1
|
Chuang HC, Chuang KJ, Cheng PC, Hsieh CL, Fan YY, Lee YL. Indirubin induces tolerogenic dendritic cells via aryl hydrocarbon receptor activation and ameliorates allergic asthma in a murine model by expanding Foxp3-expressing regulatory T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156013. [PMID: 39270571 DOI: 10.1016/j.phymed.2024.156013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Allergic asthma is a chronic bronchial inflammatory disease closely associated with abnormal immune responses of dendritic cells (DCs) and allergen-specific type 2 T helper (Th2) cells. Indirubin (IR), a natural aryl hydrocarbon receptor (AhR) ligand, exerts anti-inflammatory and immunomodulatory properties. PURPOSE In this study, we aimed to clarify whether IR exhibits immunomodulatory action on DCs via AhR activation and investigated the antiallergic effects of IR in a mouse model of allergic asthma. METHODS Lipopolysaccharide (LPS)-activated bone marrow-derived DCs were treated with IR. Their mRNA expressions, cytokine production, and phenotype patterns were determined by a quantitative real-time PCR, ELISA, flow cytometry, and RNA sequencing. The mixed lymphocyte reaction was utilized to evaluate the regulatory function of IR-treated DCs on T-cell differentiation. Moreover, mice with ovalbumin (OVA)-induced allergic asthma were treated with IR. Thereafter, the airway hyperresponsiveness (AHR), allergen-specific IgE production, cytokine levels, airway inflammation, and T-cell responses were evaluated. RESULTS Treatment of LPS-stimulated DCs with 20 μM IR significantly reduced IL-12 and TNF-α production while increasing IL-10 secretion. Meanwhile, these DCs expressed decreased levels of CD80 but increased levels of Jagged 1 surface molecules. However, the effects of IR on DCs were reversed by pretreatment with the AhR antagonist, CH223191. Additionally, the coculture of these tolerogenic-like DCs with allogeneic CD4+T cells promoted the generation of Foxp3+ regulatory T (Treg) cells. A transcriptomic analysis identified several downregulated genes that are involved in regulating cell migration, cytokine secretion, and inflammatory responses in DCs after IR treatment. In an asthmatic murine model, oral administration of 25 mg kg-1 body weight of IR efficiently alleviated the development of AHR, OVA-specific IgE production, and levels of Th2-type cytokines (IL-4, IL-5, and IL-13) and the CCL11 chemokine. IR treatment also attenuated inflammatory cell recruitment and mucus production in the lungs. Notably, an enhanced frequency of Foxp3+ Treg cells and reduced effector T-cell proliferation associated with increased levels of IL-10 and TGF-β were observed in IR-treated mice. CONCLUSION IR can induce tolerogenic-like BMDCs which promote the differentiation of Treg cells. Importantly, the expansion of Foxp3+ Treg cells contributed to the therapeutic efficacy of IR against allergic asthma.
Collapse
Affiliation(s)
- Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Laboratory of Translational Medicine, Development Center for Biotechnology, Taipei, Taiwan
| | - Yen-Yi Fan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Liu D, Wei C, Guan L, Ju W, Xiang S, Lian F. Combining single-cell RNA sequencing and network pharmacology to explore the target of cangfu daotan decoction in the treatment of obese polycystic ovary syndrome from an immune perspective. Front Pharmacol 2024; 15:1451300. [PMID: 39539629 PMCID: PMC11557475 DOI: 10.3389/fphar.2024.1451300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a heterogeneous gynecological endocrine disorder linked to immunity. Cangfu Daotan Decoction (CFDT), a classic Chinese medicine prescription, is particularly effective in treating PCOS, specifically in patients with obesity; however, its specific mechanism remains unclear. Methods Part 1: Peripheral blood mononuclear cells were collected on egg retrieval day from obese and normal-weight patients with PCOS and healthy women undergoing in vitro fertilization (IVF)-embryo transfer. Next, scRNA-seq was performed to screen the key genes of bese patients with PCOS. Part 2: Active ingredients of CFDT and obesity-related PCOS targets were identified based on public databases, and the binding ability between the active ingredients and targets was analyzed. Part 3: This part was a monocentric, randomized controlled trial. The obese women with PCOS were randomized to CFDT (6 packets/day) or placebo, and the healthy women were included in the blank control group (43 cases per group). The clinical manifestations and laboratory outcomes among the three groups were compared. Results Based on the scRNA-seq data from Part 1, CYLD, ARPC3, CXCR4, RORA, JUN, FGL2, ZEB2, GNLY, FTL, SMAD3, IL7R, KIR2DL1, CTSD, BTG2, CCL5, HLA, RETN, CTSZ, and NCF2 were potential key genes associated with obese PCOS were identified. The proportions of T, B, and natural killer cells were higher in patients with PCOS compared to healthy women, with even higher proportions observed in obese patients with PCOS. Gene ontology and the Kyoto encyclopedia of genes and genomes analysis depicted that the differentially expressed genes were related to immune regulation pathways. Network pharmacology analysis identified that the key active components in CFDT were quercetin, carvacrol, β-sitosterol, cholesterol, and nobiletin, and TP53, AKT1, STAT3, JUN, SRC, etc. were the core targets. The core targets and their enrichment pathways overlapped with those in Part 1. Clinical trials in Part 3 found that CFDT reduced the dosage of gonadotropins use in patients with PCOS, increased the number of high-quality embryos, and improved the ongoing pregnancy rate. Conclusion CFDT can improve the immune microenvironment of patients to some extent, reduce their economic burden, and enhance IVF outcomes. The improvement in the immune microenvironment in obese patients with PCOS may be linked to targets such as JUN and AKT.
