1
|
Xia K, Jin Z, Qiu Q, Zhou Y, Lu Y, Qiu T, Zhou J, Chen Z. Ligustilide alleviates oxidative stress during renal ischemia-reperfusion injury through maintaining Sirt3-dependent mitochondrial homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155975. [PMID: 39216302 DOI: 10.1016/j.phymed.2024.155975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion (I/R) injury is an inevitable complication during renal transplantation and is closely related to patient prognosis. Mitochondrial damage induced oxidative stress is the core link of renal I/R injury. Ligustilide (LIG), a natural compound extracted from ligusticum chuanxiong hort and angelica sinensis, has exhibited the potential to protect mitochondrial function. However, whether LIG can ameliorate renal I/R injury requires further investigation. Delving deeper into the precise targets and mechanisms of LIG's effect on renal I/R injury is crucial. PURPOSE This study aimed to elucidate the specific mechanism of LIG's protective effect on renal I/R injury. METHODS In this study, an in vivo model of renal ischemia-reperfusion (I/R) injury was developed in mice, along with an in vitro model of hypoxia-reoxygenation (H/R) using human proximal renal tubular epithelial cells (HK-2). To assess the impact of LIG on renal injury, various methods were employed, including serum creatinine (Cr) and blood urea nitrogen (BUN) testing, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) for kidney injury molecule-1 (KIM-1). The effects of LIG on oxidative stress were examined using fluorescent probes dihydroethidium (DHE) and dichlorodihydrofluorescein diacetate (DCFH-DA), TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and flow cytometry. Additionally, the influence of LIG on mitochondrial morphology and function was evaluated through transmission electron microscopy (TEM), Mito Tracker Red CMXRos staining, adenosine triphosphate (ATP) concentration assays, and JC-1 staining. The potential mechanism involving LIG and Sirt3 was explored by manipulating Sirt3 expression through cell transfection. RESULTS The results showed that LIG could provide protective function for mitochondria to alleviate oxidative stress induced by renal I/R. Further mechanistic studies indicated that LIG maintained mitochondrial homeostasis by targeting Sirt3. CONCLUSION Our findings demonstrated that LIG alleviated oxidative stress during renal I/R injury through maintaining Sirt3-dependent mitochondrial homeostasis. Overall, our data raised the possibility of LIG as a novel therapy for renal I/R injury.
Collapse
Affiliation(s)
- Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zeya Jin
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiangmin Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yujie Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yifan Lu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Lu J, Yu M, Li J. PKC-δ Promotes IL-1β-Induced Apoptosis of Rat Chondrocytes and Via Activating JNK and P38 MAPK Pathways. Cartilage 2024; 15:315-327. [PMID: 37491820 PMCID: PMC11418514 DOI: 10.1177/19476035231181446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE Protein kinase C-delta (PKC-δ) is involved in apoptosis. This study aimed to establish whether PKC-δ can further promote IL-1β-induced chondrocyte apoptosis by mediating the phosphorylation of the JNK and p38 mitogen-activated protein kinase (MAPK) signaling pathways In osteoarthritis (OA). METHODS We employed chondrocyte staining to determine the extent of cartilage degeneration. PKC-δ and p38 signal expressions were used in the immunohistochemical (IHC) test and apoptosis was assayed at the TUNEL test in human osteoarthritic and controls. We stimulated rat cartilage cells using IL-1β (10 ng/ml)/rottlerin (10 μM) or lentivirus. To determine the apoptosis rate, we employed flow cytometry. The mRNA of both BCL2-related X (BAX) and cysteine aspartate protease 3 (caspase-3) could be measured via qRT-PCR. Western blot measured the protein levels of BAX, caspase-3, PKC-δ, p-JNK/JNK and p-p38/p38. RESULTS The positive rate of PKC-δ and the apoptotic rate of chondrocytes in OA were higher than controls. The manifestation of PKC-δ was positively related to the degree of cartilage degeneration, p38 protein expression, and apoptosis rate. IL-1β exposure upregulated PKC-δ expression in chondrocytes in a dose-dependent manner. Decreasing PKC-δ expression and its phosphorylation in OA can inhibit MAPK signaling pathway activation (phosphorylation) by downregulating JNK and p38 protein phosphorylation and expression. This inhibition decreases caspase-3 and BAX levels, consequently lowering the apoptosis rate in chondrocytes. CONCLUSION PKC-δ activation by IL-1β in OA promotes chondrocyte apoptosis via activation of the JNK and p38 MAPK signal pathways, thereby promoting the OA progression.
Collapse
Affiliation(s)
- Jinfeng Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Miao Yu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Wu Q, Yuan Z, Fang Y, Wu L, Bo Z, Peng C, Wu B. Natural product of angelica essential oil developed as a stable Pickering emulsion for joint interface lubrication. Colloids Surf B Biointerfaces 2024; 240:113993. [PMID: 38810464 DOI: 10.1016/j.colsurfb.2024.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Development of high-performance joint injection lubricants has become the focus in the field of osteoarthritis treatment. Herein, natural product of angelica essential oil combined with the graphene oxide were prepared to the stable Pickering emulsion as a biological lubricant. The tribological properties of the Pickering emulsion under different friction conditions were studied. The lubricating mechanism was revealed and the biological activities were evaluated. Results showed that the prepared Pickering emulsion displayed superior lubrication property at the Ti6Al4V biological material interface. The maximum friction reduction and anti-wear abilities of the Pickering emulsion were improved by 36% and 50% compared to water, respectively. This was primarily due to the action of the double-layer lubrication films composed of the graphene oxide and angelica essential oil molecules. It was worth noting that the friction reduction effect of the Pickering emulsion at the natural cartilage interface was higher about 19% than that of HA used in clinic for OA commonly. In addition, the Pickering emulsion also displayed antioxidant activity and cell biocompatibility, showing a good clinical application prospect in the future.
Collapse
Affiliation(s)
- Qian Wu
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ziji Yuan
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Fang
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liangbin Wu
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zihan Bo
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengjun Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China.
| | - Bo Wu
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
4
|
Fan Q, Liu X, Zhang Y, Kang W, Si S, Zhang H. Integration of metabolomics and network pharmacology technology to explain the effect mechanisms of Danggui Buxue decoction in vascular dementia. Biomed Chromatogr 2024; 38:e5822. [PMID: 38237172 DOI: 10.1002/bmc.5822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 03/16/2024]
Abstract
Danggui Buxue decoction (DBD) is a traditional Chinese medicine herbal decoction that has a good therapeutic effect on vascular dementia (VaD). However, its pharmacodynamic substances and underlying mechanisms are ambiguous. The work aimed to decipher the pharmacodynamic substances and molecular mechanisms of DBD against VaD rats based on gas chromatography-mass spectrometry metabonomics, network pharmacology, molecular docking, and experimental verification. The results indicated that DBD significantly improved the learning abilities and cognitive impairment in the VaD rat model. Integration analysis of the metabolomics and network pharmacology approach revealed that DBD might primarily affect arachidonic acid (AA) and inositol phosphate metabolic pathways by regulating the platelet activation signaling pathways. Six core targets (TNF [tumor necrosis factor], IL-6 [interleukin 6], PTGS2 [prostaglandin-endoperoxide synthase 2], MAPK1, MAPK3, and TP53) in the platelet activation signaling pathways also had a good affinity to seven main active components (saponins, organic acids, flavonoids, and phthalides) of DBD through the verification of molecular docking. Enzyme-linked immunosorbent assay results (ELISA) showed that the levels of TNF, IL-6, PTGS2, thromboxane B2, and caspase-3 in the platelet activation signaling pathway can be regulated by DBD. Our results indicated that DBD treated VaD mainly by modulating the platelet activation signaling pathway, and AA and inositol phosphate metabolism.
