1
|
Demyashkin G, Karakaeva E, Saakian S, Shchekin V, Elbuzdukaev E, Bamatgiraev U, Ashgalieva D, Evsultanova M, Kovalev D, Kabanova D, Shatunov O, Atiakshin D. Morphological aspects of small intestinal mucosal injury and repair after electron irradiation. Anat Cell Biol 2024; 57:384-391. [PMID: 38880781 PMCID: PMC11424566 DOI: 10.5115/acb.24.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Morphological evaluation of the small intestine mucosa and apoptosis activity (caspase-3) is necessary to assess the severity of damage to the small intestine. At the same time, proliferative index based on Ki-67 can be used to assess the regenerative potential of the small intestine. Fragments of small intestine of Wistar rats (n=60) of three groups: I) control (n=20); II) experimental group (n=20; local single electron irradiation at a dose of 2 Gy), III) experimental group (n=20; local single electron irradiation at a dose of 8 Gy) were studied by light microscopy using hematoxylin and eosin staining and immunohistochemical reactions with antibodies to Ki-67 and caspase-3. In all samples of the experimental groups, a decrease in all morphometric indices was observed on day 1 with a tendency to recover on day 3. Small intestinal electron irradiation led to disturbances in the histoarchitecture of varying severity, and an increase in cell apoptosis was observed (increased expression of caspase-3 and decrease in Ki-67). In addition, modulation of the PI3K/AKT and MAPK/ERK signaling pathways was detected. The most pronounced destructive changes were observed in the group of 8 Gy single electron irradiation. Local irradiation of the small intestine with electrons at a dose of 2 and 8 Gy results in a decrease in the number of enterocytes, mainly stem cells of the intestinal crypts.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elza Karakaeva
- National Medical Research Centre of Radiology, Ministry of Health of Russia, Moscow, Russia
| | - Siuzanna Saakian
- National Medical Research Centre of Radiology, Ministry of Health of Russia, Moscow, Russia
| | - Vladimir Shchekin
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Emir Elbuzdukaev
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Umar Bamatgiraev
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daniia Ashgalieva
- Federal State Budget Educational Institution of Higher Education A.I. Yevdokimov Moscow State University of Medicine and Dentistry (MSUMD), Moscow, Russia
| | - Makka Evsultanova
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daniil Kovalev
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Darya Kabanova
- Federal State Budget Educational Institution of Higher Education A.I. Yevdokimov Moscow State University of Medicine and Dentistry (MSUMD), Moscow, Russia
| | - Oleg Shatunov
- Laborant of the Labrotory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, Moscow, Russia
| |
Collapse
|
2
|
Zeng Z, Li L, Tao J, Liu J, Li H, Qian X, Yang Z, Zhu H. [ 177Lu]Lu-labeled anti-claudin-18.2 antibody demonstrated radioimmunotherapy potential in gastric cancer mouse xenograft models. Eur J Nucl Med Mol Imaging 2024; 51:1221-1232. [PMID: 38062170 DOI: 10.1007/s00259-023-06561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Gastric cancer (GC), one of the most prevalent and deadliest tumors worldwide, is often diagnosed at an advanced stage with limited treatment options and poor prognosis. The development of a CLDN18.2-targeted radioimmunotherapy probe is a potential treatment option for GC. METHODS The CLDN18.2 antibody TST001 (provided by Transcenta) was conjugated with DOTA and radiolabeled with the radioactive nuclide 177Lu. The specificity and targeting ability were evaluated by cell uptake, imaging and biodistribution experiments. In BGC823CLDN18.2/AGSCLDN18.2 mouse models, the efficacy of [177Lu]Lu-TST001 against CLDN18.2-expressing tumors was demonstrated, and toxicity was evaluated by H&E staining and blood sample testing. RESULTS [177Lu]Lu-TST001 was labeled with an 99.17%±0.32 radiochemical purity, an 18.50 ± 1.27 MBq/nmol specific activity and a stability of ≥ 94% after 7 days. It exhibited specific and high tumor uptake in CLDN18.2-positive xenografts of GC mouse models. Survival studies in BGC823CLDN18.2 and AGSCLDN18.2 tumor-bearing mouse models indicated that a low dose of 5.55 MBq and a high dose of 11.10 MBq [177Lu]Lu-TST001 significantly inhibited tumor growth compared to the saline control group, with the 11.1 MBq group showing better therapeutic efficacy. Histological staining with hematoxylin and eosin (H&E) and Ki67 immunohistochemistry of residual tissues confirmed tumor tissue destruction and reduced tumor cell proliferation following treatment. H&E showed that there was no significant short-term toxicity observed in the heart, spleen, stomach or other important organs when treated with a high dose of [177Lu]Lu-TST001, and no apparent hematotoxicity or liver toxicity was observed. CONCLUSION In preclinical studies, [177Lu]Lu-TST001 demonstrated significant antitumor efficacy with acceptable toxicity. It exhibits strong potential for clinical translation, providing a new promising treatment option for CLDN18.2-overexpressing tumors, including GC.
