1
|
Yoshida A, Hashimoto Y, Akane H, Matsuyama S, Toyoda T, Ogawa K, Saito Y, Kikura-Hanajiri R, Arakawa N. Analysis of Stratifin Expression and Proteome Variation in a Rat Model of Acute Lung Injury. J Proteome Res 2025; 24:1941-1955. [PMID: 40021485 DOI: 10.1021/acs.jproteome.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Diffuse alveolar damage (DAD) is a pathological hallmark of severe interstitial lung diseases, such as acute respiratory distress syndrome (ARDS), and is linked to poor prognosis. Previously, we identified 14-3-3σ/stratifin (SFN) as a serum biomarker candidate for diagnosing DAD. To clarify the time-dependent relationship between SFN expression and DAD, we here investigated pathological and molecular changes in serum, bronchoalveolar lavage fluid (BALF), and lung tissue in an oleic acid (OA)-induced ARDS rat model. Acute alveolar edema was observed after OA administration, followed by alveolar epithelial cell proliferation and increased BALF and serum SFN levels. Proteomic analysis of lung tissue extracts revealed that proteins related to "inflammatory response" and "HIF-1 signaling," including plasminogen activator inhibitor-1, were markedly increased 3 h after acute lung injury, followed by a gradual decrease. Conversely, proteins associated with "cell cycle" and "p53 pathway," including SFN, showed a persistent increase starting at 3 h and peaking at 48 h. Western blotting and immunohistochemistry confirmed that SFN was expressed in a part of proliferated alveolar type-II cells, accompanied by p53 activation, an important event for differentiation into type-I cells. SFN may be a biomarker closely related to alveolar remodeling during the repair process after lung injury.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yuya Hashimoto
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Shinichiro Matsuyama
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Ruri Kikura-Hanajiri
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Noriaki Arakawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
2
|
Charalampous C, Dasari S, McPhail E, Theis JD, Vrana JA, Dispenzieri A, Leung N, Muchtar E, Gertz M, Ramirez-Alvarado M, Kourelis T. A proteomic atlas of kidney amyloidosis provides insights into disease pathogenesis. Kidney Int 2024; 105:484-495. [PMID: 38096952 PMCID: PMC10922603 DOI: 10.1016/j.kint.2023.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/04/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The mechanisms of tissue damage in kidney amyloidosis are not well described. To investigate this further, we used laser microdissection-mass spectrometry to identify proteins deposited in amyloid plaques (expanded proteome) and proteins overexpressed in plaques compared to controls (plaque-specific proteome). This study encompassed 2650 cases of amyloidosis due to light chain (AL), heavy chain (AH), leukocyte chemotactic factor-2-type (ALECT2), secondary (AA), fibrinogen (AFib), apo AIV (AApoAIV), apo CII (AApoCII) and 14 normal/disease controls. We found that AFib, AA, and AApoCII have the most distinct proteomes predominantly driven by increased complement pathway proteins. Clustering of cases based on the expanded proteome identified two ALECT2 and seven AL subtypes. The main differences within the AL and ALECT2 subtypes were driven by complement proteins and, for AL only, 14-3-3 family proteins (a family of structurally similar phospho-binding proteins that regulate major cellular functions) widely implicated in kidney tissue dysfunction. The kidney AL plaque-specific proteome consisted of 24 proteins, including those implicated in kidney damage (α1 antitrypsin and heat shock protein β1). Hierarchical clustering of AL cases based on their plaque-specific proteome identified four clusters, of which one was associated with improved kidney survival and was characterized by higher overall proteomic content and 14-3-3 proteins but lower levels of light chains and most signature proteins. Thus, our results suggest that there is significant heterogeneity across and within amyloid types, driven predominantly by complement proteins, and that the plaque protein burden does not correlate with amyloid toxicity.