Collapse
Affiliation(s)
- Qin Fan
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Chemistry and Quality for Traditional Chinese Medicines of the College of Gansu Province, Lanzhou, China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, China
| | - Xinhong Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanying Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Wanrong Kang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Shanshan Si
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Hongmei Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Zhuge F, Zheng L, Pan Y, Ni L, Fu Z, Shi J, Ni Y. DPP-4 inhibition by linagliptin ameliorates age-related mild cognitive impairment by regulating microglia polarization in mice. Exp Neurol 2024; 373:114689. [PMID: 38199510 DOI: 10.1016/j.expneurol.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Extensive preclinical evidence demonstrates a causative link between insulin signaling dysfunction and the pathogenesis of Alzheimer's disease (AD), and diabetic drugs may represent a promising approach to fighting AD. However, it remains to be determined which antidiabetic drugs are more effective in preventing cognitive impairment. Thus, the present study investigated the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin on cognitive impairment in middle-aged mice by comparing it with the effect of metformin. We found that DPP-4 activity increased in the hippocampus of middle-aged mice, and DPP-4 was mainly expressed by microglia rather than astrocytes and oligodendrocytes. DPP-4 directly regulated M1/M2 microglia polarization following LPS or IL-4 stimulation, while DPP-4 inhibitor, linagliptin, suppressed M1-polarized activation and induced M2-polarized activation. Both linagliptin and metformin enhanced cognitive ability, increased hippocampal synaptic plasticity and neurogenesis, and decreased age-related oxidative stress and inflammation by regulating microglia polarization in the hippocampus of middle-aged mice. The combination of linagliptin and metformin showed a maximum protective effect compared to the individual drugs alone. Loss of macrophage inflammatory protein-1α (MIP-1α), a DPP-4 substrate, abrogated the cognitive protection and anti-inflammation effects of linagliptin. Therefore, the current investigation exhibits a potential utility for DPP-4 inhibition in attenuating microglia-mediated inflammation and preventing mild cognitive impairment (MCI) in middle-aged mice, and the effect was partly mediated by MIP-1α.
Collapse
Affiliation(s)
- Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liyang Ni
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Junping Shi
- Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
6
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
7
|
Li D, Liu W, Sun S, Zhang Y, Zhang P, Feng G, Wei J, Chai L. Chinese herbal formula, modified Xianfang Huoming Yin, alleviates the inflammatory proliferation of rat synoviocytes induced by IL-1β through regulating the migration and differentiation of T lymphocytes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116297. [PMID: 36849102 DOI: 10.1016/j.jep.2023.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xianfang Huoming Yin (XFH) is a traditional Chinese herbal formula, which has the effect of clearing heat and detoxifying toxins, dispersing swellings, activating blood circulation, and relieving pain. It is usually applied to treat various autoimmune diseases, including Rheumatoid arthritis (RA). AIM OF THE STUDY The migration of T lymphocytes plays an indispensable role in the pathogenesis of RA. Our previous studies demonstrated that modified Xianfang Huoming Yin (XFHM) could modulate the differentiation of T, B, and NK cells, and contribute to the restoration of immunologic balance. It also could downregulate the production of pro-inflammatory cytokines by regulating the activation of NF-κ B and JAK/STAT signaling pathways in the collagen-induced arthritis mouse model. In this study, we want to investigate whether XFHM has therapeutic effects on the inflammatory proliferation of rat fibroblast-like synovial cells (FLSs) by interfering with the migration of T lymphocytes in vitro experiments. MATERIALS AND METHODS High performance liquid chromatography-electrospray ionization/mass spectrometer system was used to identify the constituents of the XFHM formula. A co-culture system of rat fibroblast-like synovial cells (RSC-364 cells) and peripheral blood lymphocytes stimulated by interleukin-1 beta (IL-1β) was used as the cell model. IL-1β inhibitor (IL-1βRA) was used as a positive control medicine, and two concentrations (100 μg/mL and 250 μg/mL) of freeze-dried XFHM powder were used as intervention measure. The lymphocyte migration levels were analyzed by the Real-time xCELLigence analysis system after 24 h and 48 h of treatment. The percentage of CD3+CD4+ T cells and CD3+CD8+ T cells, and the apoptosis rate of FLSs were detected by flow cytometry. The morphology of RSC-364 cells was observed by hematoxylin-eosin staining. The protein expression of key factors for T cell differentiation and NF-κ B signaling pathway-related proteins in RSC-364 cells were examined by western-blot analysis. The migration-related cytokines levels of P-selectin, VCAM-1, and ICAM-1 in the supernatant were measured by enzyme-linked immunosorbent assay. RESULTS Twenty-one different components in XFHM were identified. The migration CI index of T cells was significantly decreased in treatment with XFHM. XFHM also could significantly downregulate the levels r of CD3+CD4+T cells and CD3+CD8+T cells that migrated to the FLSs layer. Further study found that XFHM suppresses the production of P-selectin, VCAM-1, and ICAM-1. Meanwhile, it downregulated the protein levels of T-bet, ROR γ t, IKKα/β, TRAF2, and NF-κ B p50, upregulated the expression of GATA-3 and alleviated synovial cells inflammation proliferation, contributing to the FLSs apoptosis. CONCLUSION XFHM could attenuate the inflammation of synovium by inhibiting T lymphocyte cell migration, regulating differentiation of T cells through modulating the activation of the NF-κ B signaling pathway.
Collapse
Affiliation(s)
- Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wei
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
Ji X, Du W, Che W, Wang L, Zhao L. Apigenin Inhibits the Progression of Osteoarthritis by Mediating Macrophage Polarization. Molecules 2023; 28:molecules28072915. [PMID: 37049677 PMCID: PMC10095825 DOI: 10.3390/molecules28072915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE The overall purpose of this study was to investigate the mechanism of macrophage polarization on chondrocyte injury in osteoarthritis and the protective effect of apigenin on chondrocytes in osteoarthritis. METHOD Primary chondrocytes were isolated from the knee cartilage of three-day-old mice, and cells positive for Alsine blue staining and type II collagen immunocytochemical staining were identified and used in followup experiments. Transwell coculture was performed. Chondrocytes were inoculated in the inferior compartment, and macrophages were inoculated in the upper compartment. The experimental groups were the N group, LPS group, and LPS+ apigenin group. The effect of macrophage polarization on chondrocyte inflammation and the protective effect of apigenin on chondrocytes were verified by the drug administration. Real-time quantitative PCR (qPCR) and Western blot were used to detect the expression of RNA and protein. Experimental OA was induced by modified Hulth surgery in mice. Modified Hulth surgery was performed on the mouse's right knee to induce experimental osteoarthritis in mice, with the nonoperative right knee serving as an ipsilateral control. The mice were randomly assigned to three groups (six mice per group): the sham group, the modified Hulth group, and the modified Hulth + apigenin group. Animals were given gavage for four weeks. The protective effect of apigenin on articular cartilage was verified by histological staining and immunohistochemical analysis. RESULTS Histological staining showed that apigenin had a protective effect on cartilage degeneration induced by modified Hulth surgery. The PCR results showed that apigenin significantly reduced the expression levels of IL-1, IL-6, MMP3, and MMP13 in the articular cartilage of OA mice, and it had a protective effect on articular cartilage. Apigenin reduced the levels of IL-1, IL-6, TNF-α, and IL-12 in macrophages and increased the levels of MG-L1, MG-L2, ARG-1, and IL-10, which can inhibit the M1 polarization of macrophages and promote M2 polarization. In the coculture system, apigenin decreased the protein levels of TRPM7, P-mTOR, BAX, and c-caspase3 in macrophages, while significantly increasing the protein levels of Bcl2. The levels of IL-1, IL-6, MMP13, TNF-α, P38, JNK, and ERK phosphorylation were reduced in chondrocytes. CONCLUSION Apigenin alleviates cartilage injury in OA mice induced by modified Hulth. Apigenin inhibits chondrocyte inflammation through the MAPK pathway. Apigenin alleviates macrophage-polarization-induced inflammatory response and chondrocyte apoptosis in the macrophage-chondrocyte coculture system through the TRPM7-mTOR pathway.
