1
|
Zhang L, Yan L, Fu X, Tao Z, Liu S, Li R, Wang T, Mao Y, Shang W, Gong M, Jia X, Wang F. PDK1 promotes epithelial ovarian cancer progression by upregulating BGN. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39578715 DOI: 10.3724/abbs.2024186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Pyruvate dehydrogenase kinase 1 (PDK1) is a new therapeutic target that is dysregulated in multiple tumors. This study aims to explore the potential role and regulatory mechanism of PDK1 in epithelial ovarian cancer (EOC). We detect PDK1 expression in EOC tissues and cells using qRT-PCR and western blot analysis, and the effects of PDK1 on EOC cell malignant behaviors are explored. RNA sequencing analyses are performed to explore the differentially expressed genes in PDK1-silenced EOC cells. Furthermore, tumor-bearing mouse models are established to assess the impacts of PDK1 and BGN on EOC tumor growth and metastasis in vivo. The results show that PDK1 is upregulated in EOC tissues and cell lines. Biglycan (BGN) is downregulated in PDK1-silenced EOC cells, and its expression is positively correlated with PDK1 levels in EOC tissues. PDK1 depletion inhibits EOC cell proliferation, migration and invasion. Mechanistically, PDK1 and BGN are colocalized in the cytoplasm of EOC cells and interact with each other. PDK1 positively regulates BGN expression by enhancing BGN mRNA stability. BGN overexpression partially reverses the anti-tumor effects of PDK1 depletion on EOC cell malignant behaviors. PDK1 has also been revealed to upregulate BGN to activate the NF-κB oncogenic pathway in EOC cells. Additionally, PDK1 accelerates tumor growth and metastasis by modulating BGN expression. In conclusion, PDK1 functions as an oncogene, facilitating EOC progression by upregulating BGN and activating the NF-κB pathway. These findings may provide valuable biomarkers for the diagnosis and treatment of EOC.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
- Department of Gynecology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Lina Yan
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Xin Fu
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
- Clinical Laboratory, Baoshan People's Hospital, Baoshan 678000, China
| | - Ziqi Tao
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Shuna Liu
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Rong Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Ting Wang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Yepeng Mao
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Wenwen Shang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Mi Gong
- Department of Gynecology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| |
Collapse
|
2
|
Min L, Li X, Liang L, Ruan Z, Yu S. Targeting HSP90 in Gynecologic Cancer: Molecular Mechanisms and Therapeutic Approaches. Cell Biochem Biophys 2024:10.1007/s12013-024-01502-7. [PMID: 39249180 DOI: 10.1007/s12013-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
One of the leading causes of mortality for women is gynecologic cancer (GC). Numerous molecules (tumor suppressor genes or oncogenes) are involved in this form of cancer's invasion, metastasis, tumorigenic process, and therapy resistance. Currently, there is a shortage of efficient methods to eliminate these diseases, hence it is crucial to carry out more extensive studies on GCs. Novel pharmaceuticals are required to surmount this predicament. Highly conserved molecular chaperon, heat shock protein (HSP) 90, is essential for the maturation of recently produced polypeptides and offers a refuge for misfolding or denatured proteins to be turned around. In cancer, the client proteins of HSP90 play a role in the entire process of oncogenesis, which is linked to all the characteristic features of cancer. In this study, we explore the various functions of HSPs in GC progression. We also discuss their potential as promising targets for pharmacological therapy.
Collapse
Affiliation(s)
- Lu Min
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Xuewei Li
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Lily Liang
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Zheng Ruan
- Department of Traditional Chinese Medicine, 964th Hospital, Changchun, 130000, China
| | - Shaohui Yu
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China.