Collapse
Affiliation(s)
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ellen McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Morie Gertz
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
3
|
Xu P, Fu G, Zhao H, Wang M, Ye H, Shi K, Zang P, Su X. Review of molecular biological research on the treatment of membranous nephropathy with Tripterygium glycosides based on TCM theory. Medicine (Baltimore) 2023; 102:e34686. [PMID: 37960769 PMCID: PMC10637535 DOI: 10.1097/md.0000000000034686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/20/2023] [Indexed: 11/15/2023] Open
Abstract
To explore the mechanism of Tripterygium wilfordii polyglycoside (TWP) in the treatment of membranous nephropathy (MN) by network pharmacology. TCMSP and DrugBank databases were used to screen the main targets of the main active components of Tripterygium glycosides, and OMIM and Gene Cards databases were used to search the gene targets of MN. UniProt database was used to normalize all the targets to get the intersection targets of TGs and MNs. Synergistic genes were uploaded to the STRING platform to construct a protein-protein interaction network and screen related core targets. Gene Ontology and Kyoto Genome Encyclopedia analyses of core targets were performed using the DAVID database. AutoDockTools software was used to verify the molecular docking between the active components of TGs and the synergistic genes. We identified 126 potential targets for the active component of Tripterygium glycosides, 584 MN-associated disease targets, and 28 co-acting genes. It mainly involves AGE-RAGE signaling pathway, lipid and atherosclerosis, IL-17 signaling pathway, fluid shear stress and atherosclerosis, NF-kappa B signaling pathway and other pathways and biological pathways in diabetic complications. The active component of that Tripterygium glycosides and the active site of the synergistic core target can the bond energy is less than -5kJ/mol. Tripterygium glycosides can regulate the release of inflammatory factors to treat MN through multiple active components, multiple disease targets, multiple biological pathways and multiple pathways, which provides a basis for broadening the clinical use of traditional Chinese medicine in the treatment of MN.
Collapse
Affiliation(s)
- Pengyu Xu
- Shenzhen Pingle Orthopaedic Hospital/Shenzhen Pingshan District Hospital of Traditional Chinese Medicine/Shenzhen Orthopaedic Hospital, Shenzhen City, Guangdong Province, China
| | - Guangchu Fu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Haishen Zhao
- Shanghai Pudong New Area Luchaogang Community Health Service Center, Shanghai, China
| | - Manya Wang
- Shanghai Pudong New Area Luchaogang Community Health Service Center, Shanghai, China
| | - Hong Ye
- Shanghai Pudong New Area Luchaogang Community Health Service Center, Shanghai, China
| | - Kejun Shi
- Shanghai Pudong New Area Luchaogang Community Health Service Center, Shanghai, China
| | - Pin Zang
- Shanghai Pudong New Area Luchaogang Community Health Service Center, Shanghai, China
| | - Xubo Su
- Shanghai Pudong New Area Luchaogang Community Health Service Center, Shanghai, China
| |
Collapse
|
4
|
Politis PK, Charonis AS. Calreticulin in renal fibrosis: A short review. J Cell Mol Med 2022; 26:5949-5954. [PMID: 36440574 PMCID: PMC9753439 DOI: 10.1111/jcmm.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a common denominator of several pathological conditions. Over the last decade, Calreticulin has emerged as a critical player in the fibrotic processes in many tissues and organs. Here we review the recent advances in our understanding of the regulatory roles of Calreticulin in renal fibrosis. In particular, a proteomic screen that we performed more than 15 years ago, for the identification of novel components involved in the mechanisms of renal fibrosis, led to the observation that Calreticulin is associated with the initiation and progression of kidney fibrosis in a rodent model. We also showed that altered expression levels of Calreticulin in vitro and in vivo are significantly affecting the fibrotic phenotype in cellular systems and animal models, respectively. We also identified an upstream regulatory mechanism that mediates the transcriptional control of Calreticulin expression during the progression of renal fibrosis, by showing that the druggable orphan nuclear receptor NR5A2 and its SUMOylation is involved in this action. These data provide novel targets for future pharmacological interventions against fibrosis. In addition, further proteomic analysis uncovered a correlation between the up-regulation of Calreticulin and that of 14-3-3σ protein. Collectively, our previous observations suggest that Calreticulin is a central node in a regulatory axis that controls the initiation and progression of renal fibrosis.