Collapse
Affiliation(s)
- Ziqing Zeng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Liqiang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinping Tao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayue Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hongjun Li
- Suzhou Transcenta Therapeutics Co., Ltd, Suzhou, Jiangsu, 215127, China
| | - Xueming Qian
- Suzhou Transcenta Therapeutics Co., Ltd, Suzhou, Jiangsu, 215127, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Meena SK, Joriya PR, Yadav SM, Kumar R, Meena P, Patel DD. Modulation of radiation-induced intestinal injury by radioprotective agents: a cellular and molecular perspectives. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:295-311. [PMID: 35438851 DOI: 10.1515/reveh-2021-0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 06/02/2023]
Abstract
The gastrointestinal (GI) system has rapidly proliferating and differentiating cells, which make it one of the most radiosensitive organs in the body. Exposure to high dose of ionising radiation (IR) during radiotherapy may generate a variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) including radicals, cause some side effects such as nausea, vomiting, diarrhoea, pain, ulceration, mal-absorption etc. Irradiation disrupts GI system by damaging proliferating stem cells of the crypts that alters the histology and physiology of intestine. Radiation damage reflects the qualitative and quantitative changes in intestinal epithelial stem cells like enterocytes, enteroendocrine cells, goblet cells and Paneth cells. The damaging effects of radiation to bio-molecules and cellular structures can alter gene signalling cascades and grounds genomic instability, protein modifications, cell senescence and cell death. The signalling pathways of GI tract includes Wnt, BMP, Hedgehog, PTEN/PI3K and Notch plays an important role in self-renewal of intestinal stem cells (ISCs) and maintaining the balance between self-renewal and differentiation of ISCs. Various radiation countermeasures including radioprotectors and mitigators are under development phase globally but still not approved for clinical applications during any radiation emergencies. In view of above, present review highlights cellular and molecular interruptions of GI system due to acute and chronic GI radiation injury, role of radioprotectors in signalling cascade modulations in GI epithelium and involvement of ISC markers in radioprotection.
Collapse
Affiliation(s)
- Sunil Kumar Meena
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Pukha Raj Joriya
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Sanwar Mal Yadav
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Raj Kumar
- Institute of Nuclear Medicine and Allied Science, DRDO, Delhi, India
| | - Priyadarshi Meena
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Dev Dutt Patel
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Dong Y, Zhang Y, Wang X, Li W, Zhang J, Lu L, Dong H, Fan S, Meng A, Li D. The protective effects of Xuebijing injection on intestinal injuries of mice exposed to irradiation. Animal Model Exp Med 2022; 5:565-574. [PMID: 36376997 PMCID: PMC9773304 DOI: 10.1002/ame2.12285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gastrointestinal (GI) injury is one of the most common side effects of radiotherapy. However, there is no ideal therapy method except for symptomatic treatment in the clinic. Xuebijing (XBJ) is a traditional Chinese medicine, used to treat sepsis by injection. In this study, the protective effects of XBJ on radiation-induced intestinal injury (RIII) and its mechanism were explored. METHODS The effect of XBJ on survival of irradiated C57BL/6 mice was monitored. Histological changes including the number of crypts and the length of villi were evaluated by H&E. The expression of Lgr5+ intestinal stem cells (ISCs), Ki67+ cells, villin and lysozymes were examined by immunohistochemistry. The expression of cytokines in the intestinal crypt was detected by RT-PCR. DNA damage and apoptosis rates in the small intestine were also evaluated by immunofluorescence. RESULTS In the present study, XBJ improved the survival rate of the mice after 8.0 and 9.0 Gy total body irradiation (TBI). XBJ attenuated structural damage of the small intestine, maintained regenerative ability and promoted proliferation and differentiation of crypt cells, decreased apoptosis rate and reduced DNA damage in the intestine. Elevation of IL-6 and TNF-α was limited, but IL-1, TNF-𝛽 and IL-10 levels were increased in XBJ-treated group after irradiation. The expression of Bax and p53 were decreased after XBJ treatment. CONCLUSIONS Taken together, XBJ provides a protective effect on RIII by inhibiting inflammation and blocking p53-related apoptosis pathway.