| |
Collapse
|
3
|
Campbell CA, Calderon R, Pavani G, Cheng X, Barakat R, Snella E, Liu F, Peng X, Essner JJ, Dorman KS, McGrail M, Gadue P, French DL, Espin-Palazon R. p65 signaling dynamics drive the developmental progression of hematopoietic stem and progenitor cells through cell cycle regulation. Nat Commun 2024; 15:7787. [PMID: 39242546 PMCID: PMC11379711 DOI: 10.1038/s41467-024-51922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Most gene functions have been discovered through phenotypic observations under loss of function experiments that lack temporal control. However, cell signaling relies on limited transcriptional effectors, having to be re-used temporally and spatially within the organism. Despite that, the dynamic nature of signaling pathways have been overlooked due to the difficulty on their assessment, resulting in important bottlenecks. Here, we have utilized the rapid and synchronized developmental transitions occurring within the zebrafish embryo, in conjunction with custom NF-kB reporter embryos driving destabilized fluorophores that report signaling dynamics in real time. We reveal that NF-kB signaling works as a clock that controls the developmental progression of hematopoietic stem and progenitor cells (HSPCs) by two p65 activity waves that inhibit cell cycle. Temporal disruption of each wave results in contrasting phenotypic outcomes: loss of HSPCs due to impaired specification versus proliferative expansion and failure to delaminate from their niche. We also show functional conservation during human hematopoietic development using iPSC models. Our work identifies p65 as a previously unrecognized contributor to cell cycle regulation, revealing why and when pro-inflammatory signaling is required during HSPC development. It highlights the importance of considering and leveraging cell signaling as a temporally dynamic entity.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA.
| | - Rodolfo Calderon
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Radwa Barakat
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Fang Liu
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Xiyu Peng
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Karin S Dorman
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raquel Espin-Palazon
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
4
|
Wu J, Wang W, Zheng Y, Deng W, Liu J. Transcription factor RELA promotes hepatocellular carcinoma progression by promoting the transcription of m6A modulator METTL3. Pathol Res Pract 2024; 255:155168. [PMID: 38367599 DOI: 10.1016/j.prp.2024.155168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE To explore the biological function of RELA proto-oncogene, NF-kB subunit (RELA) in hepatocellular carcinoma (HCC) progression, and its potential regulatory effects on the regulators of m6A modification. METHODS AND MATERIALS GEPIA, UALCAN and Human Protein Atlas databases were applied to analyze the expression characteristics of RELA in HCC tissues and non-cancer liver tissues, and its relationship with clinicopathologic indicators and prognosis. Quantitative real-time PCR (qRT-PCR) was used to examine the expression level of RELA mRNA in HCC cells. Cell counting kit-8 (CCK-8) assay, EdU assay and flow cytometry were used to examine cell growth and apoptosis. PROMO database was applied to predict the binding sequence between RELA and methyltransferase like protein 3 (METTL3) promoter region, and this prediction was verified by dual luciferase reporter gene experiment and chromatin immunoprecipitation assay. The effect of RELA on METTL3 expression was examined by Western blot and qRT-PCT, and the regulatory effects of RELA on the other m6A regulators were evaluated by qRT-PCR. RESULTS RELA was highly expressed in HCC tissues and cell lines, and was closely associated with adverse clinicopathologic indicators and poor prognosis of patients. Overexpression of RELA promoted the growth of HCC cells and inhibited apoptosis; Knocking down RELA had the opposite effects. Overexpression of RELA promoted METTL3 transcription. Knockdown or overexpression of METTL3 reversed the effects of overexpression or knockdown of RELA on HCC cell growth and apoptosis, respectively. RELA also promoted the expression of a series of m6A regulators at mRNA expression level in HCC cell lines. CONCLUSION RELA promotes the transcription of METTL3 by binding to METTL3 promoter region, thus promoting the malignancy of HCC cells. This study suggests NF-κB signaling contributes the dysregulation of m6A modification in HCC tumorigenesis.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Yongbin Zheng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiasheng Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
5
|