Collapse
Affiliation(s)
- Danqi Liu
- The First Clinical Medicine School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Chaofeng Wei
- The First Clinical Medicine School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lu Guan
- The First Clinical Medicine School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenhan Ju
- The First Clinical Medicine School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shan Xiang
- The First Clinical Medicine School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Integrative Medicine Research Centre of Reproduction and Heredity, Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fang Lian
- The First Clinical Medicine School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Integrative Medicine Research Centre of Reproduction and Heredity, Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Zhu H, Ruan X, Zhao K, Kuang W, Liu S, Yan W, Fu X, Cheng Z, Li R, Peng H. The miR-641-STIM1 and SATB1 axes play important roles in the regulation of the Th17/Treg balance in ITP. Sci Rep 2024; 14:11243. [PMID: 38755179 PMCID: PMC11098809 DOI: 10.1038/s41598-024-61660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| | - Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
- Department of Hematology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, P.R. China, Nanning, China
| | - Kexin Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| | - Wenyong Kuang
- Department of Hematology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| | - Wenzhe Yan
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| | - Xianming Fu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China.
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China.
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, No. 139# Renmin Road, Changsha, 410011, Hunan, China
| |
Collapse
|
4
|
Liu L, Xiang Y, Shao L, Yuan C, Song X, Sun M, Liu Y, Zhang X, Du S, Hou M, Peng J, Shi Y. E3 ubiquitin ligase casitas B-lineage lymphoma-b modulates T-cell anergic resistance via phosphoinositide 3-kinase signaling in patients with immune thrombocytopenia. J Thromb Haemost 2024; 22:1202-1214. [PMID: 38184203 DOI: 10.1016/j.jtha.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The E3 ubiquitin ligase casitas B-lineage lymphoma-b (CBLB) is a newly identified component of the ubiquitin-dependent protein degradation system and is considered an important negative regulator of immune cells. CBLB is essential for establishing a threshold of T-cell activation and regulating peripheral T-cell tolerance through various mechanisms. However, the involvement of CBLB in the pathogenesis of immune thrombocytopenia (ITP) is unknown. OBJECTIVES We aimed to investigate the expression and role of CBLB in CD4+ T cells obtained from patients with ITP through quantitative proteomics analyses. METHODS CD4+ T cells were transfected with adenoviral vectors overexpressing CBLB to clarify the effect of CBLB on anergic induction of T cells in patients with ITP. DNA methylation levels of the CBLB promoter and 5' untranslated region (UTR) in patient-derived CD4+ T cells were detected via MassARRAY EpiTYPER assay (Agena Bioscience). RESULTS CD4+ T cells from patients with ITP showed resistance to anergic induction, highly activated phosphoinositide 3-kinase-protein kinase B (AKT) signaling, decreased CBLB expression, and 5' UTR hypermethylation of CBLB. CBLB overexpression in T cells effectively attenuated the elevated phosphorylated protein kinase B level and resistance to anergy. Low-dose decitabine treatment led to significantly elevated levels of CBLB expression in CD4+ T cells from 7 patients showing a partial or complete response. CONCLUSION These results indicate that the 5' UTR hypermethylation of CBLB in CD4+ T cells induces resistance to T-cell anergy in ITP. Thus, the upregulation of CBLB expression by low-dose decitabine treatment may represent a potential therapeutic approach to ITP.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Yujiao Xiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chenglu Yuan
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Xiaofeng Song
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, Shandong, China
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xianlei Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shenghong Du
- Department of Hematology, Taian Central Hospital, Taian, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, Shandong, China; Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Xiang Y, Liu L, Hou Y, Du S, Xu S, Zhou H, Shao L, Li G, Yu T, Liu Q, Xue M, Yang J, Peng J, Hou M, Shi Y. The mTORC1 pathway participate in hyper-function of B cells in immune thrombocytopenia. Ann Hematol 2023; 102:2317-2327. [PMID: 37421506 DOI: 10.1007/s00277-023-05348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
B cell hyper-function plays an important role in the pathogenesis of immune thrombocytopenia (ITP), but the molecular mechanisms underlying such changes remain unclear. We sought to identify regulators of B cell dysfunction in ITP patients through transcriptome sequencing and the use of inhibitors. B cells were isolated from PBMC of 25 ITP patients for B cell function test and transcriptome sequencing. For the potential regulatory factors identified by transcriptome sequencing, the corresponding protein inhibitors were used to explore the regulatory effect of the regulatory factors on B cell dysfunction in vitro. In this study, increased antibody production, enhanced terminal differentiation and highly expressed costimulatory molecules CD80 and CD86 were found in B cells of patients with ITP. In addition, RNA sequencing revealed highly activated mTOR pathway in these pathogenic B cells, indicating that the mTOR pathway may be involved in B cell hyper-function. Furthermore, mTOR inhibitors rapamycin or Torin1 effectively blocked the activation of mTORC1 in B cells, resulting in reduce antibody secretion, impaired differentiation of B cells into plasmablasts and downregulation of costimulatory molecules. Interestingly, as an unspecific inhibitor of mTORC2 besides mTORC1, Torin1 did not show a stronger capacity to modulate B cell function than rapamycin, suggesting that the regulation of B cells by Torin1 may depend on blockade of mTORC1 rather than mTORC2 pathway. These results indicated that the activation of mTORC1 pathway is involved in B cell dysfunction in patients with ITP, and inhibition of mTORC1 pathway might be a potential therapeutic approach for ITP.