Collapse
Affiliation(s)
- Panagiotis K. Politis
- Center for Basic ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Aristidis S. Charonis
- Center for Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece,University Research Institute of Maternal and Child Health and Precision MedicineAthensGreece
| |
Collapse
|
5
|
Wang F, Wang JN, He XY, Suo XG, Li C, Ni WJ, Cai YT, He Y, Fang XY, Dong YH, Xing T, Yang YR, Zhang F, Zhong X, Zang HM, Liu MM, Li J, Meng XM, Jin J. Stratifin promotes renal dysfunction in ischemic and nephrotoxic AKI mouse models via enhancing RIPK3-mediated necroptosis. Acta Pharmacol Sin 2022; 43:330-341. [PMID: 33833407 PMCID: PMC8791945 DOI: 10.1038/s41401-021-00649-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/12/2021] [Indexed: 02/03/2023]
Abstract
Stratifin (SFN) is a member of the 14-3-3 family of highly conserved soluble acidic proteins, which regulates a variety of cellular activities such as cell cycle, cell growth and development, cell survival and death, and gene transcription. Acute kidney injury (AKI) is prevalent disorder characterized by inflammatory response, oxidative stress, and programmed cell death in renal tubular epithelial cells, but there is still a lack of effective therapeutic target for AKI. In this study, we investigated the role of SFN in AKI and the underlying mechanisms. We established ischemic and nephrotoxic AKI mouse models caused by ischemia-reperfusion (I/R) and cisplatin, respectively. We conducted proteomic and immunohistochemical analyses and found that SFN expression levels were significantly increased in AKI patients, cisplatin- or I/R-induced AKI mice. In cisplatin- or hypoxia/reoxygenation (H/R)-treated human proximal tubule epithelial cells (HK2), we showed that knockdown of SFN significantly reduced the expression of kidney injury marker Kim-1, attenuated programmed cell death and inflammatory response. Knockdown of SFN also significantly alleviated the decline of renal function and histological damage in cisplatin-caused AKI mice in vivo. We further revealed that SFN bound to RIPK3, a key signaling modulator in necroptosis, to induce necroptosis and the subsequent inflammation in cisplatin- or H/R-treated HK2 cells. Overexpression of SFN increased Kim-1 protein levels in cisplatin-treated MTEC cells, which was suppressed by RIPK3 knockout. Taken together, our results demonstrate that SFN that enhances cisplatin- or I/R-caused programmed cell death and inflammation via interacting with RIPK3 may serve as a promising therapeutic target for AKI treatment.