Cheng FE, Li Z, Bai X, Jing Y, Zhang J, Shi X, Li T, Li W. Investigation on the mechanism of the combination of eremias multiocellata and cisplatin in reducing chemoresistance of gastric cancer based on in vitro and in vivo experiments. Aging (Albany NY) 2024; 16:3386-3403. [PMID: 38345573 PMCID: PMC10929809 DOI: 10.18632/aging.205540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Cisplatin (DDP) is one of the important chemotherapy drugs for patients with advanced gastric cancer and metastasis, but its resistance is a bottleneck problem that affects clinical efficacy and patient survival. Eremias multiocellata (EM) is a traditional Chinese herbal medicine, which has been used in the treatment of precancerous lesions, gastric cancer, liver fibrosis, and other digestive diseases. However, the mechanism of reducing chemotherapy resistance to gastric cancer is still unclear. METHODS We used the MTT assay to evaluate the proliferative viability of gastric cancer parental cell line MKN45 and its drug-resistant cell line MKN45/DDP, and compared their drug-resistance indices. The migration and invasion abilities of MKN45/DDP drug-resistant cells were evaluated using the Transwell assay. Apoptosis in MKN45/DDP drug-resistant cells was detected using flow cytometry. The effect of a combination of EM and cisplatin on the levels of reactive oxygen species (ROS) and lipid peroxides (LPO) in cisplatin-resistant gastric cancer cells was detected using ROS fluorescent probes and a lipid peroxidation assay kit in conjunction with flow cytometry. The effect of EM combined with cisplatin on the level of iron ions was detected by fluorescence probe and confocal laser technique. Hematoxylin-eosin staining (HE staining) was used to detect the histopathologic morphology of drug-resistant gastric cancer in nude mice. Ferroptosis-related proteins were measured using immunohistochemistry. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect tumor drug resistance-related genes. The NF-κB/Snail pathway-related proteins, PI3K/AKT/mTOR pathway-related proteins, and drug resistance-related proteins were detected by Western blot. RESULTS AND CONCLUSIONS The results of in vitro and in vivo experiments showed that EM combined with DDP could effectively inhibit the migration and invasive ability of MKN45/DDP cells, as well as induce apoptosis of MKN45/DDP cells; the combination of the two drugs could significantly increase the levels of ROS, lipid peroxidation and divalent ferric ions in MKN45/DDP cells, at the same time reducing the levels of Ferroptosis-related proteins, which could induce Ferroptosis. In addition, EM combined with DDP can also exert the effect of reversing DDP resistance and increasing the sensitivity of gastric cancer drug-resistant cells to DDP by regulating the NF-κB/Snail signaling pathway, PI3K/AKT/mTOR signaling pathway, and the expression of drug resistance-related proteins and genes.
Collapse
Affiliation(s)
- Fan-e Cheng
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Zheng Li
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xing Bai
- School of Basic Medicine, Zhejiang University of Chinese Medicine, Hangzhou 310053, Zhejiang, China
| | - Yanyan Jing
- Graduate School, Tianjin University of Chinese Medicine, Tianjin 300193, Tianjin, China
| | - Junfei Zhang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xiaoqian Shi
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Tingting Li
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Weiqiang Li
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
6
|
Wang Y, Xie L, Liu F, Ding D, Wei W, Han F. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117299. [PMID: 37816474 DOI: 10.1016/j.jep.2023.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a "silent killer" that threatens women's lives and health, ovarian cancer (OC) has the clinical characteristics of being difficult to detect, difficult to treat, and high recurrence. Traditional Chinese medicine (TCM) can be utilized as a long-term complementary and alternative therapy since it has shown benefits in alleviating clinical symptoms of OC, decreasing toxic side effects of radiation and chemotherapy, as well as enhancing patients' quality of life. AIM OF THE REVIEW This paper reviews how TCM contributes to the apoptosis of OC cells through signaling pathways, including active constituents, extracts, and herbal formulas, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in OC. METHODS The search was conducted from scientific databases PubMed, Embase, Web of Science, CNKI, Wanfang, VIP, and SinoMed databases aiming to elucidate the apoptosis signaling pathways in OC cells by TCM. The articles were searched by the keywords "ovarian cancer", "apoptosis", "signaling pathway", "traditional Chinese medicine", "Chinese herbal monomer", "Chinese herbal extract", and "herbal formula". The search was conducted from January 2013 to June 2023. A total of 97 potentially relevant articles were included, including 93 articles on Chinese medicine active constituents or extracts and 4 articles on Chinese herbal compound prescriptions. RESULTS TCM can induce apoptosis in OC cells by regulating signaling pathways with obvious advantages, including STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, Nrf2, HIF-1α, Fas/Fas L signaling pathway, etc. CONCLUSION: Chinese medicine can induce apoptosis in OC cells through multiple pathways, targets, and routes. TCM has special advantages for treating OC, providing more reasonable evidence for the research and development of new apoptosis inducers.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Liangzhen Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Danni Ding
