1
|
Guo K, Cao Y, Zhao Z, Zhao J, Liu L, Wang H. GGNBP2 regulates histone ubiquitination and methylation in spermatogenesis. Epigenetics 2024; 19:2381849. [PMID: 39109527 DOI: 10.1080/15592294.2024.2381849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 09/17/2024] Open
Abstract
Gametogenetin binding protein 2 (GGNBP2) was indispensable in normal spermatids for transformation into mature spermatozoa in mice, and when Gametogenetin binding protein 2 is bound to BRCC36 and RAD51, the complex participates in repairing DNA double-strand breaks (DSB) during the meiotic progression of spermatocytes. Ggnbp2 knockout resulted in the up-regulation of H2AK119ubi and down-regulation of H2BK120ubi in GC-2 cells (mouse spermatogonia-derived cell line) and postnatal day 18 testis lysate. Our results also demonstrated that Gametogenetin binding protein 2 inducedASXL1 to activate the deubiquitinating enzyme BAP1 in deubiquitinating H2A, while Gametogenetin binding protein 2 knockout disrupted the interaction between ASXL1 and BAP1, resulting in BAP1 localization change. Furthermore, the Gametogenetin binding protein 2 deletion reduced H2B ubiquitination by affecting E2 enzymes and E3 ligase binding. Gametogenetin binding protein 2 regulated H2A and H2B ubiquitination levels and controlled H3K27 and H3K79 methylation by PRC2 subunits and histone H3K79 methyltransferase. Altogether, our results suggest that Ggnbp2 knockout increased DNA damage response by promoting H2A ubiquitination and H3K27trimethylation (H3K27me3) and reduced nucleosome stability by decreasing H2B ubiquitination and H3K79 dimethylation (H3K79me2), revealing new mechanisms of epigenetic phenomenon during spermatogenesis. Gametogenetin binding protein 2 seems critical in regulating histone modification and chromatin structure in spermatogenesis.
Collapse
Affiliation(s)
- Kaimin Guo
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Yin Cao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Zhiyi Zhao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Jiantao Zhao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Lingyun Liu
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Hongliang Wang
- Department of Andrology, First hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Bugide S, Reddy DS, Malvi P, Gupta R, Wajapeyee N. ALK inhibitors suppress HCC and synergize with anti-PD-1 therapy and ABT-263 in preclinical models. iScience 2024; 27:109800. [PMID: 38741708 PMCID: PMC11089374 DOI: 10.1016/j.isci.2024.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) currently lacks effective therapies, leaving a critical need for new treatment options. A previous study identified the anaplastic lymphoma kinase (ALK) amplification in HCC patients, raising the question of whether ALK inhibitors could be a viable treatment. Here, we showed that both ALK inhibitors and ALK knockout effectively halted HCC growth in cell cultures. Lorlatinib, a potent ALK inhibitor, suppressed HCC tumor growth and metastasis across various mouse models. Additionally, in an advanced immunocompetent humanized mouse model, when combined with an anti-PD-1 antibody, lorlatinib more potently suppressed HCC tumor growth, surpassing individual drug efficacy. Lorlatinib induced apoptosis and senescence in HCC cells, and the senolytic agent ABT-263 enhanced the efficacy of lorlatinib. Additional studies identified that the apoptosis-inducing effect of lorlatinib was mediated via GGN and NRG4. These findings establish ALK inhibitors as promising HCC treatments, either alone or in combination with immunotherapies or senolytic agents.
Collapse
Affiliation(s)
- Suresh Bugide
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Dhana Sekhar Reddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Wu Z, Chen X, Yan T, Yu L, Zhang L, Zheng M, Zhu H. Rreb1 is a key transcription factor in Sertoli cell maturation and function and spermatogenesis in mouse. ZYGOTE 2024; 32:130-138. [PMID: 38248872 DOI: 10.1017/s0967199423000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Spermatogenesis is a developmental process driven by interactions between germ cells and Sertoli cells. This process depends on appropriate gene expression, which might be regulated by transcription factors. This study focused on Rreb1, a zinc finger transcription factor, and explored its function and molecular mechanisms in spermatogenesis in a mouse model. Our results showed that RREB1 was predominantly expressed in the Sertoli cells of the testis. The decreased expression of RREB1 following injection of siRNA caused impaired Sertoli cell development, which was characterized using a defective blood-testis barrier structure and decreased expression of Sertoli cell functional maturity markers; its essential trigger might be SMAD3 destabilization. The decreased expression of RREB1 in mature Sertoli cells influenced the cell structure and function, which resulted in abnormal spermatogenesis, manifested as oligoasthenoteratozoospermia, and we believe RREB1 plays this role by regulating the transcription of Fshr and Wt1. RREB1 has been reported to activate Fshr transcription, and we demonstrated that the knockdown of Rreb1 caused a reduction in follicle-stimulating hormone receptor (FSHR) in the testis, which could be the cause of the increased sperm malformation. Furthermore, we confirmed that RREB1 directly activates Wt1 promoter activity, and RREB1 downregulation induced the decreased expression of Wt1 and its downstream polarity-associated genes Par6b and E-cadherin, which caused increased germ-cell death and reduced sperm number and motility. In conclusion, RREB1 is a key transcription factor essential for Sertoli cell development and function and is required for normal spermatogenesis.