Collapse
Affiliation(s)
- Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - YuanYang Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Aimin Meng
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Engineering Research Center for Laboratory Animal Models of Human Critical Diseases, National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC)BeijingChina
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
5
|
Discovery of the radio-protecting effect of Ecliptae Herba, its constituents and targeting p53-mediated apoptosis in vitro and in vivo. Acta Pharm Sin B 2022; 13:1216-1230. [PMID: 36970216 PMCID: PMC10031264 DOI: 10.1016/j.apsb.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Radiation protection drugs are often accompanied by toxicity, even amifostine, which has been the dominant radio-protecting drug for nearly 30 years. Furthermore, there is no therapeutic drug for radiation-induced intestinal injury (RIII). This paper intends to find a safe and effective radio-protecting ingredient from natural sources. The radio-protecting effect of Ecliptae Herba (EHE) was discovered preliminarily by antioxidant experiments and the mouse survival rate after 137Cs irradiation. EHE components and blood substances in vivo were identified through UPLC‒Q-TOF. The correlation network of "natural components in EHE-constituents migrating to blood-targets-pathways" was established to predict the active components and pathways. The binding force between potential active components and targets was studied by molecular docking, and the mechanism was further analyzed by Western blotting, cellular thermal shift assay (CETSA), and ChIP. Additionally, the expression levels of Lgr5, Axin2, Ki67, lysozyme, caspase-3, caspase-8,8-OHdG, and p53 in the small intestine of mice were detected. It was found for the first time that EHE is active in radiation protection and that luteolin is the material basis of this protection. Luteolin is a promising candidate for RⅢ. Luteolin can inhibit the p53 signaling pathway and regulate the BAX/BCL2 ratio in the process of apoptosis. Luteolin could also regulate the expression of multitarget proteins related to the same cell cycle.
Collapse
|
6
|
Zhou Y, Liu J, Li X, Wang L, Hu L, Li A, Zhou J. JAC4 Protects from X-Ray Radiation-Induced Intestinal Injury by JWA-Mediated Anti-Oxidation/Inflammation Signaling. Antioxidants (Basel) 2022; 11:antiox11061067. [PMID: 35739964 PMCID: PMC9220415 DOI: 10.3390/antiox11061067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Radiation-induced intestinal injury is one of the major side effects in patients receiving radiation therapy. There is no specific treatment for radiation-induced enteritis in the clinic. We synthesized a compound, named JAC4, which is an agonist and can increase JWA protein expression. JWA has been shown to reduce oxidative stress, DNA damage, anti-apoptosis, and anti-inflammatory; in addition, the small intestine epithelium showed dysplasia in JWA knockout mice. We hypothesized that JAC4 might exert a protective effect against radiation-induced intestinal damage. Herein, X-ray radiation models were built both in mice and in intestinal crypt epithelial cells (IEC-6). C57BL/6J mice were treated with JAC4 by gavage before abdominal irradiation (ABI); the data showed that JAC4 significantly reduced radiation-induced intestinal mucosal damage and increased the survival rate. In addition, radiation-induced oxidative stress damage and systemic inflammatory response were also mitigated by JAC4 treatment. Moreover, JAC4 treatment alleviated DNA damage, decreased cell apoptosis, and maintained intestinal epithelial cell proliferation in mice. In vitro data showed that JAC4 treatment significantly inhibited ROS formation and cell apoptosis. Importantly, all the above protective effects of JAC4 on X-ray radiation-triggered intestinal injury were no longer determined in the intestinal epithelium of JWA knockout mice. Therefore, our results provide the first evidence that JAC4 protects the intestine from radiation-induced enteritis through JWA-mediated anti-oxidation/inflammation signaling.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jingwen Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xiong Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Luman Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Lirong Hu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China;
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; (Y.Z.); (J.L.); (X.L.); (L.W.); (A.L.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Correspondence:
| |
Collapse
|
7
|
Ruscogenins Improve CD-Like Enteritis by Inhibiting Apoptosis of Intestinal Epithelial Cells and Activating Nrf2/NQO1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4877275. [PMID: 35308175 PMCID: PMC8930266 DOI: 10.1155/2022/4877275] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 12/14/2022]
Abstract
Interaction of intestinal barrier dysfunction and intestinal inflammation promotes the progression of Crohn's disease (CD). A more recent study has suggested that ruscogenins (RUS) can exert anti-inflammatory effects through activation of the Nrf2/NQO1 pathway. The current study is aimed at determining the functionalization of RUS on CD-like colitis. Wild-type (WT) mice induced with trinitrobenzene sulfonic acid (TNBS) exhibit a significant inflammation in their colon and are hence widely used for CD models. In the current study, the mice were treated with the Nrf-2 antagonist (ML385) or ruscogenin (RUS) whereas normal WT mice were kept as the negative control. Comparative analysis was then performed on the inflammation and barrier function of the colons. In vitro analysis of mouse colonic organoid systems revealed the influence of RUS on LPS-induced apoptosis, cytokine, and chemokine expressions in the intestinal epithelium. It was found that RUS ameliorates murine colitis through activation of the Nrf2/NQO1 pathway which was presented as a decrease in inflammation score and downregulated levels of cytokine and chemokine synthesis, as well as increased intestinal permeability. Further, it was noted that RUS alleviated LPS-induced apoptosis in the intestinal epithelium cells through upregulation of the Nrf2/NQO1 signaling pathway in the mouse colonic organoids. In addition, ruscogenin (RUS) attenuated the levels of Bax and C-caspase-3 through activation of the Nrf2/HO1 signaling pathway both in vivo and in vitro. Therefore, it was evident that RUS can be applied as a potential alternative therapeutic agent in CD based on its protective effects on the barrier function and anti-inflammatory activity.
Collapse
|
8
|
Jia S, Dong S, Liu H, Yu H, Chen Z, Wang S, Li W, Peng R, Li F, Jiang Q, Liu J. Dopamine-derived nanoparticles for protection of irradiation-induced intestinal injury by maintaining intestinal homeostasis. Biomater Sci 2022; 10:3309-3322. [DOI: 10.1039/d1bm02026a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy of abdominal and pelvic tumors almost inevitably injures the intestine by oxidative stress and causes inflammation. Regrettably, traditional radioprotective agents for irradiation (IR) induced intestinal injury suffer from challenges...
Collapse
|
9
|
Gu J, Zhao L, Chen YZ, Guo YX, Sun Y, Guo Q, Duan GX, Li C, Tang ZB, Zhang ZX, Qin LQ, Xu JY. Preventive effect of sanguinarine on intestinal injury in mice exposed to whole abdominal irradiation. Biomed Pharmacother 2021; 146:112496. [PMID: 34959117 DOI: 10.1016/j.biopha.2021.112496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal injury is one of the major side effects that are induced by medical radiation exposure, and has limited effective therapies. In this study, we investigated the beneficial effects of sanguinarine (SAN) on intestinal injury induced by ionizing radiation (IR) both in vitro and in vivo. Mice were exposed to whole abdominal irradiation (WAI) to mimic clinical scenarios. SAN was injected intraperitoneally to mitigate IR-induced injury. Histological examination was performed to assess the tissue injuries of the spleen and small intestine. A small intestinal epithelial cell line-6 (IEC-6) was analyzed for its viability and apoptosis in vitro under different treatments. Inflammation-related pathways and serum inflammatory cytokines were detected via Western blot analysis and ELISA, respectively. High-throughput sequencing was used to characterize the gut microbiota profile. High-performance liquid chromatography was performed to assess short-chain fatty acid contents in the colon. In vitro, SAN pretreatment protected cell viability and reduced apoptosis in IEC-6 cells. In vivo, SAN pretreatment protected immune organs, alleviated intestinal injury, and promoted intestinal recovery. SAN also reduced the levels of inflammatory cytokines, suppressed high mobility group box 1 (HMGB1)/ Toll-like receptor 4 (TLR4) pathway activation, and modulated gut microbiota composition. Our findings demonstrate that the beneficial properties of SAN alleviated intestinal radiation injury. Thus, SAN represents a therapeutic option for protecting against IR-induced intestinal injury in preclinical settings.