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
7
|
Zhu Y, Xiao M, Zhao R, Yang X, Wu K, Liu X, Chen X, Guo L, Liu J, Chen X, Liu N, He Y, Zhang Y. Arsenic-induced downregulation of BRWD3 suppresses proliferation and induces apoptosis in lung adenocarcinoma cells through the p53 and p65 pathways. Hum Exp Toxicol 2024; 43:9603271241279166. [PMID: 39190898 DOI: 10.1177/09603271241279166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bromodomain and WD-repeat domain-containing protein 3 (BRWD3) exhibits high expression in lung adenocarcinoma (LUAD) tissues and cells; however, its function in arsenic-induced toxicological responses remains unclear. This study aimed to investigate BRWD3 expression in response to arsenic-induced conditions and its impact on the proliferation and apoptosis of LUAD cell line SPC-A1 upon BRWD3 knockdown. The results revealed a decrease in BRWD3 expression in SPC-A1 cells treated with sodium arsenite (NaAsO2), but not sodium arsenite's metabolites. BRWD3 knockdown suppressed cell proliferation and induced apoptosis in SPC-A1 cells. Western blot analysis revealed that BRWD3 knockdown resulted in the upregulation of p53, phospho-p53-Ser392, and its downstream factors including MDM2, Bak, and Bax. Additionally, we observed the downregulation of p65, phospho-p65-Ser276, phospho-p65-Ser536, and its downstream factors, including IκBα, BIRC3, XIAP and CIAP1. Moreover, polymerase chain reaction analysis showed that BRWD3 knockdown also resulted in the downregulation of proliferation-related genes and upregulation of apoptosis-related genes. In conclusion, BRWD3 mediated proliferation and apoptosis via the p53 and p65 pathways in response to arsenic exposure, suggesting potential implications for LUAD treatment through BRWD3 downregulation by arsenic.
Collapse
Affiliation(s)
- Yanhua Zhu
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Mei Xiao
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Ruihuan Zhao
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xuefei Yang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Kun Wu
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Xiao Liu
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Xi Chen
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Lei Guo
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Jiezhen Liu
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Xu Chen
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Na Liu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yanliang Zhang
- Department of Clinical Laboratory, The First Afliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| |
Collapse
|
8
|
Tang J, Wang S, Weng M, Guo Q, Ren L, He Y, Cui Z, Cong M, Qin M, Yu J, Su R, Li X. The IGF2BP3-COPS7B Axis Facilitates mRNA Translation to Drive Colorectal Cancer Progression. Cancer Res 2023; 83:3593-3610. [PMID: 37560971 DOI: 10.1158/0008-5472.can-23-0557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
Many studies have provided valuable information about genomic and transcriptomic changes that occur in colorectal cancer. However, protein abundance cannot be reliably predicted by DNA alteration or mRNA expression, which can be partially attributed to posttranscriptional and/or translational regulation of gene expression. In this study, we identified increased translational efficiency (TE) as a hallmark of colorectal cancer by evaluating the transcriptomic and proteomic features of patients with colorectal cancer, along with comparative transcriptomic and ribosome-protected mRNA analysis in colon epithelial cells and colon cancer cells. COP9 signalosome subunit 7B (COPS7B) was among the key genes that consistently showed both significant TE increase and protein elevation without transcriptional alteration in colorectal cancer. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) enhanced the TE of COPS7B mRNA to promote colorectal cancer growth and metastasis. COPS7B was found to be a component of the ribo-interactome that interacted with ribosomes to facilitate ribosome biogenesis and mRNA translation initiation. Collectively, this study revealed the proteomic features of colorectal cancer and highlighted elevated mRNA translation as a hallmark of colorectal cancer. The identification of the IGF2BP3-COPS7B axis underlying the increased protein synthesis rate in colorectal cancer provided a promising therapeutic target to treat this aggressive disease. SIGNIFICANCE Increased expression of COPS7B mediated by IGF2BP3 elevates the translational efficiency of genes enriched in mRNA translation and ribosome biogenesis pathways, promoting protein synthesis and driving progression in colorectal cancer.