Collapse
Affiliation(s)
- Fang Wang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Jia-nan Wang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Xiao-yan He
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Xiao-guo Suo
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Chao Li
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Wei-jian Ni
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China ,grid.59053.3a0000000121679639Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China
| | - Yu-ting Cai
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Yuan He
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Xin-yun Fang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Yu-hang Dong
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Tian Xing
- grid.186775.a0000 0000 9490 772XHospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032 China
| | - Ya-ru Yang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Feng Zhang
- grid.73113.370000 0004 0369 1660Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003 China
| | - Xiang Zhong
- grid.54549.390000 0004 0369 4060Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 China
| | - Hong-mei Zang
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Ming-ming Liu
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Jun Li
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Xiao-ming Meng
- grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032 China
| | - Juan Jin
- grid.186775.a0000 0000 9490 772XSchool of Basic Medical Sciences, Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
6
|
Islam R, Ahmed L, Paul BK, Ahmed K, Bhuiyan T, Moni MA. Identification of molecular biomarkers and pathways of NSCLC: insights from a systems biomedicine perspective. J Genet Eng Biotechnol 2021; 19:43. [PMID: 33742334 PMCID: PMC7979844 DOI: 10.1186/s43141-021-00134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Worldwide, more than 80% of identified lung cancer cases are associated to the non-small cell lung cancer (NSCLC). We used microarray gene expression dataset GSE10245 to identify key biomarkers and associated pathways in NSCLC. RESULTS To collect Differentially Expressed Genes (DEGs) from the dataset GSE10245, we applied the R statistical language. Functional analysis was completed using the Database for Annotation Visualization and Integrated Discovery (DAVID) online repository. The DifferentialNet database was used to construct Protein-protein interaction (PPI) network and visualized it with the Cytoscape software. Using the Molecular Complex Detection (MCODE) method, we identify clusters from the constructed PPI network. Finally, survival analysis was performed to acquire the overall survival (OS) values of the key genes. One thousand eighty two DEGs were unveiled after applying statistical criterion. Functional analysis showed that overexpressed DEGs were greatly involved with epidermis development and keratinocyte differentiation; the under-expressed DEGs were principally associated with the positive regulation of nitric oxide biosynthetic process and signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway investigation explored that the overexpressed DEGs were highly involved with the cell cycle; the under-expressed DEGs were involved with cell adhesion molecules. The PPI network was constructed with 474 nodes and 2233 connections. CONCLUSIONS Using the connectivity method, 12 genes were considered as hub genes. Survival analysis showed worse OS value for SFN, DSP, and PHGDH. Outcomes indicate that Stratifin may play a crucial role in the development of NSCLC.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka, 1342, Bangladesh
| | - Liton Ahmed
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka, 1342, Bangladesh
| | - Bikash Kumar Paul
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka, 1342, Bangladesh.,Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.,Group of Bio-photomatiχ, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, 1902, Bangladesh
| | - Kawsar Ahmed
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh. .,Group of Bio-photomatiχ, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, 1902, Bangladesh.
| | - Touhid Bhuiyan
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka, 1342, Bangladesh
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Li Y, Sun X, Zhang X, Zhou H, Wang D, Xia Y, Li X. Functional damage of endothelial progenitor cells is attenuated by 14-3-3-n through inhibition of mitochondrial injury and oxidative stress. Cell Biol Int 2020; 45:839-848. [PMID: 33325040 DOI: 10.1002/cbin.11529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/13/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022]
Abstract
Endothelial progenitor cells (EPCs) are precursor cells of vascular endothelial cells, which are widely involved in the pathological process of cardiovascular diseases. EPCs apoptosis could accelerate the process of cardiovascular diseases. 14-3-3-η protein has been proved to be a potent antiapoptosis molecule. However, inhibition of EPCs apoptosis by 14-3-3-η and further specific mechanism have not been investigated. EPCs were isolated from human cord blood, and identified using VEGFR2 and CD34. 14-3-3-η overexpression model in vitro was established. Cell invasion, apoptosis, and proliferation were measured by transwell, flow cytometry, and Cell Counting Kit-8, respectively. Expression of 14-3-3-η, Bcl-2, and voltage-dependent anion channel 1 (VDAC1) were measured using quantitative real-time polymerase chain reaction and western blot analysis. Reactive oxygen species (ROS) intensity was measured using 2'-7' dichlorofluorescin diacetate probe. Mitochondrial membrane potential was detected using JC-1 dye. Overexpression of 14-3-3-η significantly promoted invasion and proliferation, but suppressed apoptosis of EPCs. Overexpression of 14-3-3-η remarkably inhibited ROS and promoted antioxidant enzyme levels in EPCs. 14-3-3-η might inhibit apoptosis of EPCs through attenuating mitochondrial injury. This study might provide a new target, 14-3-3-η, for the prevention and treatment of cardiovascular diseases through targeting EPCs.