Collapse
Affiliation(s)
- Yujiao Xiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Shenghong Du
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tianshu Yu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Meijuan Xue
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhui Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Cheng J, Wang S, Lv SQ, Song Y, Guo NH. Resveratrol inhibits AhR/Notch axis and reverses Th17/Treg imbalance in purpura by activating Foxp3. Toxicol Res (Camb) 2023; 12:381-391. [PMID: 37397914 PMCID: PMC10311159 DOI: 10.1093/toxres/tfad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 07/04/2023] Open
Abstract
Background Resveratrol has been reported to reverse the imbalance of T helper 17/regulatory T (Th17/Treg) by inhibiting the aryl hydrocarbon receptor pathway to treat immune thrombocytopenia. However, the regulation mechanism of the Notch signaling pathway by resveratrol has not been reported in purpura. This study is aimed to explore the mechanism of resveratrol ultrafine nanoemulsion (Res-mNE) in immune thrombocytopenia. Methods The immune thrombocytopenia mouse model was constructed to explore the effect of RES-mNE on immune thrombocytopenia. Cluster of differentiation 4 (CD4+) T cells were isolated and treated with different medications. CD4+ T cells were induced to differentiate into Th17 cells and Treg cells. Flow cytometry was used to detect the proportion of Th17 cells and Treg cells. The secretion was measured by the enzyme-linked immunosorbent assay (ELISA). Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein levels. Results Th17 cells, IL-17A and IL-22 increased in the immune thrombocytopenia mouse model, and the Treg cells and IL-10 decreased. Res-mNE promoted Treg cell differentiation and IL-10 secretion in CD4+ T cells while inhibiting Th17 cell differentiation and IL-17A and IL-22 levels. The AhR activator 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reversed the effect of Res-mNE. Notch inhibitors reduced the ratio of Th17/Treg differentiation. Res-mNE activated the expression of Foxp3 by mediating AhR/Notch signaling to reverse the imbalance of Th17/Treg differentiation in immune thrombocytopenia. Conclusion Taken together, our findings demonstrated that RES-mNE inhibited the AhR/Notch axis and reversed Th17/Treg imbalance by activating Foxp3.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Sheng Wang
- Department of Psychiatry, Jiangxi Mental Hospital, Shangfang Road, Nanchang 330008, Jiangxi Province, P.R. China
| | - Shi-Qin Lv
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Ning-Hong Guo
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| |
Collapse
|
8
|
Ruan JS, Sun RJ, Wang JP, Sui XH, Qu HT, Yuan D, Shan NN. Gene mutations in the PI3K/Akt signaling pathway were related to immune thrombocytopenia pathogenesis. Medicine (Baltimore) 2023; 102:e32947. [PMID: 36800582 PMCID: PMC9936046 DOI: 10.1097/md.0000000000032947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Immune thrombocytopenic (ITP) is an autoimmune bleeding disease with genetic susceptibility. Twenty newly diagnosed active primary ITP patients who had not been treated with glucocorticosteroids, immune globulin or immunosuppressants prior to sampling were enrolled in this study. Bone marrow blood mononuclear cells were used for whole exome sequencing to further elucidation the variant genes of ITP. METHODS High-molecular-weight genomic DNA was extracted from freshly frozen bone marrow blood mononuclear cells from 20 active ITP patients. Next, the samples were subjected to molecular genetic analysis by whole-exome sequencing, and the results were confirmed by Sanger sequencing. The signaling pathways and cellular processes associated with the mutated genes were identified with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. RESULTS The results showed that there were 3998 missense mutations involving 2269 genes in more than 10 individuals. Unique genetic variants including phosphatase and tensin homolog, insulin receptor, and coagulation factor C homology were the most associated with the pathogenesis of ITP. Functional analysis revealed these mutation genes mainly affect Phosphatidylinositol 3 kinase/serine/threonine kinase B signaling pathways (signal transduction) and platelet activation (immune system). CONCLUSION Our finding further demonstrates the functional connections between these variant genes and ITP. Although the substantial mechanism and the impact of genetic variation are required further investigation, the application of next generation sequencing in ITP in this paper is a valuable method to reveal the genetic susceptibility.