Collapse
Affiliation(s)
- Xueyan Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wei Du
- Department of Pharmacy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Wenqing Che
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Liping Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
9
|
Lu YJ, Niu L, Shen FK, Yang W, Xie Y, Li SY, Jiang M, Bai G. Ligustilide attenuates airway remodeling in COPD mice by covalently binding to MH2 domain of Smad3 in pulmonary epithelium, disrupting the Smad3-SARA interaction. Phytother Res 2023; 37:717-730. [PMID: 36216328 DOI: 10.1002/ptr.7655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022]
Abstract
Airway remodeling is one of the hallmarks of chronic obstructive pulmonary disease (COPD) and is closely related to the dysregulation of epithelial-mesenchymal transition (EMT). Smad3, an important transcriptional regulator responsible for transducing TGF-β1 signals, is a promising target for EMT modulation. We found that ligustilide (Lig), a novel Smad3 covalent inhibitor, effectively inhibited airway remodeling in cigarette smoke (CS) combined with lipopolysaccharide (LPS)-induced COPD mice. Oral administration of an alkynyl-modified Lig probe was used to capture and trace target proteins in mouse lung tissue, revealing Smad3 in airway epithelium as a key target of Lig. Protein mass spectrometry and Smad3 mutation analysis via in-gel imaging indicated that the epoxidized metabolite of Lig covalently binds to the MH2 domain of Smad3 at Cys331/337. This irreversible bonding destroys the interaction of Smad3-SARA, prevents Smad3 phosphorylation activation, and subsequently suppresses the nuclear transfer of p-Smad3, the EMT process, and collagen deposition in TGF-β1-stimulated BEAS-2B cells and COPD mice. These findings provide experimental support that Lig attenuates COPD by repressing airway remodeling which is attributed to its suppression on the activation of EMT process in the airway epithelium via targeting Smad3 and inhibiting the recruitment of the Smad3-SARA heterodimer in the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Yu-Jie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Lin Niu
- Laboratory of Compound Drugs and Systems Biology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Fu-Kui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Yang Xie
- Department of Respiratory Diseases, The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Su-Yun Li
- Department of Respiratory Diseases, The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R., China, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
10
|
Icaritin Derivative IC2 Induces Cytoprotective Autophagy of Breast Cancer Cells via SCD1 Inhibition. Molecules 2023; 28:molecules28031109. [PMID: 36770781 PMCID: PMC9920188 DOI: 10.3390/molecules28031109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Breast cancer is one of the most prevalent malignancies and the leading cause of cancer-associated mortality in China. Icaritin (ICT), a prenyl flavonoid derived from the Epimedium Genus, has been proven to inhibit the proliferation and stemness of breast cancer cells. Our previous study demonstrated that IC2, a derivative of ICT, could induce breast cancer cell apoptosis by Stearoyl-CoA desaturase 1 (SCD1) inhibition. The present study further investigated the mechanism of the inhibitory effects of IC2 on breast cancer cells in vitro and in vivo. Our results proved that IC2 could stimulate autophagy in breast cancer cells with the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling and mitogen-activated protein kinase (MAPK) signaling. Combination treatment of the AMPK inhibitor decreased IC2-induced autophagy while it markedly enhanced IC2-induced apoptosis. In common with IC2-induced apoptosis, SCD1 overexpression or the addition of exogenous oleic acid (OA) could also alleviate IC2-induced autophagy. In vivo assays additionally demonstrated that IC2 treatment markedly inhibited tumor growth in a mouse breast cancer xenograft model. Overall, our study was the first to demonstrate that IC2 induced cytoprotective autophagy by SCD1 inhibition in breast cancer cells and that the autophagy inhibitor markedly enhanced the anticancer activity of IC2. Therefore, IC2 was a potential candidate compound in combination therapy for breast cancer.
Collapse
|
11
|
Xiong H, Meng F, Luo M, Chen W, Tian J, Chen L, Ju Y, Mei Z. Anti-inflammatory and osteoprotective effects of Shi-Wei-Ru-Xiang pills on collagen-induced arthritis in rats via inhibiting MAPK and STAT3 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115693. [PMID: 36075272 DOI: 10.1016/j.jep.2022.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shi-Wei-Ru-Xiang pills (SW) as a tradition Tibetan medicine has been clinically proved effective in rheumatoid arthritis (RA) treatment. However, the underlying mechanism of SW remains unclear. AIM OF THE STUDY This study aimed to investigate the anti-arthritic effect of SW and its possible mechanisms of action. MATERIALS AND METHODS A CIA rat model in vivo, and IL-1β-stimulated synoviocytes or chondrocytes and a co-culture system (IL-1β-stimulated synoviocytes/chondrocytes) in vitro were used to evaluate the effects of SW on the treatment of RA. Arthritic score, paw swelling rate, hematoxylin-eosin (HE) staining, and Safranin-O-Fast green (S-O) staining were used to evaluate the anti-arthritic activity of SW in CIA rats. TUNEL assay or flow cytometry were performed to measure chondrocytes apoptosis in vivo and invitro. The effects of SW on the expression and production of pro-inflammatory cytokines were assessed by qRT-PCR and Elisa. The inhibitory effects of SW on the phosphorylation of p38, Erk1/2, and STAT3 were analyzed by Western blot. RESULTS SW treatment significantly alleviated paw swelling, severity of arthritic and cartilage destruction in CIA rats. Moreover, SW decreased the expression of mRNAs of proinflammatory cytokines including TNF-α, IL-1β and IL-6 in the synovium, suppressed the production of these pro-inflammatory cytokines in serum and hind paws, downregulated the protein expression of p-p38, p-Erk1/2 and p-STAT3, and protected the chondrocytes apoptosis in CIA rats. Consistent with the results in vivo, SW also inhibited the activation of MAPK and STAT3 pathways, suppressed the expression of pro-inflammatory cytokines in IL-1β-stimulated synoviocytes, and attenuated chondrocytes apoptosis in IL-1β-stimulated chondrocytes. In the co-culture system, SW pre-treatment in IL-1β-stimulated synoviocytes exhibited inhibition of chondrocytes apoptosis, which was associated with attenuation of inflammation in synoviocytes. CONCLUSION These results suggested that the underlying mechanisms by which SW exerts its anti-arthritis effect may be related to the reduction of proinflammatory cytokine levels, inhibition of p38, Erk1/2 and STAT3 phosphorylation, and attenuating of chondrocyte apoptosis.
Collapse
Affiliation(s)
- Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Fengping Meng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Miao Luo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Weiwu Chen
- Tibet Qizheng Tibetan Medicine Co.Ltd., Lasa, 850030, China
| | - Juan Tian
- Tibet Qizheng Tibetan Medicine Co.Ltd., Lasa, 850030, China
| | - Lunju Chen
- Tibet Qizheng Tibetan Medicine Co.Ltd., Lasa, 850030, China
| | - Yankun Ju
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Chen Q, Kao X, Gao Y, Chen J, Dong Z, Chen C. Nitric oxide-caused rabbit chondrocyte apoptosis is linked to cytoskeletal protein proteolysis anomaly through intracellular JNK and ERK signal pathways. Mol Cell Toxicol 2023; 19:71-79. [DOI: https:/doi.org/10.1007/s13273-022-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 02/14/2024]
|
13
|
Zhang X, You Y, Sun Y, Guo X, Han Lin, Zong M, Shi J. Catalytic anti-oxidative stress for osteoarthritis treatment by few-layered phosphorene. Mater Today Bio 2022; 17:100462. [PMID: 36325424 PMCID: PMC9619373 DOI: 10.1016/j.mtbio.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
As one of the most common representations of articular cartilage damage, osteoarthritis (OA) is characterized by the apoptosis and dysfunction of chondrocytes as well as the progressive degradation of extracellular matrix, of which the main components are glycosaminoglycan and type Ⅱ collagen. Few-layered phosphorene (FLP) has been attracting great attentions in biomedical fields owing to the excellent capability of in-situ catalysis for scavenging oxidate-associated molecules, especially the reactive oxygen species (ROS) and reactive nitrogen species (RNS). Herein, FLP has been fabricated and employed for articular cartilage protection by means of deleting oxidate-associated molecules. The in vitro results show that as low as 200 μg/mL FLP is capable of diminishing oxidative damages on the osteoarthritic chondrocytes through the efficient elimination of ROS, H2O2 and NO. Meanwhile, the cartilage matrix protection has also been achieved at 200 μg/mL FLP by the uniform restoration of glycosaminoglycan and type Ⅱ collagen. FLP enables the nanocatalytic treatment for the overloaded oxidative stress in the injured articular cartilage and represents a promising alternative for osteoarthritis therapy.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Xiang Guo
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China,Corresponding author.