Collapse
Affiliation(s)
- Zhu Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Tong Yan
- Department of Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Li Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Longsheng Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Meimei Zheng
- Reproductive Medicine Center of No. 960 Hospital of PLA, Jinan, China
| | - Hui Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Kazerani R, Salehipour P, Shah Mohammadi M, Amanzadeh Jajin E, Modarressi MH. Identification of TSGA10 and GGNBP2 splicing variants in 5' untranslated region with distinct expression profiles in brain tumor samples. Front Oncol 2023; 13:1075638. [PMID: 36860313 PMCID: PMC9968883 DOI: 10.3389/fonc.2023.1075638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Brain tumors (BTs) are perceived as one of the most common malignancies among children. The specific regulation of each gene can play a critical role in cancer progression. The present study aimed to determine the transcripts of the TSGA10 and GGNBP2 genes, considering the alternative 5'UTR region, and investigating the expression of these different transcripts in BTs. Material and methods Public data on brain tumor microarray datasets in GEO were analyzed with R software to evaluate the expression levels of TSGA10 and GGNBP2 genes (the Pheatmap package in R was also used to plot DEGs in a heat map). In addition, to validate our in-silico data analysis, RT-PCR was performed to determine the splicing variants of TSGA10 and GGNBP2 genes in testis and brain tumor samples. The expression levels of splice variants of these genes were analyzed in 30 brain tumor samples and two testicular tissue samples as a positive control. Results In silico results show that the differential expression levels of TSGA10 and GGNBP2 were significant in the GEO datasets of BTs compared to normal samples (with adjusted p-value<0.05 and log fold change > 1). This study's experimental results showed that the TSGA10 gene produces four different transcripts with two distinct promoter regions and splicing exon 4. The relative mRNA expression of transcripts without exon 4 was higher than transcripts with exon 4 in BT samples (p-value<001). In GGNBP2, exon 2 in the 5'UTR region and exon 6 in the coding sequence were spliced. The expression analysis results showed that the relative mRNA expression of transcript variants without exon 2 was higher than other transcript variants with exon 2 in BT samples (p-value<001). Conclusion The decreased expression levels of transcripts with longer 5'UTR in BT samples than in testicular or low-grade brain tumor samples may decrease their translation efficiency. Therefore, decreased amounts of TSGA10 and GGNBP2 as potential tumor suppressor proteins, especially in high-grade brain tumors, may cause cancer development by angiogenesis and metastasis.
Collapse
Affiliation(s)
- Reihane Kazerani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Salehipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mohammadreza Shah Mohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elnaz Amanzadeh Jajin
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Science, Tehran, Iran,*Correspondence: Mohammad Hossein Modarressi,
| |
Collapse
|
5
|
Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst) 2022; 118:103386. [DOI: 10.1016/j.dnarep.2022.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
|
6
|
Ye Z, Jiang X, Pfrender ME, Lynch M. Genome-Wide Allele-Specific Expression in Obligately Asexual Daphnia pulex and the Implications for the Genetic Basis of Asexuality. Genome Biol Evol 2021; 13:6415829. [PMID: 34726699 PMCID: PMC8598174 DOI: 10.1093/gbe/evab243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/17/2023] Open
Abstract
Although obligately asexual lineages are thought to experience selective disadvantages associated with reduced efficiency of fixing beneficial mutations and purging deleterious mutations, such lineages are phylogenetically and geographically widespread. However, despite several genome-wide association studies, little is known about the genetic elements underlying the origin of obligate asexuality and how they spread. Because many obligately asexual lineages have hybrid origins, it has been suggested that asexuality is caused by the unbalanced expression of alleles from the hybridizing species. Here, we investigate this idea by identifying genes with allele-specific expression (ASE) in a Daphnia pulex population, in which obligate parthenogens (OP) and cyclical parthenogens (CP) coexist, with the OP clones having been originally derived from hybridization between CP D. pulex and its sister species, Daphnia pulicaria. OP D. pulex have significantly more ASE genes (ASEGs) than do CP D. pulex. Whole-genomic comparison of OP and CP clones revealed ∼15,000 OP-specific markers and 42 consistent ASEGs enriched in marker-defined regions. Ten of the 42 ASEGs have alleles coding for different protein sequences, suggesting functional differences between the products of the two parental alleles. At least three of these ten genes appear to be directly involved in meiosis-related processes, for example, RanBP2 can cause abnormal chromosome segregation in anaphase I, and the presence of Wee1 in immature oocytes leads to failure to enter meiosis II. These results provide a guide for future molecular resolution of the genetic basis of the transition to ameiotic parthenogenesis.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona
| | | | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana
| | - Michael Lynch
- Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona
| |
Collapse
|
7
|
Xu X, Zhu Z, Xu Y, Tian S, Jiang Y, Zhao H. Effects of zinc finger protein 403 on the proliferation, migration and invasion abilities of prostate cancer cells. Oncol Rep 2020; 44:2455-2464. [PMID: 33125130 PMCID: PMC7610322 DOI: 10.3892/or.2020.7786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022] Open
Abstract
Zinc finger protein 403 (ZFP403), located on human chromosome 17q12-21, is closely associated with the development of cancer. However, to date, there are a limited number of studies on the biological functions of this gene, particularly in prostate cancer (PCa). The results of the present study demonstrated that compared with normal tissues, the expression of ZFP403 was markedly lower in PCa tissues, as shown by the evaluation of the Gene Expression Profiling Interactive Analysis 2 database. The decreased expression of ZFP403 in PCa clinical tissues and cell lines was confirmed by immunohistochemistry, reverse transcription-quantitative PCR and western blot analysis. Using short harpin (sh)RNA inhibition, stably-silenced ZFP403 cell lines were then constructed by lentiviral transfection (LV-PC3-shRNA-1 and 2; LV-DU145-shRNA-1 and 2). The results revealed that the knockdown of ZFP403 in PCa cells promoted cellular proliferation, colony formation, migration and invasiveness in vitro. Moreover, the levels of tumor growth- and motility-related proteins were significantly altered after ZFP403-knockdown. A xenograft tumor model using nude mice was established to elucidate the role of ZFP403 in tumorigenesis in vivo. Tumor growth was significantly increased in mice injected with ZFP403-knockdown cells compared with the control mice. Overall, the findings of the present study demonstrate that ZFP403 functions as a tumor suppressor gene in PCa by affecting the proliferation, migration and invasiveness of PCa cells, suggesting its potential use as a clinical diagnostic marker.
Collapse
Affiliation(s)
- Xintong Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Yipeng Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Shasha Tian
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Yingjun Jiang
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| |
Collapse
|
8
|
Ding N, Zhang X, Zhang XD, Jing J, Liu SS, Mu YP, Peng LL, Yan YJ, Xiao GM, Bi XY, Chen H, Li FH, Yao B, Zhao AZ. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 2020; 69:1608-1619. [PMID: 31900292 PMCID: PMC7456731 DOI: 10.1136/gutjnl-2019-319127] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE High-fat diet (HFD)-induced metabolic disorders can lead to impaired sperm production. We aim to investigate if HFD-induced gut microbiota dysbiosis can functionally influence spermatogenesis and sperm motility. DESIGN Faecal microbes derived from the HFD-fed or normal diet (ND)-fed male mice were transplanted to the mice maintained on ND. The gut microbes, sperm count and motility were analysed. Human faecal/semen/blood samples were collected to assess microbiota, sperm quality and endotoxin. RESULTS Transplantation of the HFD gut microbes into the ND-maintained (HFD-FMT) mice resulted in a significant decrease in spermatogenesis and sperm motility, whereas similar transplantation with the microbes from the ND-fed mice failed to do so. Analysis of the microbiota showed a profound increase in genus Bacteroides and Prevotella, both of which likely contributed to the metabolic endotoxaemia in the HFD-FMT mice. Interestingly, the gut microbes from clinical subjects revealed a strong negative correlation between the abundance of Bacteroides-Prevotella and sperm motility, and a positive correlation between blood endotoxin and Bacteroides abundance. Transplantation with HFD microbes also led to intestinal infiltration of T cells and macrophages as well as a significant increase of pro-inflammatory cytokines in the epididymis, suggesting that epididymal inflammation have likely contributed to the impairment of sperm motility. RNA-sequencing revealed significant reduction in the expression of those genes involved in gamete meiosis and testicular mitochondrial functions in the HFD-FMT mice. CONCLUSION We revealed an intimate linkage between HFD-induced microbiota dysbiosis and defect in spermatogenesis with elevated endotoxin, dysregulation of testicular gene expression and localised epididymal inflammation as the potential causes. TRIAL REGISTRATION NUMBER NCT03634644.