Collapse
Affiliation(s)
- Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Yu-Zhong Chen
- Yancheng Municipal Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Ya-Xin Guo
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Yue Sun
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China
| | - Qing Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Guang-Xin Duan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Chao Li
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhi-Bing Tang
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zi-Xiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, Jiangsu, China.
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Chen G, Han Y, Zhang H, Tu W, Zhang S. Radiotherapy-Induced Digestive Injury: Diagnosis, Treatment and Mechanisms. Front Oncol 2021; 11:757973. [PMID: 34804953 PMCID: PMC8604098 DOI: 10.3389/fonc.2021.757973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is one of the main therapeutic methods for treating cancer. The digestive system consists of the gastrointestinal tract and the accessory organs of digestion (the tongue, salivary glands, pancreas, liver and gallbladder). The digestive system is easily impaired during radiotherapy, especially in thoracic and abdominal radiotherapy. In this review, we introduce the physical classification, basic pathogenesis, clinical characteristics, predictive/diagnostic factors, and possible treatment targets of radiotherapy-induced digestive injury. Radiotherapy-induced digestive injury complies with the dose-volume effect and has a radiation-based organ correlation. Computed tomography (CT), MRI (magnetic resonance imaging), ultrasound (US) and endoscopy can help diagnose and evaluate the radiation-induced lesion level. The latest treatment approaches include improvement in radiotherapy (such as shielding, hydrogel spacers and dose distribution), stem cell transplantation and drug administration. Gut microbiota modulation may become a novel approach to relieving radiogenic gastrointestinal syndrome. Finally, we summarized the possible mechanisms involved in treatment, but they remain varied. Radionuclide-labeled targeting molecules (RLTMs) are promising for more precise radiotherapy. These advances contribute to our understanding of the assessment and treatment of radiation-induced digestive injury.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yi Han
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Haihan Zhang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Design, Synthesis, and Biological Evaluation of a Novel Aminothiol Compound as Potential Radioprotector. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4714649. [PMID: 34471464 PMCID: PMC8405339 DOI: 10.1155/2021/4714649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
The risk of radiation damage has increased with the rapid development of nuclear technology and radiotherapy. Hence, research on radioprotective agents is of utmost importance. In the present study, a novel aminothiol compound 12, containing a linear alkylamino backbone and three terminal thiols, was synthesized. Owing to the appropriate capped groups in the chains, it has an improved permeability and oral bioavailability compared to other radioprotective agents. Oral administration of compound 12 improved the survival of mice that received lethal doses of γ-irradiation. Experimental results demonstrated that compound 12 not only mitigated total body irradiation-induced hematopoietic injury by increasing the frequencies of hematopoietic stem and progenitor cells but also prevented abdominal irradiation-induced intestinal injury by increasing the survival of Lgr5+ intestinal cells, lysozyme+ Paneth cells, and Ki67+ cells. In addition, compound 12 decreased oxidative stress by upregulating the expression of Nrf2 and NQO1 and downregulating the expression of NOX1. Further, compound 12 inhibited γ-irradiation-induced DNA damage and alleviated G2/M phase arrest. Moreover, compound 12 decreased the levels of p53 and Bax and increased the level of Bcl-2, demonstrating that it may suppress radiation-induced apoptosis via the p53 pathway. These results indicate that compound 12 has the possibility of preventing radiation injury and can be a potential radioprotector for clinical applications.