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, PR China,Corresponding author.
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China,Corresponding author.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
14
|
Jo HG, Seo J, Lee D. Clinical evidence construction of East Asian herbal medicine for inflammatory pain in rheumatoid arthritis based on integrative data mining approach. Pharmacol Res 2022; 185:106460. [PMID: 36152738 DOI: 10.1016/j.phrs.2022.106460] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to a significant social burden. East Asian herbal medicine (EAHM) has long been used to treat RA. Therefore, a systematic study of how EAHM treatments can be developed into new drugs using specific materials is needed. METHODS Eleven databases containing literature in English, Korean, Chinese, and Japanese were searched for randomized controlled trials comparing EAHM with conventional medicine (CM). A meta-analysis was performed on the variable data to assess their effects on inflammatory pain. Subsequently, we searched for core materials and combinations of core material-based data mining methods. RESULTS A total of 186 trials involving 19,716 patients with RA met the inclusion criteria. According to the meta-analysis, EAHM had a significantly superior effect on continuous pain intensity, tender joint count, and response rate. Patients treated with EAHM had a significantly reduced incidence of adverse events compared with those treated with CM. Based on additional analysis of the EAHM formula data included in this meta-analysis, 21 core materials and five core herbal combinations were identified. CONCLUSION EAHM remedies for RA have the adequate potential for use as candidate materials for treating inflammatory pain in RA. The candidate core herbs evaluated in this study act on multiple pathways and are expected to provide pain relief, sustained inflammation suppression, immune regulation, and prevention of joint destruction. It seems worthwhile to conduct follow-up research on drug development using the core materials derived from this review.
Collapse
Affiliation(s)
- Hee-Geun Jo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| | - Jihye Seo
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Donghun Lee
- BS Healthcare Co., Ltd., 11 Teheran-ro 33-gil, Gangnam-gu, Seoul 06141, Republic of Korea; Allbarun Kyunghee Korean Medicine Clinic, 18, Pungmu-ro 146-gil, Gimpo, Gyeonggi-do, Republic of Korea; Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
| |
Collapse
|
15
|
Mao Z, Tian L, Liu J, Wu Q, Wang N, Wang G, Wang Y, Seto S. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154111. [PMID: 35512628 DOI: 10.1016/j.phymed.2022.154111] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mitophagy plays a critical role in cerebral ischemia/reperfusion by timely removal of dysfunctional mitochondria. In mammals, PINK1/Parkin is the most classic pathway mediating mitophagy. And the activation of PINK1/Parkin mediated mitophagy exerts neuroprotective effects during cerebral ischemia reperfusion injury (CIRI). Ligustilide (LIG) is a natural compound extracted from ligusticum chuanxiong hort and angelica sinensis (Oliv.) diels that exerts neuroprotective activity after cerebral ischemia reperfusion injury (CIRI). However, it still remains unclear whether LIG could attenuates cerebral ischemia reperfusion injury (CIRI) through regulating mitophagy mediated by PINK1/Parkin. PURPOSE To explore the underlying mechanism of LIG on PINK1/Parkin mediated mitophagy in the hippocampus induced by ischemia reperfusion. METHODS This research used the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model and oxygen-glucose deprivation and reperfusion (OGD/R) as in vitro model. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of LIG in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP) and activities of Na+-K+-ATPase were detected to reflect mitochondrial function. Moreover, transmission electron microscope (TEM) and fluorescence microscope were used to observe mitophagy and the western blot was performed to explore the changes in protein expression in PINK1/Parkin mediated mitophagy. Finally, exact mechanism between neuroprotection of LIG and mitophagy mediated by PINK1/Parkin was explored by cell transfection. RESULTS The results show that LIG improved mitochondrial functions by mitophagy enhancement in vivo and vitro to alleviate CIRI. Whereas, mitophagy enhanced by LIG under CIRI is abolished by PINK1 deficiency and midivi-1, a mitochondrial division inhibitor which has been reported to have the function of mitophagy, which could further aggravate the ischemia-induced brain damage, mitochondrial dysfunction and neuronal injury. CONCLUSION LIG could ameliorate the neuronal injury against ischemia stroke by promoting mitophagy via PINK1/Parkin. Targeting PINK1/Parkin mediated mitophagy with LIG treatment might be a promising therapeutic strategy for ischemia stroke.
Collapse
Affiliation(s)
- Zhiguo Mao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liyu Tian
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiao Liu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qian Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China.
| | - Guangyun Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Yang Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Nitric oxide-caused rabbit chondrocyte apoptosis is linked to cytoskeletal protein proteolysis anomaly through intracellular JNK and ERK signal pathways. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Xiang C, Liao Y, Chen Z, Xiao B, Zhao Z, Li A, Xia Y, Wang P, Li H, Xiao T. Network Pharmacology and Molecular Docking to Elucidate the Potential Mechanism of Ligusticum Chuanxiong Against Osteoarthritis. Front Pharmacol 2022; 13:854215. [PMID: 35496280 PMCID: PMC9050356 DOI: 10.3389/fphar.2022.854215] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Osteoarthritis (OA) is a degenerative disease which serious affects patients. Ligusticum chuanxiong (CX) has been shown to have a certain curative effect on osteoarthritis in traditional Chinese medicine therapy. This study is based on network pharmacology and molecular docking technology to explore the potential mechanism of CX. Methods: Components of CX to treat osteoarthritis were screened in the TCMSP database and targets were predicted by the PharmMapper database, the osteoarthritis targets were collected from the GeneCards database, and intersection genes were found to be the possible targets of CX anti-OA. The STRING database and Cytoscape software were utilized for protein-protein interaction analysis and further screening of core targets. The Metascape database was used for KEGG and GO enrichment analyses. Then, the top 10 pathways were selected to construct “drug-compound-target-pathway-disease” network analysis. Finally, molecular docking was used to analyze the binding affinity of seven compounds with core targets and TNF-α. Results: Seven compounds with 253 non-repetitive targets of CX were screened from the TCMSP database and 60 potential intersection targets of CX anti-OA were found. PPI network analysis showed that the core targets were ALB, AKT1, IGF1, CASP3, MAPK1, ANXA5, and MAPK14, while GO and KEGG pathway enrichment analyses showed that the relevant biological processes involved in the treatment of osteoarthritis by CX might include the MAPK cascade and reactive oxygen species metabolic process. The KEGG pathway analysis result was mainly associated with the MAPK signaling pathway and PI3K-AKT signaling pathway. We further docked seven ingredients with MAPK1 and MAPK14 enriched in the MAPK pathway, and TNF-α as the typical inflammatory cytokine. The results also showed good binding affinity, especially FA, which may be the most important component of CX anti-OA. Conclusion: Our research revealed the potential mechanism of CX in the treatment of OA, and our findings can also pave the way for subsequent basic experimental verification and a new research direction.