Collapse
Affiliation(s)
- Yunde Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xinglan Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xuemei Zhang
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Hui Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Dan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Xia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiuli Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
8
|
Gawish RIAR, El Aggan HAM, Mahmoud SAH, Mortada SAM. A novel biomarker of chronic allograft dysfunction in renal transplant recipients (serum calreticulin and CD47). THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2020. [DOI: 10.1186/s43162-020-00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic allograft dysfunction (CAD) is considered the leading cause of late allograft loss. The cluster of differentiation 47 (CD47) and calreticulin (CRT) are involved in many and diverse cellular processes. The present study was designed to study the role of the pro-phagocytic CRT and anti-phagocytic CD47 signals in patients with renal transplantation in relation to graft function.
Thirty renal transplantation recipients (RTR) for more than 6 months [15 with stable renal function and 15 with chronic allograft dysfunction (CAD)] and 15 healthy controls were enrolled in the study. Quantification of CRT, CD47, and high-sensitivity C-reactive protein (hsCRP) levels in serum was done using standardized enzyme-linked immunosorbent assay (ELISA) kits. Measurement of renal function and urinary alkaline phosphatase (U.ALP) was done. Renal interstitial fibrosis (IF) was graded in renal biopsies of CAD.
Results
Serum CRT and urinary ALP levels were statistically significant higher (P < 0.001) while serum CD47 level was statistically significant lower (P < 0.001) in patients with CAD than patients with stable graft function and controls. There was statistically insignificant difference between controls and patients with stable graft function. Serum CRT and serum CD47 levels were positively correlated with each other and with worsening renal and tubular function, serum hsCRP in RTR and with degree of renal IF in patients with CAD (P < 0.05).
Conclusions
The activation and dysregulation of CRT and CD47 could play a role in the development of CAD and could be a potential biomarker for renal allograft dysfunction.
Collapse
|
9
|
Maternal High Fat Diet and in-Utero Metformin Exposure Significantly Impact upon the Fetal Renal Proteome of Male Mice. J Clin Med 2019; 8:jcm8050663. [PMID: 31083566 PMCID: PMC6571731 DOI: 10.3390/jcm8050663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
There is accumulating evidence for fetal programming of later kidney disease by maternal obesity or associated conditions. We performed a hypothesis-generating study to identify potentially underlying mechanisms. Female mice were randomly split in two groups and fed either a standard diet (SD) or high fat diet (HFD) from weaning until mating and during pregnancy. Half of the dams from both groups were treated with metformin ((M), 380 mg/kg), resulting in four experimental groups (SD, SD-M, HFD, HFD-M). Caesarean section was performed on gestational day 18.5. Fetal kidney tissue was isolated from cryo-slices using laser microdissection methods and a proteomic screen was performed. For single proteins, a fold change ≥1.5 and q-value <0.05 were considered to be statistically significant. Interestingly, HFD versus SD had a larger effect on the proteome of fetal kidneys (56 proteins affected; interaction clusters shown for proteins concerning transcription/translation, mitochondrial processes, eicosanoid metabolism, H2S-synthesis and membrane remodeling) than metformin exposure in either SD (29 proteins affected; clusters shown for proteins involved in transcription/translation) or HFD (6 proteins affected; no cluster). By further analysis, ATP6V1G1, THY1, PRKCA and NDUFB3 were identified as the most promising candidates potentially mediating reprogramming effects of metformin in a maternal high fat diet.