Collapse
Affiliation(s)
- Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Mingjiao Weng
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Qingyu Guo
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, School of Basic Sciences & Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, California
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
- Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
9
|
Liu W, Wang L, Zhang J, Cheng K, Zheng W, Ma Z. CC Chemokine 2 Promotes Ovarian Cancer Progression through the MEK/ERK/MAP3K19 Signaling Pathway. Int J Mol Sci 2023; 24:10652. [PMID: 37445830 DOI: 10.3390/ijms241310652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer is a gynecological tumor with an incidence rate lower than those of other gynecological tumor types and the second-highest death rate. CC chemokine 2 (CCL2) is a multifunctional factor associated with the progression of numerous cancers. However, the effect of CCL2 on ovarian cancer progression is unclear. Here, we found that exogenous CCL2 and the overexpression of CCL2 promoted the proliferation and metastasis of ovarian cancer cells. On the other hand, CCL2 knockdown via CRISPR/Cas9 inhibited ovarian cancer cell proliferation, migration, and invasion. The present study demonstrated that mitogen-activated protein three kinase 19 (MAP3K19) was the key CCL2 target for regulating ovarian cancer progression through transcriptome sequencing. Additionally, MAP3K19 knockout inhibited ovarian cancer cell proliferation, migration, and invasion. Furthermore, CCL2 increased MAP3K19 expression by activating the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. The present study showed the correlation between CCL2 and ovarian cancer, suggesting that CCL2 may be a novel target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiajia Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Kun Cheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenming Zheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Zhao L, Wu D, Qu Q, Li Z, Yin H. Karyopherin Subunit Alpha 1 Enhances the Malignant Behaviors of Colon Cancer Cells via Promoting Nuclear Factor-κB p65 Nuclear Translocation. Dig Dis Sci 2023:10.1007/s10620-023-07936-y. [PMID: 37038032 DOI: 10.1007/s10620-023-07936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND/AIMS Aberrant nuclear factor-κB p65 (NF-κB p65) nuclear import commonly occurs in multiple cancers, including colon cancer. According to BioGRID, we noted that Karyopherin subunit alpha 1 (KPNA1), an important molecular transporter between the nucleus and the cytoplasm, may interact with NF-κB p65. KPNA1 itself is highly expressed in colon adenocarcinoma samples (N = 286) based on The Cancer Genome Atlas (TCGA) database. We aimed to explore the role of KPNA1 in colonic carcinogenesis and to determine whether NF-κB p65 nuclear translocation was involved. METHODS KPNA1 expressions at mRNA and protein levels were analyzed in colon cancer tissues. The regulatory effect of KPNA1 on malignant biological properties was detected in SW480 and HCT116 colon cancer cells. Coimmunoprecipitation and immunofluorescence were performed to verify the relationship between KPNA1 and NF-κB p65. KPNA1 ubiquitination was also preliminarily investigated. RESULTS KPNA1 was firstly confirmed as a significantly upregulated gene in our collected clinical colon cancer samples (N = 35). KPNA1 depletion inhibited cell proliferation, induced cell cycle arrest, and diminished migratory and invasive capacity of SW480 and HCT116 cells. Colon cancer cells overexpressing KPNA1 acquired more aggressive behaviors. KPNA1 acted as a transporter to induce the nuclear accumulation of NF-κB p65, thereby activating NF-κB signaling pathway in colon cancer cells. Furthermore, HECT, C2, and WW Domain-Containing E3 Ubiquitin (HECW2) interacted with KPNA1 to induce its ubiquitination. KPNA1 labeled with polyubiquitins was degraded through ubiquitin-proteasome system. CONCLUSION The present study uncovers a role of KPNA1-NF-κB p65 axis in promoting colonic carcinogenesis.
Collapse
Affiliation(s)
- Lianrong Zhao
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
11
|
Szelechowski M, Texier B, Prime M, Atamena D, Belenguer P. Mortalin/Hspa9 involvement and therapeutic perspective in Parkinson’s disease. Neural Regen Res 2023; 18:293-298. [PMID: 35900406 PMCID: PMC9396523 DOI: 10.4103/1673-5374.346487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intracellular calcium fluxes, Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity. However, its expression and stability are strongly modified in response to cellular stresses, in particular upon altered oxidative conditions during neurodegeneration. Here, we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson’s disease, as well as its therapeutic and prognostic potential in this still incurable pathology.