Collapse
Affiliation(s)
- Jing-Shu Ruan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Rheumatology, Peking Union Medical College Hospital, Clinical Immunology Center, Beijing, China
| | - Jin-Ping Wang
- The Outpatient Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao-Hui Sui
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui-Ting Qu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- * Correspondence: Ning-Ning Shan, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China (e-mail: )
| |
Collapse
|
9
|
Xu L, Song X, Zhang Y, Lin N, Wang J, Dai Q. Investigation of the mechanism of action of Shengxuexiaoban Capsules against primary immune thrombocytopenia using network pharmacology and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154413. [PMID: 36037773 DOI: 10.1016/j.phymed.2022.154413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Shengxuexiaoban Capsules (SC) is a classical prescription in traditional Chinese medicine (TCM) and has been clinically adopted in the treatment of primary immune thrombocytopenia (ITP) in China. However, the underlying mechanisms of the actions of SC on ITP remain clear. METHODS A network pharmacology approach was adopted to investigate the underlying molecular mechanism of SC in treating ITP, and the effects of SC on the proliferation, differentiation, and apoptosis of megakaryocyte (MK) and on the ITP animal model were investigated. RESULTS Network pharmacology analysis found 128 active compounds and 268 targets of these compounds in SC, as well as 221 ITP-related targets. The topological analysis found a central network containing 82 genes, which were significantly associated with the regulation of transcription, cell proliferation, apoptosis processes, the PI3K-AKT signaling pathway, the MAPK signaling pathway, and the ERK1 and ERK2 cascades. It showed that SC increased the proliferation and differentiation of MK, but had no significant impact on MK apoptosis in vivo. The addition of SC increased the gene expression of several potential targets, including STAT3, KDR, CASP3, and TGFB1. In addition, SC administration elevated the protein expression of p-AKT and inhibit the protein expression of p-ERK, but has no impact on the protein expression of p-P38. Moreover, SC could improve haemogram parameters, coagulation indicators, and the proliferation and differentiation of MK in the ITP animal model. CONCLUSIONS The present study systematically elucidated the underlying mechanisms of SC against ITP and provided an efficient strategy to discover the pharmacological mechanism of TCM. It may strengthen the understanding of SC and facilitate more application of this formula in the treatment of ITP.
Collapse
Affiliation(s)
- Liping Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinwei Song
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Na Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jian Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiaoding Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China.
| |
Collapse
|
10
|
Mo Y, Xu W, Fu K, Chen H, Wen J, Huang Q, Guo F, Mo L, Yan J. The dual function of microglial polarization and its treatment targets in ischemic stroke. Front Neurol 2022; 13:921705. [PMID: 36212660 PMCID: PMC9538667 DOI: 10.3389/fneur.2022.921705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the leading cause of disability and death worldwide, with ischemic stroke occurring in ~5% of the global population every year. Recently, many studies have been conducted on the inflammatory response after stroke. Microglial/macrophage polarization has a dual function and is critical to the pathology of ischemic stroke. Microglial/macrophage activation is important in reducing neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after ischemic stroke. In this review, we investigate the physiological characteristics and functions of microglia in the brain, the activation and phenotypic polarization of microglia and macrophages after stroke, the signaling mechanisms of polarization states, and the contribution of microglia to brain pathology and repair. We summarize recent advances in stroke-related microglia research, highlighting breakthroughs in therapeutic strategies for microglial responses after stroke, thereby providing new ideas for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hainan Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ligen Mo
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jun Yan
| |
Collapse
|
11
|
Yao G, Zhenhui W, Min W, Naeem A, Weizhizi L, Daling Z, Fan L, Yingjian Z. Visual analysis of research hotspots and trends in the treatment of immune thrombocytopenia with traditional Chinese medicine. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Wang Y, Zhang X, Wang Y, Zhao W, Li H, Zhang L, Li X, Zhang T, Zhang H, Huang H, Liu C. Application of immune checkpoint targets in the anti-tumor novel drugs and traditional Chinese medicine development. Acta Pharm Sin B 2021; 11:2957-2972. [PMID: 34729298 PMCID: PMC8546663 DOI: 10.1016/j.apsb.2021.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoints are the crucial regulators of immune system and play essential roles in maintaining self-tolerance, preventing autoimmune responses, and minimizing tissue damage by regulating the duration and intensity of the immune response. Furthermore, immune checkpoints are usually overexpressed in cancer cells or noninvasive cells in tumor tissues and are capable of suppressing the antitumor response. Based on substantial physiological analyses as well as preclinical and clinical studies, checkpoint molecules have been evaluated as potential therapeutic targets for the treatment of multiple types of cancers. In the last few years, extensive evidence has supported the immunoregulatory effects of traditional Chinese medicines (TCMs). The main advantage of TCMs and natural medicine is that they usually contain multiple active components, which can act on multiple targets at the same time, resulting in additive or synergistic effects. The strong immune regulation function of traditional Chinese medicine on immune checkpoints has also been of great interest. For example, Astragalus membranaceus polysaccharides can induce anti-PD-1 antibody responses in animals, and these antibodies can overcome the exhaustion of immune cells under tumor immune evasion. Furthermore, many other TCM molecules could also be novel and effective drug candidates for the treatment of cancers. Therefore, it is essential to assess the application of immune checkpoints in the development of new drugs and TCMs. In this review, we focus on research progress in the field of immune checkpoints based on three topics: (1) immune checkpoint targets and pathways, (2) development of novel immune checkpoint-based drugs, and (3) application of immune checkpoints in the development of TCMs.