Collapse
Affiliation(s)
- Cheng Xiang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yilin Liao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoyuan Chen
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyue Zhao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Aoyu Li
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Xia
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Pingxiao Wang
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hui Li, ; Tao Xiao,
| | - Tao Xiao
- Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hui Li, ; Tao Xiao,
| |
Collapse
|
18
|
Li D, Long Y, Yu S, Shi A, Wan J, Wen J, Li X, Liu S, Zhang Y, Li N, Zheng C, Yang M, Shen L. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front Pharmacol 2022; 12:832673. [PMID: 35173614 PMCID: PMC8841966 DOI: 10.3389/fphar.2021.832673] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X, Guo Z, Zhang S, Peng L. Targeting Cell Death: Pyroptosis, Ferroptosis, Apoptosis and Necroptosis in Osteoarthritis. Front Cell Dev Biol 2022; 9:789948. [PMID: 35118075 PMCID: PMC8804296 DOI: 10.3389/fcell.2021.789948] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
New research has shown that the development of osteoarthritis (OA) is regulated by different mechanisms of cell death and types of cytokines. Therefore, elucidating the mechanism of action among various cytokines, cell death processes and OA is important towards better understanding the pathogenesis and progression of the disease. This paper reviews the pathogenesis of OA in relation to different types of cytokine-triggered cell death. We describe the cell morphological features and molecular mechanisms of pyroptosis, apoptosis, necroptosis, and ferroptosis, and summarize the current research findings defining the molecular mechanisms of action between different cell death types and OA.
Collapse
Affiliation(s)
- Jian Yang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Shasha Hu
- Department of Pathology, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Yangyang Bian
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Jiangling Yao
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Dong Wang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Xiaoqian Liu
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Zhengdong Guo
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
| | - Siyuan Zhang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
- *Correspondence: Lei Peng,
| |
Collapse
|
20
|
Zhang Y, Cheng J, Su Y, Li M, Wen J, Li S. Cordycepin induces M1/M2 macrophage polarization to attenuate the liver and lung damage and immunodeficiency in immature mice with sepsis via NF-κB/p65 inhibition. J Pharm Pharmacol 2021; 74:227-235. [PMID: 34850068 DOI: 10.1093/jpp/rgab162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To explore the impacts of cordycepin and underlying mechanism on the sepsis. METHODS The sepsis mice model was built and treated with different concentrations of cordycepin. Then the liver and lung injury caused by cecal ligation and puncture (CLP) was assessed using H&E staining and TUNEL assay. The expression of relevant genes was detected using qRT-PCR analysis and ELISA assays. Besides, the macrophage polarization was checked by flow cytometry. KEY FINDINGS Cordycepin could significantly improve the liver and lung injury. Moreover, cordycepin increased the distribution of F4/80+ CD206+ M2-like macrophages and F4/80+ iNOS+ M1-like macrophages through down-regulating the expression of relevant genes. More importantly, cordycepin could monitor the protein expression of iNOS, Arg-1, TNF-α, MCP-1, IL-4 and IL-10 in CLP mice. Meanwhile, the elevated level of p65 induced by CLP was also repressed by the increase of the cordycepin. Moreover, cordycepin played a crucial part in CLP mice through modulating the NF-κB/p65 signalling pathway. CONCLUSIONS Cordycepin played an important role in mice with sepsis via reducing the M1/M2 macrophage polarization and modulating the NF-κB/p65 signalling pathway.
Collapse
Affiliation(s)
- Yudan Zhang
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Jing Cheng
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Yufei Su
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Mingyue Li
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Jun Wen
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| | - Sixiu Li
- Neonatal Intensive Care Unit, Xi'an Children's Hospital, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
21
|
Huang H, Zheng J, Deng M, Fang Y, Zhan D, Wang G. Identification of pathways and genes associated with meniscus degeneration using bioinformatics analyses. Am J Transl Res 2021; 13:12410-12420. [PMID: 34956462 PMCID: PMC8661235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the molecular mechanisms underlying meniscus degeneration. METHODS We performed anterior cruciate ligament resection in the Hainan Wuzhishan pig to establish a meniscus degeneration model. We applied gene chip technology to detect differentially expressed genes (DEG) in the degenerative meniscus tissues. We applied Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, core gene network, and relevant MicroRNA analyses to identify regulatory networks relevant to meniscus degeneration. We detected 893 differentially expressed genes, mainly involved in hormone production, apoptosis, and inflammation. RESULTS We found that MUC13, inflammatory mediator regulation of TRP channels, MDFI, and miR-335-5p may play a key role in the degenerative meniscus tissue. CONCLUSION We found that meniscus degeneration involves several molecular mechanisms and provide molecular targets for future research into the disease.
Collapse
Affiliation(s)
- Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| | - Ming Deng
- Department of Orthopaedic Surgery, Wuhan University People’s HospitalWuhan 430000, Hubei Province, China
| | - Yehan Fang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| | - Daolu Zhan
- Department of Spine Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| |
Collapse
|
22
|
Liu B, Zhang Y, Yang Z, Liu M, Zhang C, Zhao Y, Song C. ω-3 DPA Protected Neurons from Neuroinflammation by Balancing Microglia M1/M2 Polarizations through Inhibiting NF-κB/MAPK p38 Signaling and Activating Neuron-BDNF-PI3K/AKT Pathways. Mar Drugs 2021; 19:md19110587. [PMID: 34822458 PMCID: PMC8619469 DOI: 10.3390/md19110587] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/04/2023] Open
Abstract
Microglia M1 phenotype causes HPA axis hyperactivity, neurotransmitter dysfunction, and production of proinflammatory mediators and oxidants, which may contribute to the etiology of depression and neurodegenerative diseases. Eicosapentaenoic acid (EPA) may counteract neuroinflammation by increasing n-3 docosapentaenoic acid (DPA). However, the cellular and molecular mechanisms of DPA, as well as whether it can exert antineuroinflammatory and neuroprotective effects, are unknown. The present study first evaluated DPA’s antineuroinflammatory effects in lipopolysaccharide (LPS)-activated BV2 microglia. The results showed that 50 μM DPA significantly decreased BV2 cell viability after 100 ng/mL LPS stimulation, which was associated with significant downregulation of microglia M1 phenotype markers and proinflammatory cytokines but upregulation of M2 markers and anti-inflammatory cytokine. Then, DPA inhibited the activation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65 pathways, which results were similar to the effects of NF-κB inhibitor, a positive control. Second, BV2 cell supernatant was cultured with differentiated SH-SY5Y neurons. The results showed that the supernatant from LPS-activated BV2 cells significantly decreased SH-SY5Y cell viability and brain-derived neurotrophic factor (BDNF), TrkB, p-AKT, and PI3K expression, which were significantly reversed by DPA pretreatment. Furthermore, DPA neuroprotection was abrogated by BDNF-SiRNA. Therefore, n-3 DPA may protect neurons from neuroinflammation-induced damage by balancing microglia M1 and M2 polarizations, inhibiting microglia-NF-κB and MAPK p38 while activating neuron-BDNF/TrkB-PI3K/AKT pathways.
Collapse
Affiliation(s)
- Baiping Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Zhiyou Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Meijun Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuntao Zhao
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| |
Collapse
|
23
|
Yang Q, Shen F, Zhang F, Bai X, Zhang Y, Zhang H. The combination of two natural medicines, Chuanxiong and Asarum: A review of the chemical constituents and pharmacological activities. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211039130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traditional Chinese medicine has been clinically used in China for many years, with experimental studies and clinical trials having demonstrated that it is safe and valid. Among many traditional natural medicines, Chuanxiong and Asarum have been proven to be effective in the treatment of relieving pain. Actually, as well as analgesic, they have common attributes, such as anti-inflammatory, cardiovascular benefits, and anticancer activities, with volatile oils being their major components. Furthermore, Chuanxiong and Asarum have been combined as drug pairs in the same prescription for thousands of years, with examples being Chuanxiong Chatiao San and Chuanxiongxixintang. More interestingly, their combination has better therapeutic effects on diseases than a single drug. After the combination of Chuanxiong and Asarum forms a blend, a series of changes take place in their chemical components, such as the contents of the main active ingredients, ferulic acid and ligustilide, increased significantly after this progress. At the same time, the pharmacological effects of the combination appearing to be more powerful, such as synergistic analgesic. This review focuses on the chemical constituents and pharmacological activities of Chuanxiong, Asarum, and Chuanxiong Asarum compositions.
