Li XX, Zhang W, Wu DH, Wen XM, Xu ZJ, Lin J, Qian J. High bone marrow ID2 expression predicts poor chemotherapy response and prognosis in acute myeloid leukemia. Oncotarget 2017; 8:91979-91989. [PMID: 29190891 PMCID: PMC5696157 DOI: 10.18632/oncotarget.20559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of ID proteins is a frequent event in various human cancers and has a direct role in cancer initiation, maintenance, progression and drug resistance. Our previous study has revealed ID1 expression and its prognostic value in acute myeloid leukemia (AML). Herein, we further reported ID2 expression and its clinical significance in AML. Real-time quantitative PCR was performed to detect ID2 transcript level in bone marrow mononuclear cells of 145 de novo AML patients. ID2 expression was significantly up-regulated in AML patients compared with controls. ID2 overexpression occurred with the highest frequency in poor karyotype (10/17, 59%), lower in intermediate karyotype (35/83, 42%), and the lowest in favorable karyotype (7/40, 18%). Moreover, high ID2 expression correlated with lower complete remission (CR) rate, shorter overall survival, and acted as an independent prognostic biomarker in whole-cohort AML and non-M3-AML patients. Importantly, the prognostic value of ID2 expression in AML was validated by The Cancer Genome Atlas (TCGA) data. In the follow-up of patients, ID2 expression at CR phase was decreased than at the time of diagnosis, and was increased again at the time of relapse. These findings demonstrated that bone marrow ID2 overexpression was a frequent event in AML patients, and predicts poor chemotherapy response and prognosis.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of KunShan City, Suzhou, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
42
|
Zhou JD, Lin J, Zhang TJ, Ma JC, Li XX, Wen XM, Guo H, Xu ZJ, Deng ZQ, Zhang W, Qian J. Hypomethylation-mediated H19 overexpression increases the risk of disease evolution through the association with BCR-ABL transcript in chronic myeloid leukemia. J Cell Physiol 2017; 233:2444-2450. [PMID: 28776669 DOI: 10.1002/jcp.26119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022]
Abstract
Previous study has revealed that H19 expression is required for efficient tumor growth induced by BCR-ABL in chronic myeloid leukemia (CML). Herein, we further determined H19 expression and its clinical implication in patients with CML. H19 expression and methylation were detected by real-time quantitative PCR and real-time quantitative methylation-specific PCR, and then clinical implication of H19 expression was further analyzed. H19 expression was significantly up-regulated in CML patients (p < 0.001). H19 expression with an area under receiver operating characteristic curve value of 0.824 might serve as a promising biomarker in distinguishing CML patients from controls. The patients with high H19 expression had a tendency of higher white blood cells and BCR-ABL transcript than those with low H19 expression. H19 overexpression occurred with the higher frequency in blast crisis stage (11/11, 100%), lower in accelerated phase (3/5, 60%), and chronic phase (42/62, 66%) stages. Moreover, paired patients during disease progression with increased BCR-ABL transcript also showed a significant upregulation of H19 expression. Meanwhile, H19 expression was decreased in follow-up patients who achieved complete molecular remission after tyrosine kinase inhibitors-based therapy. Epigenetic studies showed that H19 differentially methylated region/imprinting control region (DMR/ICR) was hypomethylated and associated with H19 expression in CML patients. Moreover, demethylation of H19 DMR/ICR reactivated H19 expression in K562 cells. Collectively, H19 overexpression, a frequent event in CML, was associated with higher BCR-ABL transcript involving in disease progression. Moreover, H19 DMR/ICR hypomethylation in CML may be one of the mechanisms mediating H19 overexpression.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hong Guo
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
43
|
Zhou JD, Yao DM, Li XX, Zhang TJ, Zhang W, Ma JC, Guo H, Deng ZQ, Lin J, Qian J. KRAS overexpression independent of RAS mutations confers an adverse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 2017; 8:66087-66097. [PMID: 29029494 PMCID: PMC5630394 DOI: 10.18632/oncotarget.19798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023] Open
Abstract
The prognostic value of RAS mutations has been systematically investigated in acute myeloid leukemia (AML). However, clinical significance of RAS expressions in AML remains poorly determined. To explore the clinical significance, we analyzed KRAS and NRAS expressions in 143 de novo AML patients by real-time quantitative PCR. KRAS and NRAS expressions were significantly up-regulated in AML patients. KRAS and NRAS mutations were identified in 4% (6/143) and 8% (12/143) of these patients, respectively. However, no significant association was observed between RAS mutations and expressions. High KRAS expression was associated with older age, higher white blood cells, and a tendency of higher platelets, whereas high NRAS expression was only correlated with older age. Complete remission (CR) rate and overall survival of AML patients were adversely affected by KRAS overexpression, but not NRAS overexpression. Multivariate analysis revealed that KRAS acted as an independent prognostic predictor in cytogenetically normal AML (CN-AML). Moreover, the prognostic value of KRAS expression was validated using the published data from Gene Expression Omnibus datasets. In the follow-up patients, KRAS expression rather than NRAS expression in CR time tended to decrease compared to newly diagnosis time, and both KRAS and NRAS expressions were significantly increased when in relapse time. Our findings revealed that RAS overexpression and mutations were common events in AML with potential therapeutic target value. KRAS overexpression independent of RAS mutations conferred an adverse prognosis in CN-AML.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|