Collapse
Affiliation(s)
- Yuli Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| | - Xingyan Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193 China
| | - Yuyan Wang
- The Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Beijing Institute of Cancer Research, Beijing 100142 China
| | - Wenjing Zhao
- Department of Pharmacology, Tianjin Medical University, Tianjin 300070, China
| | - Huling Li
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| | - Lixing Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinping Li
- MITRO Biotech Co., Ltd., Nanjing 211100, China
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| | - Hongbing Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| | - He Huang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
- Tianjin Key Laboratory of Quality-Marker of Traditional Chinese Medicines, Tianjin Institute of Pharmaceutical Research, Tianjin 300193 China
| |
Collapse
|
13
|
Sun Y, Hou Y, Meng G, Han P, Zhao Y, Wang H, Xu M, Wang Y, Qiu J, Peng J, Shao L, Sun L, Hou M. Proteomic analysis and microRNA expression profiling of plasma-derived exosomes in primary immune thrombocytopenia. Br J Haematol 2021; 194:1045-1052. [PMID: 34337736 DOI: 10.1111/bjh.17720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022]
Abstract
Exosomes are released into extracellular fluids and have emerged as vital biological mediators in autoimmune diseases. Plasma-derived exosomes have been reported to take part in the pathogenesis of primary immune thrombocytopenia (ITP), but the protein and miRNA cargoes have not been entirely elucidated. Via proteomic analysis and RNA sequencing on plasma-derived exosomes from ITP patients and healthy controls, we found one upregulated exosomal protein (apolipoprotein E, ApoE), six downregulated exosomal miRNAs (miR-584-5p, miR-4433a-5p, miR-4433b-3p, miR-6842-3p, miR-130b-5p and miR-222-3p), and 10 upregulated exosomal miRNAs (miR-29a-3p, miR-142-5p, miR-16-2-3p, miR-29b-3p, miR-501-3p, miR-144-5p, miR-192-5p, miR-182-5p, miR-363-3p and miR-96-5p) in ITP patients. The elevated exosomal protein candidate ApoE in the ITP cohort was further validated using western blot. Via quantitative real-time polymerase chain reaction assays, three differentially expressed miRNAs (miR-584-5p, miR-142-5p and miR-29b-3p) were identified. This study provides direct evidence for a restricted signature of exosomal protein and miRNAs which distinguishes ITP from healthy controls. The results require further validation in larger independent ITP cohorts, which will provide insights into the potential pathophysiological significance of circulating exosomes in ITP.
Collapse
Affiliation(s)
- Yunqi Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Pain, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guiyue Meng
- Department of Geriatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Panpan Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haoyi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yawen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jihua Qiu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Semple JW, Rebetz J, Maouia A, Kapur R. An update on the pathophysiology of immune thrombocytopenia. Curr Opin Hematol 2021; 27:423-429. [PMID: 32868673 DOI: 10.1097/moh.0000000000000612] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
: Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder mediated by antiplatelet autoantibodies and antigen-specific T cells that either destroy platelets peripherally in the spleen or impair platelet production in the bone marrow. There have been a plethora of publications relating to the pathophysiology of ITP and since January of 2019, at least 50 papers have been published on ITP pathophysiology. PURPOSE OF REVIEW To summarize the literature relating to the pathophysiology of ITP including the working mechanisms of therapies, T-cell and B-cell physiology, protein/RNA/DNA biochemistry, and animal models in an attempt to unify the perceived abnormal immune processes. RECENT FINDINGS The most recent pathophysiologic irregularities associated with ITP relate to abnormal T-cell responses, particularly, defective T regulatory cell activity and how therapeutics can restore these responses. The robust literature on T cells in ITP points to the notion that ITP is a disease initiated by faulty self-tolerance mechanisms very much like that of other organ-specific autoimmune diseases. There is also a large literature on new and existing animal models of ITP and these will be discussed. It appears that understanding how to specifically modulate T cells in patients with ITP will undoubtedly lead to effective antigen-specific therapeutics. CONCLUSIONS ITP is predominately a T cell disorder which leads to a breakdown in self tolerance mechanisms and allows for the generation of anti-platelet autoantibodies and T cells. Novel therapeutics that target T cells may be the most effective way to perhaps cure this disorder.