Collapse
Affiliation(s)
- Qingcheng Yang
- College of Pharmacy, Dali University, Dali, P.R. China
- Department of Pharmacy, The First People’s Hospital of Kunming, Kunming, P.R. China
| | - Fangli Shen
- College of Pharmacy, Dali University, Dali, P.R. China
- Department of Pharmacy, The First People’s Hospital of Kunming, Kunming, P.R. China
| | - Fengqin Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Xue Bai
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Yanru Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Haizhu Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, Dali, P.R. China
| |
Collapse
|
24
|
Li J, Chen W, Wang Y, Yin H. An LC-MS/MS method for simultaneous quantification of 11 components of Xian-Xiong-Gu-Kang in the plasma of osteoarthritic rats and pharmacokinetic analysis. J Sep Sci 2021; 44:3386-3397. [PMID: 34185967 DOI: 10.1002/jssc.202100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Xian-Xiong-Gu-Kang is composed of Epimedium brevicornu, Ligusticum chuanxiong, Radix clematidis, Cinnamomum cassia, and Fructus xanthii. It is used to treat numbness and pain of limbs. In this study, we developed a method to simultaneously quantify 11 components of Xian-Xiong-Gu-Kang (icarrin, epimedin A, epimedin B, epimedin C, icariside II, chlorogenic acid, ligustilide, senkyunolide A, senkyunolide I, ferulic acid, and cinnamic acid) in rat plasma using ultra-performance liquid chromatography coupled with quadrupole linear ion trap mass spectrometry. Chromatographic separation was performed on an ACQUITY UPLC BEH C18 column using gradient elution with a mobile phase comprising acetonitrile and 0.05% (v/v) formic acid aqueous solution. Mass spectrometry detection was performed using positive and negative electrospray ionization in the multiple reaction monitoring mode. The calibration curves of the 11 constituents were linear, with correlation coefficients > 0.99. The intra- and interday accuracy and precision values were within ±15.0%. The extraction recoveries of the 11 constituents and two internal standards were between 66.05 and 105.40%, and the matrix effects were between 86.74 and 112.86%. Using this method, the pharmacokinetic features of the 11 constituents were elucidated in the plasma of osteoarthritic rats after oral administration of the Xian-Xiong-Gu-Kang extract.
Collapse
Affiliation(s)
- Junfeng Li
- Laboratory for Standardization of Chinese Medicine Research, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Wenjun Chen
- Laboratory for Standardization of Chinese Medicine Research, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Yahong Wang
- Laboratory for Standardization of Chinese Medicine Research, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Hua Yin
- Laboratory for Standardization of Chinese Medicine Research, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| |
Collapse
|
25
|
Chen L, Zhou X, Kong X, Su Z, Wang X, Li S, Luo A, Liu Z, Fang Y, Wang J. The Prognostic Significance of Anisomycin-Activated Phospho-c-Jun NH2-Terminal Kinase (p-JNK) in Predicting Breast Cancer Patients' Survival Time. Front Cell Dev Biol 2021; 9:656693. [PMID: 33768099 PMCID: PMC7985183 DOI: 10.3389/fcell.2021.656693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the prognostic significance of p-JNK in breast cancer patients receiving neoadjuvant chemotherapy (NACT) and analyze the relationship between anisomycin, p-JNK. A total of 104 breast cancer patients had NACT were enrolled in this study. The western blot and immunohistochemistry assays were used to determine the protein expressions of p-JNK in human breast cancer cell lines and patients’ cancer tissues. The chi-square test and Fisher’s exact test were adopted to gauge the associations between breast cancer and clinicopathological variables by p-JNK expression, whereas the univariate and multivariate Cox proportional hazards regression models were used to analyze the prognostic value of p-JNK expression. The Kaplan-Meier plots and the log-rank test were adopted to determine patients’ disease-free survival (DFS) and overall survival (OS). Findings indicated that the p-JNK expression had prognostic significance in univariate and multivariate Cox regression survival analyses. Results of log-rank methods showed that: (1) the mean DFS and OS times in patients with high p-JNK expression were significantly longer than those in patients with low p-JNK expression (χ2 = 5.908, P = 0.015 and χ2 = 6.593, P = 0.010, respectively). p-JNK expression is a significant prognostic factor that can effectively predict the survival in breast cancer patients receiving NACT. Treatment with the JNK agonist anisomycin can induce apoptosis, lead to increased p-JNK expression and decreased p-STAT3 expression. Moreover, the p-JNK expression was inversely correlated with p-STAT3 expression.
Collapse
Affiliation(s)
- Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuantong Zhou
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaohui Su
- Center on Smart and Connected Health Technologies, Mays Cancer Center, School of Nursing, UT Health San Antonio, San Antonio, TX, United States
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sen Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Chen J, Wang X, Hu J, Du J, Dordoe C, Zhou Q, Huang W, Guo R, Han F, Guo K, Ye S, Lin L, Li X. FGF20 Protected Against BBB Disruption After Traumatic Brain Injury by Upregulating Junction Protein Expression and Inhibiting the Inflammatory Response. Front Pharmacol 2021; 11:590669. [PMID: 33568994 PMCID: PMC7868342 DOI: 10.3389/fphar.2020.590669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) and the cerebral inflammatory response occurring after traumatic brain injury (TBI) facilitate further brain damage, which leads to long-term complications of TBI. Fibroblast growth factor 20 (FGF20), a neurotrophic factor, plays important roles in brain development and neuronal homeostasis. The aim of the current study was to assess the protective effects of FGF20 on TBI via BBB maintenance. In the present study, recombinant human FGF20 (rhFGF20) reduced neurofunctional deficits, brain edema, Evans blue extravasation and neuroinflammation in a TBI mouse model. In an in vitro TNF-α-induced human brain microvascular endothelial cell (HBMEC) model of BBB disruption, rhFGF20 reduced paracellular permeability and increased trans-endothelial electrical resistance (TEER). Both in the TBI mouse model and in vitro, rhFGF20 increased the expression of proteins composing in BBB-associated tight junctions (TJs) and adherens junctions (AJs), and decreased the inflammatory response, which protected the BBB integrity. Notably, rhFGF20 preserved BBB function by activating the AKT/GSK3β pathway and inhibited the inflammatory response by regulating the JNK/NFκB pathway. Thus, FGF20 is a potential candidate treatment for TBI that protects the BBB by upregulating junction protein expression and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingting Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiulin Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruili Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fanyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, China
| |
Collapse
|
27
|
Xu F, Ye Z, Tao S, Liu W, Su J, Fang X, Wang X. Ligustilide alleviates podocyte injury via suppressing the SIRT1/NF-κB signaling pathways in rats with diabetic nephropathy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1154. [PMID: 33241003 PMCID: PMC7576076 DOI: 10.21037/atm-20-5811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Diabetic nephropathy (DN) is one of the common chronic microvascular complications of diabetes, and podocyte injury and dysfunction are strictly related to the pathogenesis of DN. Studies have shown that ligustilide (LIG) has anti-inflammatory, antioxidant, and anti-apoptotic activities. This study was designed to investigate the therapeutic effect of LIG in DN rats and their mechanisms. Methods DN rat models (n=10) were induced by streptozotocin (STZ) combined with a high-fat diet. Rats in the LIG group were intragastrically administered with LIG daily for eight weeks, and animals in the positive control group were treated with Losartan potassium. The body weight and blood glucose were checked weekly during the treatment. The pathological changes of kidney tissue were observed with hematoxylin and eosin (HE) staining. Blood lipid profiles and renal function-related markers, including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), blood urea nitrogen (BUN), and serum creatinine (Scr) were monitored using a biochemical analyzer. The protein expression of nephrin was determined by immunohistochemistry and Western blotting. Finally, Western blot was used to determine the protein expression of Sirtuin 1 (SIRT1) and nuclear factor-kappa B (NF-κB). Results Compared with the healthy control group, rats in the DN group have slower weight gain, increased blood sugar level, renal lesions, and impaired renal function, along with decreased nephrin expression, abnormally activated NF-κB, and inhibited SIRT1 protein expression. All the above conditions were improved after intervention with either losartan potassium or LIG. Conclusions LIG attenuates podocyte injury by regulating the SIRT1/NF-κB signaling pathway and thereby exerts its protective effect on renal function in DN rats.