Collapse
|
12
|
Li YH, He Q, Chen YZ, Du YF, Guo YX, Xu JY, Qin LQ. p-Coumaric acid ameliorates ionizing radiation-induced intestinal injury through modulation of oxidative stress and pyroptosis. Life Sci 2021; 278:119546. [PMID: 33915129 DOI: 10.1016/j.lfs.2021.119546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
AIMS Intestinal injury is a clinical problem related to radiotherapy or accidental exposure to ionizing radiation. This study aimed to investigate the protective effect of p-coumaric acid (CA) against radiation induced intestinal injury. MAIN METHODS The present study orally administered CA to C57BL/6 male mice at 30 min before total body irradiation and continued for 3 days post irradiation. Then, the mice were sacrificed at day 3.5 or 14 after irradiation, respectively. The blood was collected to analyze the inflammatory cytokines. The antioxidant indexes of jejunum tissues were determined. Hematoxylin and eosin staining and apoptosis analysis was studied to investigate the pathological changes of the jejunum tissues. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were carried out to determine the changes in mRNA and protein levels of jejunum tissues. KEY FINDINGS Compared with the only irradiated group, treatment with CA improved intestinal morphology and apoptosis, increased the villus height and the ratio of villus height to crypt depth. It also reduced the oxidative stress and inflammatory response. The molecular mechanism analysis showed that CA significantly inhibited the pyroptosis genes (Caspase-1, NLRP3 and AIM2) mRNA expression and improved the intestinal barrier genes expression. SIGNIFICANCE The results suggested that CA ameliorates ionizing radiation-induced intestinal injury by inhibition of oxidative stress, inflammatory response and pyroptosis.
Collapse
Affiliation(s)
- Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ya-Fang Du
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ya-Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Li-Qiang Qin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
13
|
Li X, Wang X, Miao L, Liu Y, Lin X, Guo Y, Yuan R, Tian H. Synthesis and radioprotective effects of novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opening derivatives. J Cell Mol Med 2021; 25:5470-5485. [PMID: 33963805 PMCID: PMC8184683 DOI: 10.1111/jcmm.16557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
As the potential risk of radiation exposure is increasing, radioprotectors studies are gaining importance. In this study, novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opening derivatives were synthesized, and their radioprotective effects were evaluated. Among these, compound 10a displayed the highest radioprotective activity in IEC-6 and HFL-1 cells. Its oral administration increased the survival rates of irradiated mice and alleviated total body irradiation (TBI)-induced hematopoietic damage by mitigating myelosuppression and improving hematopoietic stem/progenitor cell frequencies. Furthermore, 10a treatment prevented abdominal irradiation (ABI)-induced structural damage to the small intestine. Experiment results demonstrated that 10a increased the number of Lgr5+ intestinal stem cells, lysozyme+ Paneth cells and Ki67+ transient amplifying cells, and reduced apoptosis of the intestinal epithelium cells in irradiated mice. Moreover, in vitro and in vivo studies demonstrated that the radioprotective activity of 10a is associated to the reduction of oxidative stress and the inhibition of DNA damage. Furthermore, compound 10a downregulated the expressions of p53, Bax, caspase-9 and caspase-3, and upregulated the expression of Bcl-2, suggesting that it could prevent irradiation-induced intestinal damage through the p53-dependent apoptotic pathway. Collectively, these findings demonstrate that 10a is beneficial for the prevention of radiation damage and has the potential to be a radioprotector.