Collapse
Affiliation(s)
- John W Semple
- Division of Hematology and Transfusion Medicine, Lund University.,Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University
| | - Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
16
|
Han P, Yu T, Hou Y, Zhao Y, Liu Y, Sun Y, Wang H, Xu P, Li G, Sun T, Hu X, Liu X, Li L, Peng J, Zhou H, Hou M. Low-Dose Decitabine Inhibits Cytotoxic T Lymphocytes-Mediated Platelet Destruction via Modulating PD-1 Methylation in Immune Thrombocytopenia. Front Immunol 2021; 12:630693. [PMID: 33679776 PMCID: PMC7925841 DOI: 10.3389/fimmu.2021.630693] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs)-mediated platelet destruction plays an important role in the pathogenesis of primary immune thrombocytopenia (ITP). The programmed cell death protein 1 (PD-1) signaling can turn off autoreactive T cells and induce peripheral tolerance. Herein, we found that the expression of PD-1 and its ligand PD-L1 on CD8+ T cells from ITP patients was decreased. Activating PD-1 pathway by PD-L1-Fc fusion protein inhibited CTLs-mediated platelet destruction in ITP in vitro. PD-1 promoter hypermethylation in CD8+ T cells was found in ITP patients, resulting in decreased PD-1 expression. The demethylating agent decitabine at a low dose was proved to restore the methylation level and expression of PD-1 on CD8+ T cells and reduce the cytotoxicity of CTLs of ITP patients. The phosphorylation levels of phosphatidylinositol 3-kinase (PI3K) and AKT in CD8+ T cells were significantly downregulated by low-dose decitabine. Furthermore, blocking PD-1 could counteract the effect of low-dose decitabine on CTLs from ITP patients. Therefore, our data suggest that the aberrant PD-1/PD-L1 pathway is involved in the pathophysiology of ITP and enhancing PD-1/PD-L1 signaling is a promising therapeutic approach for ITP management. Our results reveal the immunomodulatory mechanism of low-dose decitabine in ITP by inhibiting CTLs cytotoxicity to autologous platelets through PD-1 pathway.
Collapse
Affiliation(s)
- Panpan Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianshu Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunqi Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haoyi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pengcheng Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinguang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lizhen Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Li Q, Wang Y, Xue W, Bian Z, Gao Y, Zeng Y, Tang L, Tang T, Tian Y, Guo W. Immunomodulatory effects of platelets on the severity of hand, foot, and mouth disease infected with enterovirus 71. Pediatr Res 2021; 89:814-822. [PMID: 32516798 PMCID: PMC8049866 DOI: 10.1038/s41390-020-0970-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/26/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Enterovirus 71 (EV71) infection contributes to hand, foot, and mouth disease (HFMD) with severe neurogenic complications, leading to higher morbidity. In addition to their typical roles in coagulation, platelets could serve as essential immune regulatory cells to play a key role in the pathogenesis of this viral infection. METHODS Platelet parameters were measured using an automatic hematology analyzer. T-helper type 1 (Th1) and Th2 cells were analyzed by flow cytometry. The levels of cytokines and key transcription factors were determined. RESULTS The levels of platelet count and plateletcrit were positively associated with the severity of HFMD. Th1 and Th2 cells as well as their corresponding cytokines were increased in the severe group compared to the healthy volunteers. Moreover, the levels of platelets were negatively correlated with the level of interferon-γ (IFN-γ), but positively correlated with the frequency of Th1 cells. Coculture of platelets and naive CD4+ T cells showed that platelets from mild patients promote Th1 cell differentiation and IFN-γ secretion. CONCLUSIONS Our study has shown for the first time that the distinct roles of platelets are responsible for the regulation of pathogenic CD4+ T cell differentiation and function in the pathogenesis of HFMD caused by EV71. IMPACT Our study has shown for the first time that the distinct roles of platelets are responsible for the regulation of pathogenic CD4+ T cell differentiation and function in the pathogenesis of HFMD caused by EV71. For the first time, we have discovered the role of platelets in children's HFMD caused by EV71 infection, which may provide a better treatment for HFMD in the future. This article describes new discoveries in platelet immunity.