Collapse
Affiliation(s)
- Feng Xu
- Department of Endocrinology and Neurosurgery, the First People's Hospital of Nantong, Nantong, China
| | - Zi Ye
- Department of Endocrinology and Neurosurgery, the First People's Hospital of Nantong, Nantong, China
| | - Shuo Tao
- Department of Nephrology, the First People's Hospital of Nantong, Nantong, China
| | - Wangshu Liu
- Department of Endocrinology, the First People's Hospital of Nantong, Nantong, China
| | - Jianbing Su
- Department of Endocrinology, the First People's Hospital of Nantong, Nantong, China
| | - Xingxing Fang
- Department of Endocrinology, the First People's Hospital of Nantong, Nantong, China
| | - Xueqin Wang
- Department of Endocrinology, the First People's Hospital of Nantong, Nantong, China
| |
Collapse
|
28
|
Luo S, Gong J, Cao X, Liu S. Ligustilide modulates oxidative stress, apoptosis, and immunity to avoid pathological damages in bleomycin induced pulmonary fibrosis rats via inactivating TLR4/MyD88/NF-KB P65. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:931. [PMID: 32953731 PMCID: PMC7475441 DOI: 10.21037/atm-20-4233] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Pulmonary fibrosis (PF) is a fatal disease with increasing incidence. Ligustilide (LIG) has been shown to inhibit oxidative stress, apoptosis, and inflammation. Here we investigated the possible effect of LIG on bleomycin-induced PF in Sprague-Dawley rats. Methods PF rats were set up through a single endotracheal injection of bleomycin (5 mg/kg). Then rats were treated with 20, 40, and 80 mg/kg LIG for four weeks, and the effects were estimated. Results Overall, LIG significantly improved ventilation and reduced hyperplasia, and treatment of LIG reduced fibrosis as indicated by Masson staining and reduced expression of transforming growth factor-beta (TGF-β), Fibronectin, and alpha-smooth muscle actin (α-SMA). Oxidative stress was induced with bleomycin while inhibited with LIG, as showed with rebalanced serum lactate dehydrogenase (LDH), and tissue superoxide dismutase (SOD), glutathione peroxidase (GSH) and malondialdehyde (MDA). Apoptosis was further inhibited with LIG, as shown with Terminal dUTP nick-end labeling (TUNEL) staining and expression of Caspase-3, Caspase-9, Bax, and Bcl-2. Th1/Th2 balance was also rebuilt as evaluated with CD4 and IFNγ/IL-4 labeled flow cytometry of peripheral blood mononuclear cells (PBMCs) and expression of inducible nitric oxide synthase (iNOS) and IL-10 in the serum and lung. Protein expression of Toll-like receptor 4 (TLR4), HSP60-TLR4-myeloid differentiation factor 88 (Myd88) and nuclear factor-kappa B (NF-κB) p-P65/P65 was significantly reduced with LIG treatment. All the effects of LIG exhibited in a dose-dependent way. Conclusions LIG improved bleomycin-induced PF with improved ventilation, reduced fibroblast, reduced oxidative stress and apoptosis, and rebalanced Th1/Th2 immunity, through TLR4/MyD88/NF-κB P65 signaling.
Collapse
Affiliation(s)
- Shu Luo
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Junzuo Gong
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoping Cao
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiping Liu
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
29
|
Guo S, Wang G, Yang Z. Ligustilide alleviates the insulin resistance, lipid accumulation, and pathological injury with elevated phosphorylated AMPK level in rats with diabetes mellitus. J Recept Signal Transduct Res 2020; 41:85-92. [PMID: 32643505 DOI: 10.1080/10799893.2020.1789877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is one of the major risk factors of disability and death worldwide. Despite of the protective role of ligustilide (LIG) in many cell types, we aimed to investigate whether LIG could be a potential to treat DM. METHODS Sprague Dawley rats were randomly assigned to five groups. Rats except control were raised on a high-fat diet (HFD). Streptozotocin was intraperitoneally injected into HFD-fed rats to construct DM model. Rats in the LIG intervention groups received intraperitoneal injection of LIG (10, 20, and 40 mg/kg) post-induction of DM. Blood glucose, plasma insulin (p-insulin), adiponectin, HbA1C%, obesity index, HOMA-IR, and biochemical parameters were estimated. Histopathological analysis and apoptosis in liver and kidney, along with proliferation and apoptosis of islet β-cells, were analyzed. Expression of CPT-1 and ACC, and phosphorylation of Nrf2 and AMPKα1, were finally assessed. RESULTS DM-induced alterations were all relived by LIG intervention. In brief, obesity index, glucose level, P-insulin content, HbA1C, and HOMA-IR were lowered while adiponectin level was elevated. Meanwhile, levels of TC, TG, ALT, and AST were decreased in the LIG intervention groups, along with up-regulated CPT-1 level and down-regulated ACC level. Pathological changes in liver and kidney tissues were alleviated, and apoptotic cells were reduced by LIG treatment. For islet β-cells, LIG up-regulated Ki67 and c-Myc expression, and mitigated ratios of Bax/Bcl-2 and cleaved cas3(9)/cas3(9). Finally, LIG could promote phosphorylation of Nrf2 and AMPKα1. CONCLUSIONS LIG alleviated the insulin resistance, lipid accumulation, and pathological injury with the activation of AMPK pathway in DM rats.
Collapse
Affiliation(s)
- Sujuan Guo
- Department of Endocrine, Lianyungang No. 1 People's Hospital High-Tech Zone, Lianyungang, China
| | - Guofeng Wang
- Department of Endocrine, Lianyungang No. 1 People's Hospital High-Tech Zone, Lianyungang, China
| | - Zhengxiong Yang
- Department of Endocrine, Lianyungang No. 1 People's Hospital High-Tech Zone, Lianyungang, China
| |
Collapse
|
30
|
Xu K, Meng Z, Xian XM, Deng MH, Meng QG, Fang W, Zhang D, Long X. LncRNA PVT1 induces chondrocyte apoptosis through upregulation of TNF-α in synoviocytes by sponging miR-211-3p. Mol Cell Probes 2020; 52:101560. [PMID: 32171788 DOI: 10.1016/j.mcp.2020.101560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/23/2020] [Accepted: 03/08/2020] [Indexed: 12/19/2022]
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is an important subtype of temporomandibular disorders (TMD). Articular cartilage destruction is considered a common pathological feature of TMJ OA, which is reported to be mainly induced by chondrocyte apoptosis. Synovial sterile inflammation is an initial factor of TMJ OA-associated articular cartilage destruction. Therefore, determining the mechanism of synovial membrane inflammation-induced articular cartilage destruction in TMJ OA is important for the TMJ OA therapy. In this study, we detected the function of synoviocytes in chondrocyte apoptosis under lipopolysaccharide (LPS)-induced inflammatory conditions and explored the underlying mechanism. We found that synoviocytes in inflammatory conditions facilitated LPS-induced chondrocytes apoptosis by secreting increased Tumor Necrosis Factor α (TNF-α), which was induced by long non-coding RNA plasmacytoma variant translocation 1 (PVT1) upregulation. PVT1 served as a competing endogenous RNA that sponged the microRNA miR-211-3p and prevented the inhibition of TNF-α expression. In conclusion, our in vitro study revealed that PVT1 has a previously unknown role in chondrocyte apoptosis, which may also be a mechanism underlying synoviocyte involvement in TMJ OA.