Collapse
Affiliation(s)
- Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xinxin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yahong Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xiaona Lin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| |
Collapse
|
14
|
Liu Y, Miao L, Guo Y, Tian H. Preclinical Evaluation of Safety, Pharmacokinetics, Efficacy, and Mechanism of Radioprotective Agent HL-003. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6683836. [PMID: 33688393 PMCID: PMC7914087 DOI: 10.1155/2021/6683836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
Amifostine is a radioprotector with high efficacy but poor safety, short half-life, no oral formulation, and poor compliance, which limits its application. With the increasing risk of exposure to radiation, the development of new radioprotective agents is critical. We previously synthesized a new amifostine derivative, the small molecule compound HL-003. In this study, we focused on evaluating the radioprotective properties of HL-003. Using the in vitro 2,2-diphenyl-1-picrylhydrazyl assay, we initially confirmed HL-003 as a strong antioxidant and demonstrated that its free radical scavenging activity was stronger than that of amifostine. Then, we performed an acute toxicity test, a 28-day toxicity test, a 30-day survival rate test, and a pharmacokinetic study, all of which provided aggregate evidence that HL-003 functioned as a small molecule radioprotector with high efficacy, a favorable safety profile, a long half-life, and oral administration. The intestinal radioprotective mechanism of HL-003 was explored in male C57 mice after abdominal irradiation by analyzing intestinal tissue samples with hematoxylin-eosin staining, immunohistochemistry, TUNEL staining, and immunofluorescence detection. The results showed that HL-003 protected intestinal DNA from radiation damage and suppressed the expression of phosphorylated histone H2AX, phosphorylated p53, and the apoptosis-related proteins caspase-8 and caspase-9, which contributed to maintaining the normal morphology of the small intestine and provided insights into the mechanism of radioprotection. Thus, HL-003 is a small molecule radioprotector with a potential application in radiation medicine.
Collapse
Affiliation(s)
- Yahong Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| |
Collapse
|
15
|
Chen YZ, Li C, Gu J, Lv SC, Song JY, Tang ZB, Duan GX, Qin LQ, Zhao L, Xu JY. Anti-Oxidative and Immuno-Protective Effect of Camel Milk on Radiation-Induced Intestinal Injury in C57BL/6 J Mice. Dose Response 2021; 19:15593258211003798. [PMID: 33867894 PMCID: PMC8020251 DOI: 10.1177/15593258211003798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The main objective is to investigate the protective effect of camel milk (CM) on radiation-induced intestinal injury. METHODS The C57BL/6 J mice in 2 experiments were assigned into control group (Con), irradiation group (IR), and CM+irradiation group (CM+IR). After receiving the CM via gavage for 14 days, the mice in the first experiment were exposed to 6 Gy X-ray whole body irradiation, and survival rate was compared among the groups. Mice in the second experiment were exposed to 4 Gy irradiation and sacrificed at day 7. The small intestines were collected to examine the histopathological changes and to determine the anti-oxidative index and HMGB1/TLR4 inflammatory pathway. Fasting blood was used to measure serum pro-inflammatory factors. RESULTS Compared with the IR group, the survival time was prolonged, and survival rate was increased in the CM+IR group. CM increased levels of SOD and GSH and decreased MDA in the jejunum. Furthermore, intestinal protein expression of HMGB1/TLR4 pathway (TLR4, NF-κB, and HMGB1) was up-regulated by CM intervention. CM decreased the serum levels of TNF-α and IL-1β and increased IL-10 level. CONCLUSIONS CM extended the survival time and had a protective effect against radiation-induced jejunum injury by regulation of antioxidant capacity and HMGB1/TLR4/NF-κB/MyD88 inflammatory signaling pathway.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chao Li
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Si-chen Lv
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jia-ying Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhi-bing Tang
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Guang-Xin Duan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene School of Public Health, Soochow University, Suzhou, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Lin Zhao and Jia-Ying Xu, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. ;
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Lin Zhao and Jia-Ying Xu, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. ;
| |
Collapse
|
16
|
Wang M, Dong Y, Wu J, Li H, Zhang Y, Fan S, Li D. Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis. Life Sci 2020; 261:118463. [PMID: 32950576 DOI: 10.1016/j.lfs.2020.118463] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022]
Abstract
AIMS Ionizing radiation (IR) induces injuries to the hematopoietic and intestinal systems, which are the leading cause of death. Baicalein, a plant-derived flavonoid, shows anti-oxidative stress, anti-apoptosis, anti-inflammation effects in many diseases. In this study, we evaluated the effects and mechanism of baicalein on IR induced intestinal and hematopoietic injuries. MAIN METHODS Mice were divided into three groups: Control, IR and IR + Baicalein. All of mice were intraperitoneally administered with 100 mg/kg baicalein or normal saline for 1 h before IR, and then a day post-IR. The changes in intestinal structure, function and molecular expression were observed by pathological experiments and western blot. 16S rRNA gene sequencing was performed to analyze gut microbiota and further predicted metabolic pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Hematopoietic function was evaluated by peripheral blood cells count and by flow cytometry analysis of hematopoietic cells composition. KEY FINDINGS Baicalein improved intestinal structure and the ability of proliferation and regeneration after mice exposed to IR, in which the rebalance of gut microbial composition played an important role. KEGG results showed that p53-related apoptotic pathways played important roles in the composition changes of gut microbiota. Then we observed that baicalein inhibited the activation of p53 and p53 mediated mitochondrial apoptosis and death receptor apoptosis in the intestine. In addition, IR induced injuries to hematopoietic system also could be ameliorated by baicalein. SIGNIFICANCE These results provide new insights into the mechanism of baicalein and support the potential of baicalein as a radioprotective medicine.