Collapse
Affiliation(s)
- Qianwen Li
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yimeng Wang
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenyao Xue
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhengying Bian
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Gao
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu Zeng
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lei Tang
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tiejun Tang
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ye Tian
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
18
|
Sun B, Wang J, Liu L, Mao L, Peng L, Wang Y. Synthesis and activity of novel indirubin derivatives. Chem Biol Drug Des 2020; 97:565-571. [PMID: 32914538 DOI: 10.1111/cbdd.13792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Bin Sun
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan China
| | - Jiahao Wang
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Luohua Liu
- State Key Laboratory of Applied Organic Chemistry Department of Chemistry Lanzhou University Lanzhou China
| | - Longfei Mao
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Lizeng Peng
- Jinan Asia Pharma Tech Company LTD. Jinan China
| | - Yuwei Wang
- College of Pharmacy Shaanxi University of Chinese Medicine Xi'an/Xianyang China
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| |
Collapse
|
19
|
Chang Y, Chen X, Tian Y, Gao X, Liu Z, Dong X, Wang L, He F, Zhou J. Downregulation of microRNA-155-5p prevents immune thrombocytopenia by promoting macrophage M2 polarization via the SOCS1-dependent PD1/PDL1 pathway. Life Sci 2020; 257:118057. [PMID: 32634427 DOI: 10.1016/j.lfs.2020.118057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
AIMS We set about to investigate the potential role of microRNA-155-5p (miR-155-5p) in the development of immune thrombocytopenia (ITP), an idiopathic deficiency of blood platelets. MAIN METHODS Initially, RT-qPCR and Western blot analyses were carried out to determine the expression of miR-155-5p and SOCS1 in peripheral blood mononuclear cells (PBMCs) and macrophages from ITP patients. We undertook gain- and loss- function methods by transfection of macrophages and PBMCs with treated plasmids. The expression patterns of platelet-related factors were measured by ELISA, and the expressions of PD1, PDL1, and macrophage M2 marker CD206 and CD86 were also measured. The relationship between miR-155-5p and SOCS1 was determined using the dual-luciferase reporter gene assay. We also established an ITP mouse model to explore the roles of miR-155-5p and SOCS1 in vivo. KEY FINDINGS miR-155-5p was up-regulated, while SOCS1 was down-regulated in PBMCs and macrophages from ITP patients. SOCS1 was indicated as a target of miR-155-5p. Inhibition of miR-155-5p or up-regulation of SOCS1 facilitated macrophage M2 polarization as demonstrated by an increased M2/M1 ratio and suppressed expression of platelet-related factors. Furthermore, silencing of SOCS1 promoted ITP progression through blocking the PD1/PDL1 pathway, whilst upregulation of miR-155-5p remarkably increased the platelet abundance and suppressed SOCS1 expression in ITP model mice. SIGNIFICANCE Silencing of miR-155-5p could promote PD1/PDL1 pathway-mediated macrophage M2 polarization and prevent ITP via up-regulation of SOCS1, thus relieving ITP.
Collapse
Affiliation(s)
- Yuying Chang
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xi Chen
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yaoyao Tian
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xinyu Gao
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Zhiyu Liu
- Flow Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin 150007, PR China
| | - Xiushuai Dong
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Lianjie Wang
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Fei He
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Jin Zhou
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin 150007, PR China.
| |
Collapse
|
20
|
Wyman B, Perl A. Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases. Curr Opin Rheumatol 2020; 32:184-191. [PMID: 31895126 PMCID: PMC9204384 DOI: 10.1097/bor.0000000000000687] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The cause of autoimmune diseases remains incompletely understood. Here, we highlight recent advances in the role of proinflammatory metabolic pathways in autoimmune disease, including treatment with antioxidants and mechanistic target of rapamycin (mTOR) inhibitors. RECENT FINDINGS Recent studies show that mTOR pathway activation, glucose utilization, mitochondrial oxidative phosphorylation, and antioxidant defenses play critical roles in the pathogenesis of autoimmune diseases, including rheumatoid arthritis, immune thrombocytopenia, Sjögren's syndrome, large vessel vasculitis, and systemic lupus erythematosus. mTOR activity leads to Th1 and Th17 cell proliferation, Treg depletion, plasma cell differentiation, macrophage dysfunction, and increased antibody and immune complex production, ultimately resulting in tissue inflammation. mTOR also affects the function of connective tissue cells, including fibroblast-like synoviocytes, endothelial cells, and podocytes. mTOR inhibition via rapamycin and N-acetylcysteine, and blockade of glucose utilization show clinical efficacy in both mouse models and clinical trials, such as systemic lupus erythematosus. SUMMARY The mTOR pathway is a central regulator of growth and survival signals, integrating environmental cues to control cell proliferation and differentiation. Activation of mTOR underlies inflammatory lineage specification, and mTOR blockade-based therapies show promising efficacy in several autoimmune diseases.