Collapse
Affiliation(s)
- Kai Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Zhen Meng
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Xin-Miao Xian
- Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Mo-Hong Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qing-Gong Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Fang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Di Zhang
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
31
|
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother Res 2020; 34:1966-1991. [DOI: 10.1002/ptr.6662] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxuan Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Linlin Zhang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yu Zheng
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Kai Liu
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Hailong Tang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yanmei Liao
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
32
|
Ligustilide improves aging-induced memory deficit by regulating mitochondrial related inflammation in SAMP8 mice. Aging (Albany NY) 2020; 12:3175-3189. [PMID: 32065782 PMCID: PMC7066895 DOI: 10.18632/aging.102793] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease. The main active component in Angelica sinensis, ligustilide, has been reported to have the protective effect on AD. Whether ligustilide could protect against age-induced dementia is still unknown. In this study, we used an aging model, SAMP8 mice to investigate the neuroprotective effect of ligustilide. The behavioral tests (Morris water maze, object recognition task, open field test and elevated plus maze) results showed that ligustilide could improve the memory deficit in SAMP8 mice. For mechanism study, we found that the protein level of P-Drp1 (fission) was decreased and the levels of Mfn1 and Mfn2 (fusion) were increased after ligustilide treatment in animals and cells. Ligustilide increased P-AMPK and ATP levels. Malondialdehyde and superoxide dismutase activity results indicated that ligustilide exerts antioxidant effects by reducing the level of oxidative stress markers. In addition, ligustilide improved neural function and alieved apoptosis and neuroinflammation. These findings have shown that ligustilide treatment improves mitochondrial function in SAMP8 mice, and improves memory loss.
Collapse
|
33
|
Zhao Z, Li Y, Wang M, Jin Y, Liao W, Zhao Z, Fang J. Mitochondrial DNA haplogroups participate in osteoarthritis: current evidence based on a meta-analysis. Clin Rheumatol 2020; 39:1027-1037. [PMID: 31897963 DOI: 10.1007/s10067-019-04890-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial genes' variants encoded in both the nuclear and mitochondrial genomes can disrupt mitochondrial function, resulting in losing of cartilage and generating osteoarthritis (OA). However, the association between mtDNA haplogroups and OA still lacks strength evidence supporting. The aim of this meta-analysis is to assess the role of mtDNA haplogroups in speculating the pathogenesis and progression of OA. PubMed, Embase, the Cochrane Central Register of Controlled Trials, and World Health Organization clinical trials' registry center were searched to identify relevant studies up to the end of March 2019. Inclusion citations required a case-control or cohort study to demonstrate the association between mtDNA haplogroups and OA's prevalence or progression. Title, abstract, and full-text screening were sequentially assessed by three reviewers. Data were analyzed using STATA. Besides, publication bias and meta-regression analysis were conducted to explore potential heterogeneities. We collected results from 7 articles. The cluster TJ cases showed a lower proportion in OA cases (RR = 0.83, 95% CI 0.72, 0.96). However, there is no evidence that revealed this kind of impact originated from neither type J nor type T individually. Besides, the type B and G analyses among Asian populations also elucidated a negative association. Moreover, the cluster TJ of mtDNA haplogroups revealed a lower cumulative probability of radiographic OA progression (ES = 0.77, 95% CI 0.63, 0.94), which was contributed by type T (ES = 0.61, 95% CI 0.45, 0.82).The mtDNA haplogroups do have impacts on the prevalence and progression of OA. Cluster TJ could help reduce the prevalence and slow down the radiographic changes; however, the impacts came from type J and type T, respectively.
Collapse
Affiliation(s)
- Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengjiao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Ying Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
34
|
Decha P, Kanokwan K, Jiraporn T, Pichaya J, Pisittawoot A. Phonopheresis Associated with Nanoparticle Gel from Phyllanthus amarus Relieves Pain by Reducing Oxidative Stress and Proinflammatory Markers in Adults with Knee Osteoarthritis. Chin J Integr Med 2019; 25:691-695. [PMID: 31650487 DOI: 10.1007/s11655-019-3202-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To determine the changes in serum levels of inflammatory biomarkers and antioxidant levels among the knee osteoarthritis (OA) patients after treatment with Phyllanthus amarus (PP) by nanoparticle gel phonophoresis. METHODS This study was a randomized, double-blind, placebo-control, parallel-group, clinical trial involving 30 subjects with mild-to-moderate degree of knee OA. The patients were allocated to two groups using a computer-generated random numbers, and received conventional ultrasound therapy (control group, 15 cases) and PP (treatment group, 15 cases) once daily for 10 sessions. The pain was evaluated by visual analogue scale (VAS). Serum levels of tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbnent assay (ELISA). Nitric oxide (NO) was determined by modified Griess reagent. The antioxidant effects, including superoxide dismutase (SOD) and total antioxidant capacity (TAC), were also measured by ELISA assay. RESULTS The VAS score was significantly decreased in the treatment group compared with the control group after treatment (P<0.01). The serum concentrations of TNF-α and NO were significantly reduced in the treatment group compared with the control group (P<0.01) after treatment. However, the serum concentrations of SOD and TAC in the treatment group were significantly higher after treatment compared with the control group (P<0.01). CONCLUSION PP could alleviate knee pain and significantly reduce systemic anti-inflammatory effects in knee OA patients.
Collapse
Affiliation(s)
- Pinkaew Decha
- Department of Physical Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Kiattisin Kanokwan
- Department of Pharmaceutical Sciences. Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Tocharus Jiraporn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jumnongprakhon Pichaya
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Awoot Pisittawoot
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
35
|
Zhou Y, Ming J, Li Y, Deng M, Chen Q, Ma Y, Chen Z, Zhang Y, Liu S. Ligustilide attenuates nitric oxide-induced apoptosis in rat chondrocytes and cartilage degradation via inhibiting JNK and p38 MAPK pathways. J Cell Mol Med 2019; 23:3357-3368. [PMID: 30770640 PMCID: PMC6484328 DOI: 10.1111/jcmm.14226] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
Ligustilide (LIG) is the main lipophilic component of the Umbelliferae family of pharmaceutical plants, including Radix angelicae sinensis and Ligusticum chuanxiong. LIG shows various pharmacological properties associated with anti‐inflammation and anti‐apoptosis in several kinds of cell lines. However, the therapeutic effects of LIG on chondrocyte apoptosis remain unknown. In this study, we investigated whether LIG had an anti‐apoptotic activity in sodium nitroprusside (SNP)‐stimulated chondrocyte apoptosis and could delay cartilage degeneration in a surgically induced rat OA model, and elucidated the potential mechanisms. In vitro studies revealed that LIG significantly suppressed chondrocyte apoptosis and cytoskeletal remodelling, which maintained the nuclear morphology and increased the mitochondrial membrane potential. In terms of SNP, LIG treatment considerably reduced the expression levels of cleaved caspase‐3, Bax and inducible nitric oxide synthase and increased the expression level of Bcl‐2 in a dose‐dependent manner. The LIG‐treated groups presented a significantly suppressed expression of activating transcription factor 2 and phosphorylation of Jun N‐terminal kinase (JNK) and p38 mitogen‐activated protein kinase (MAPK). The inhibitory effect of LIG was enhanced by the p38 MAPK inhibitor SB203580 or the JNK inhibitor SP600125 and offset by the agonist anisomycin. In vivo studies demonstrated that LIG attenuated osteoarthritic cartilage destruction by inhibiting the cartilage chondrocyte apoptosis and suppressing the phosphorylation levels of activating transcription factor 2, JNK and p38 MAPK. This result was confirmed by histological analyses, micro‐CT, TUNEL assay and immunohistochemical analyses. Collectively, our studies indicated that LIG protected chondrocytes against SNP‐induced apoptosis and delayed articular cartilage degeneration by suppressing JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianghua Ming
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaming Li
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Deng
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Chen
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Ma
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhonghui Chen
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yubiao Zhang
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiqing Liu
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|