Collapse
Affiliation(s)
- Ning Ding
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | | | - Xue Di Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jun Jing
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing, Jiangsu, China,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shan Shan Liu
- Department of Laboratory, Women and Children 's Hospital of Qingdao, Qingdao, Shandong, China
| | - Yun Ping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Li Li Peng
- The School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yun Jing Yan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Geng Miao Xiao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Xin Yun Bi
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Hao Chen
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Fang Hong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Bing Yao
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing, Jiangsu, China .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Yang Z, Wang Y, Ma L. Effects of gametogenetin-binding protein 2 on proliferation, invasion and migration of prostate cancer PC-3 cells. Andrologia 2019; 52:e13488. [PMID: 31797427 DOI: 10.1111/and.13488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess the effects of gametogenetin-binding protein 2 (GGNBP2) on the proliferation, invasion and migration of prostate cancer PC-3 cells. PcDNA3-HisC-GGNBP2 was transfected to overexpress GGNBP2. Proliferation was tested by MTT assay, and migration and invasion were detected by Transwell assay. Cell cycle was detected by flow cytometry. The protein expressions of COX-2, cyclin D1, PI3K, Akt and p-Akt were detected by Western blot. A subcutaneous xenograft model of prostate cancer was established. Mice were randomly divided into three groups (n = 9) and intratumorally injected with pcDNA3-HisC-GGNBP2, pcDNA3-HisC and normal saline respectively. The xenograft tumour volume was measured every 3 days, and weight was measured after 2 weeks. After GGNBP2 overexpression, the proliferation, migration and invasion capacities of PC-3 cells decreased, and cell cycle was arrested in the G1 phase. The protein expressions of COX-2, cyclin D1, PI3K, Akt and p-Akt all reduced. The tumour volume and weight of pcDNA3-HisC-GGNBP2 group were significantly lower than those of pcDNA3-HisC group (p < .05). The proliferation capacity of GGNBP2-overexpressing prostate cancer cells is significantly attenuated, tumour growth is significantly inhibited, and cell cycle is arrested in the G1 phase. GGNBP2 overexpression affects the growth of castration-resistant prostate cancer via the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Zhangjie Yang
- Graduate School, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuxin Wang
- Graduate School, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lianghong Ma
- Department of Urological Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
10
|
Guo K, He Y, Liu L, Liang Z, Li X, Cai L, Lan ZJ, Zhou J, Wang H, Lei Z. Ablation of Ggnbp2 impairs meiotic DNA double-strand break repair during spermatogenesis in mice. J Cell Mol Med 2018; 22:4863-4874. [PMID: 30055035 PMCID: PMC6156456 DOI: 10.1111/jcmm.13751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Gametogenetin (GGN) binding protein 2 (GGNBP2) is a zinc finger protein expressed abundantly in spermatocytes and spermatids. We previously discovered that Ggnbp2 resection caused metamorphotic defects during spermatid differentiation and resulted in an absence of mature spermatozoa in mice. However, whether GGNBP2 affects meiotic progression of spermatocytes remains to be established. In this study, flow cytometric analyses showed a decrease in haploid, while an increase in tetraploid spermatogenic cells in both 30‐ and 60‐day‐old Ggnbp2 knockout testes. In spread spermatocyte nuclei, Ggnbp2 loss increased DNA double‐strand breaks (DSB), compromised DSB repair and reduced crossovers. Further investigations demonstrated that GGNBP2 co‐immunoprecipitated with a testis‐enriched protein GGN1. Immunofluorescent staining revealed that both GGNBP2 and GGN1 had the same subcellular localizations in spermatocyte, spermatid and spermatozoa. Ggnbp2 loss suppressed Ggn expression and nuclear accumulation. Furthermore, deletion of either Ggnbp2 or Ggn in GC‐2spd cells inhibited their differentiation into haploid cells in vitro. Overexpression of Ggnbp2 in Ggnbp2 null but not in Ggn null GC‐2spd cells partially rescued the defect coinciding with a restoration of Ggn expression. Together, these data suggest that GGNBP2, likely mediated by its interaction with GGN1, plays a role in DSB repair during meiotic progression of spermatocytes.
Collapse
Affiliation(s)
- Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Yan He
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Zuowen Liang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lu Cai
- Pediatrics Departments, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zi-Jian Lan
- Division of Life Sciences and Center for Nutrigenomics & Applied Animal Nutrition, Alltech Inc., Nicholasville, KY, USA
| | - Junmei Zhou
- Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|