Collapse
|
10
|
Expression profile and prognostic value of SFN in human ovarian cancer. Biosci Rep 2019; 39:BSR20190100. [PMID: 30926680 PMCID: PMC6499453 DOI: 10.1042/bsr20190100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a highly lethal cancer in females. Therefore, it is necessary to explore effective biomarkers for the diagnosis and prognosis of the disease. Stratifin (SFN) is a cell cycle checkpoint protein that has been reported to be involved in oncogenesis. Our studies detected the expression of SFN in ovarian cancer by Oncomine, Human Protein Atlas database and ULCAN database. Meanwhile, we found its coexpression gene by cBioPortal online tool and validated their expression in different ovarian cancer cells by western blot and reverse transcription quantitative PCR. Then, we also investigated their prognostic values via the Kaplan–Meier plotter database in different subtypes of ovarian cancer patients. The results demonstrated that SFN was found to be increased in ten various ovarian cancer datasets, compared with healthy tissues. Additionally, up-regulation of SFN expression is associated with age and cancer grades. The higher expression of SFN in all patients with ovarian cancers is significantly correlated with worse postprogression survival. In addition, high SFN expression is associated with significantly worse overall survival in patients who received chemotherapy contains gemcitabine, taxol, taxol+platin, paclitaxel and avastin. In human ovarian carcinoma SKOV3 and A2780 cells, the expression of SFN and its coexpression gene MICB were also increased at protein and mRNA levels compared with the normal ovarian epithelial cells. Based on above results, overexpression of SFN was correlated with the prognosis in ovarian cancer. The present study might be useful for better understanding the clinical significance of SFN mRNA.
Collapse
|
11
|
Rizou M, Frangou EA, Marineli F, Prakoura N, Zoidakis J, Gakiopoulou H, Liapis G, Kavvadas P, Chatziantoniou C, Makridakis M, Vlahou A, Boletis J, Vlahakos D, Goumenos D, Daphnis E, Iatrou C, Charonis AS. The family of 14-3-3 proteins and specifically 14-3-3σ are up-regulated during the development of renal pathologies. J Cell Mol Med 2018; 22:4139-4149. [PMID: 29956451 PMCID: PMC6111864 DOI: 10.1111/jcmm.13691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease, the end result of most renal and some systemic diseases, is a common condition where renal function is compromised due to fibrosis. During renal fibrosis, calreticulin, a multifunctional chaperone of the endoplasmic reticulum (ER) is up‐regulated in tubular epithelial cells (TECs) both in vitro and in vivo. Proteomic analysis of cultured TECs overexpressing calreticulin led to the identification of the family of 14‐3‐3 proteins as key proteins overexpressed as well. Furthermore, an increased expression in the majority of 14‐3‐3 family members was observed in 3 different animal models of renal pathologies: the unilateral ureteric obstruction, the nephrotoxic serum administration and the ischaemia‐reperfusion. In all these models, the 14‐3‐3σ isoform (also known as stratifin) was predominantly overexpressed. As in all these models ischaemia is a common denominator, we showed that the ischaemia‐induced transcription factor HIF1α is specifically associated with the promoter region of the 14‐3‐3σ gene. Finally, we evaluated the expression of the family of 14‐3‐3 proteins and specifically 14‐3‐3σ in biopsies from IgA nephropathy and membranous nephropathy patients. These results propose an involvement of 14‐3‐3σ in renal pathology and provide evidence for the first time that hypoxia may be responsible for its altered expression.
Collapse
Affiliation(s)
- Myrto Rizou
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni A Frangou
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Filio Marineli
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Niki Prakoura
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laikon University Hospital, Nephrology Clinic, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Harikleia Gakiopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, and Laikon Hospital, Athens, Greece
| | - George Liapis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, and Laikon Hospital, Athens, Greece
| | | | | | | | - Antonia Vlahou
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - John Boletis
- Laikon University Hospital, Nephrology Clinic, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios Vlahakos
- Division of Nephrology, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Goumenos
- Department of Nephrology, Medical School of Patras, University Hospital of Patras, Rio, Greece
| | - Evgenios Daphnis
- Medical School of the University of Crete, University Hospital of Iraklion, Iraklion, Greece
| | - Christos Iatrou
- Center for Nephrology "G. Papadakis", General Hospital of Nikaia-Piraeus, Athens, Greece
| | | |
Collapse
|