Collapse
Affiliation(s)
- Brandon Wyman
- Division of Rheumatology, Department of Medicine
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine
- Department of Microbiology and Immunology
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| |
Collapse
|
21
|
Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, Zhong Y, Xiong X, Gu L. Meisoindigo Protects Against Focal Cerebral Ischemia-Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation and Regulating Microglia/Macrophage Polarization via TLR4/NF-κB Signaling Pathway. Front Cell Neurosci 2019; 13:553. [PMID: 31920554 PMCID: PMC6930809 DOI: 10.3389/fncel.2019.00553] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke is a devastating disease with long-term disability. However, the pathogenesis is unclear and treatments are limited. Meisoindigo, a second-generation derivative of indirubin, has general water solubility and is well-tolerated. Previous studies have shown that meisoindigo reduces inflammation by inhibiting leukocyte chemotaxis and migration. In the present study, we investigated the hypothesis that meisoindigo was also protective against ischemic stroke, then evaluated its underlying mechanisms. In vivo, adult male C57BL/6J wild-type mice were used to produce a middle cerebral artery occlusion (MCAO) stroke model. On day three after reperfusion, obvious improvement in neurological scores, infarct volume reduction and cerebral edema amelioration were observed in meisoindigo treatment. Moreover, immunofluorescence staining and western-blot showed that the expression of NLRP3 inflammasome and its associated proteins in neurons and microglia was inhibited by meisoindigo. The effects of Meisoindigo on NLRP3 inflammasome inactivation and increased the M2 phenotype of microglia/macrophage through shifting from a M1 phenotype, which was possibly mediated by inhibition of TLR4/NF-κB. Furthermore, we verified the inhibitory effect of meisoindigo on TLR4/NF-κB signaling pathway, and found that meisoindigo treatment could significantly suppressed the expression of TLR4/NF-κB pathway-associated proteins in a dose-dependent manner, meanwhile, which resulted in downregulation of HMGB1 and IL-1β. Next, we established an in vitro oxygen glucose deprivation/Reperfusion (OGD/R) model in HT-22 and BV2 cells to simulate ischemic conditions. Cytotoxicity assay showed that meisoindigo substantially improved relative cell vitality and in HT-22 and BV2 cells following OGD/R in vitro. After suffering OGD/R, the TLR4/NF-κB pathway was activated, the expression of NLRP3 inflammasome-associated proteins and M1 microglia/macrophage were increased, but meisoindigo could inhibit above changes in both HT-22 and BV2 cells. Additionally, though lipopolysaccharide stimulated the activation of TLR4 signaling in OGD/R models, meisoindigo co-treatment markedly reversed the upregulation of TLR4 and following activation of NLRP3 inflammasome and polarization of M1 microglia/macrophages mediated by TLR4. Overall, we demonstrate for the first time that meisoindigo post-treatment alleviates brain damage induced by ischemic stroke in vivo and in vitro experiments through blocking activation of the NLRP3 inflammasome and regulating the polarization of microglia/macrophages via inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Jin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baixin Ye
- Department of Hematopathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinchen Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
23
|
Zhao Y, Han P, Liu L, Wang X, Xu P, Wang H, Yu T, Sun Y, Li L, Sun T, Liu X, Zhou H, Qiu J, Wang L, Peng J, Xu S, Hou M. Indirubin modulates CD4 + T-cell homeostasis via PD1/PTEN/AKT signalling pathway in immune thrombocytopenia. J Cell Mol Med 2019; 23:1885-1898. [PMID: 30609280 PMCID: PMC6378207 DOI: 10.1111/jcmm.14089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune disease characterized by an immune mediated decrease in platelet number. Disturbance of CD4+ T-cell homeostasis with simultaneous decrease of CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) as well as unrestricted proliferation and activation of peripheral CD4+ effector T cells underpin the pathophysiology of ITP. Indirubin is an active ingredient of a traditional Chinese herb called Indigofera tinctoria L. which is clinically used for the treatment of ITP patients. Whether indirubin targets the Tregs/effector T cell-axis to restore platelet number is unknown. In our in vitro studies, Indirubin could significantly enhance the number and function of Tregs and meanwhile dampen the activation of effector T cells in a dose-dependent manner. Indirubin was observed to restore the expression of programmed cell-death 1 (PD1) and phosphatase and tensin homolog (PTEN) on the CD4+ T cells of ITP patients, leading to the subsequent attenuation of the AKT/mTOR pathway. Furthermore, these observations were recapitulated in an active murine model of ITP with a prominent platelet response. Thus, our results identified a potentially novel mechanism of the therapeutic action of indirubin in the treatment of ITP through regulating the homeostasis of CD4+ T cells in a PD1/PTEN/AKT signalling pathway.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Panpan Han
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaojie Wang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Pengcheng Xu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Haoyi Wang
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Tianshu Yu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yunqi Sun
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhen Li
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xinguang Liu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hai Zhou
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jihua Qiu
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liang Wang
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Immunohaematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shuqian Xu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Hou
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Immunohaematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|