Collapse
Affiliation(s)
- Meifang Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jing Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hongyan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuanyang Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
17
|
Lu L, Li W, Chen L, Su Q, Wang Y, Guo Z, Lu Y, Liu B, Qin S. Radiation-induced intestinal damage: latest molecular and clinical developments. Future Oncol 2019; 15:4105-4118. [PMID: 31746639 DOI: 10.2217/fon-2019-0416] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To systematically review the prophylactic and therapeutic interventions for reducing the incidence or severity of intestinal symptoms among cancer patients receiving radiotherapy. Materials & methods: A literature search was conducted in the PubMed database using various search terms, including 'radiation enteritis', 'radiation enteropathy', 'radiation-induced intestinal disease', 'radiation-induced intestinal damage' and 'radiation mucositis'. The search was limited to in vivo studies, clinical trials and meta-analyses published in English with no limitation on publication date. Other relevant literature was identified based on the reference lists of selected studies. Results: The pathogenesis of acute and chronic radiation-induced intestinal damage as well as the prevention and treatment approaches were reviewed. Conclusion: There is inadequate evidence to strongly support the use of a particular strategy to reduce radiation-induced intestinal damage. More high-quality randomized controlled trials are required for interventions with limited evidence suggestive of potential benefits.
Collapse
Affiliation(s)
- Lina Lu
- School of Nuclear Science & Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.,School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Wenjun Li
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Lihua Chen
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Qiong Su
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Yanbin Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Zhong Guo
- Medical College of Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Yongjuan Lu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Bin Liu
- School of Nuclear Science & Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.,School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Song Qin
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
18
|
Cheng Y, Dong Y, Hou Q, Wu J, Zhang W, Tian H, Li D. The protective effects of XH-105 against radiation-induced intestinal injury. J Cell Mol Med 2019; 23:2238-2247. [PMID: 30663222 PMCID: PMC6378229 DOI: 10.1111/jcmm.14159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022] Open
Abstract
Radiation-induced intestinal injury is one of the major side effects in patients receiving radiation therapy. There is no specific treatment for radiation enteritis in the clinic. We designed and synthesized a new compound named XH-105, which is expected to cleave into polyphenol and aminothiol in vivo to mitigate radiation injury. In the following study, we describe the beneficial effects of XH-105 against radiation-induced intestinal injury. C57BL/6J mice were treated by gavage with XH-105 1 hour before total body irradiation (TBI), and the survival rate was monitored. Histological changes were examined, and survival of Lgr5+ intestinal stem cells Ki67+ cells, villi+ enterocytes and lysozymes was determined by immunohistochemistry. DNA damage and cellular apoptosis in intestinal tissue were also evaluated. Compared to vehicle-treated mice after TBI, XH-105 treatment significantly enhanced the survival rate, attenuated structural damage of the small intestine, decreased the apoptotic rate, reduced DNA damage, maintained cell regeneration and promoted crypt proliferation and differentiation. XH-105 also reduced the expression of Bax and p53 in the small intestine. These data suggest that XH-105 is beneficial for the protection of radiation-induced intestinal injury by inhibiting the p53-dependent apoptosis signalling pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,Center for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Qinlian Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jing Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wei Zhang
- Center for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|