Collapse
|
12
|
A Regulatory Loop Involving miR-200c and NF-κB Modulates Mortalin Expression and Increases Cisplatin Sensitivity in an Ovarian Cancer Cell Line Model. Int J Mol Sci 2022; 23:ijms232315300. [PMID: 36499626 PMCID: PMC9737914 DOI: 10.3390/ijms232315300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is currently the most lethal gynecological cancer. At present, primary debulking surgery combined with platinum-based chemotherapy is the standard treatment strategy for ovarian cancer. Although cisplatin-based chemotherapy has greatly improved the prognosis of patients, the subsequent primary or acquired drug resistance of cancer cells has become an obstacle to a favorable prognosis. Mortalin is a chaperone that plays an important role in multiple cellular and biological processes. Our previous studies have found that mortalin is associated with the proliferation and migration of ovarian cancer cells and their resistance to cisplatin-based chemotherapy. In this study, microRNA (miR)-200b/c downregulated mortalin expression and inhibited the proliferation and migration of the paired cisplatin-sensitive (A2780S) and cisplatin-resistant (A2780CP) epithelial ovarian cancer cell lines. Moreover, miR-200c increased the sensitivity of ovarian cancer cells to cisplatin treatment by regulating mortalin levels. Nuclear factor (NF)-κB directly regulated mortalin and miR-200b/c expression levels, while NF-κB and miR-200b/c jointly regulated the expression of mortalin. The combination of cisplatin and miR-200c significantly enhanced the therapeutic effects on ovarian cancer in vivo, suggesting that miR-200c may serve as a potential therapeutic agent for ovarian cancer.
Collapse
|
13
|
The Novel Protein ADAMTS16 Promotes Gastric Carcinogenesis by Targeting IFI27 through the NF-κb Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911022. [PMID: 36232317 PMCID: PMC9570124 DOI: 10.3390/ijms231911022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16) has been reported to be involved in the pathogenesis of solid cancers. However, its role in gastric cancer (GC) is unclear. In this study, the role of ADAMTS16 in gastric cancer was investigated. The effects of ADAMTS16 on cell migration, invasion, and proliferation were investigated by functional experiments in vivo and in vitro. Downstream signal pathways of ADAMTS16 were confirmed by using bioinformatics analysis, co-immunoprecipitation, and immunofluorescence. Meanwhile, bioinformatics analysis, qRT-PCR, western blot, and dual-luciferase reporter gene analysis assays were used to identify ADAMTS16 targets. The expression of ADAMTS16 in GC was analyzed in public datasets. The expression of ADAMTS16 and its correlations with the clinical characteristics of GC were investigated by immunohistochemistry. Ectopic ADAMTS16 expression significantly promoted tumor cell migration, invasion, and growth. Bioinformatics analysis and western blot showed that ADAMTS16 upregulated the IFI27 protein through the NF-κb pathway, which was confirmed by immunofluorescence and western blot. Dual-luciferase reporter gene analysis identified a binding site between P65 and IFI27 that may be directly involved in the transcriptional regulation of IFI27. IFI27 knockdown reversed the promoting effect of ADAMTS16 on cell invasion, migration, and proliferation indicating that ADAMTS16 acts on GC cells by targeting the NF-κb/IFI27 axis. ADAMTS16 was associated with poor prognosis in clinical characteristics. ADAMTS16 promotes cell migration, invasion, and proliferation by targeting IFI27 through the NF-κB pathway and is a potential progressive and survival biomarker of GC.
Collapse
|
14
|
Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries ( Rubus idaeus): A General Review. Antioxidants (Basel) 2022; 11:antiox11061192. [PMID: 35740089 PMCID: PMC9230908 DOI: 10.3390/antiox11061192] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Raspberries (Rubus idaeus) possess a wide phenolic family profile; this serves the role of self-protection for the plant. Interest in these compounds have significantly increased, since they have been classified as nutraceuticals due to the positive health effects provided to consumers. Extensive chemical, in vitro and in vivo studies have been performed to prove and validate these benefits and their possible applications as an aid when treating several chronic degenerative diseases, characterized by oxidative stress and an inflammatory response. While many diseases could be co-adjuvanted by the intake of these phenolic compounds, this review will mainly discuss their effects on cancer. Anthocyanins and ellagitannins are known to provide a major antioxidant capacity in raspberries. The aim of this review is to summarize the current knowledge concerning the phenolic compound family of raspberries, and topics discussed include their characterization, biosynthesis, bioavailability, cytotoxicity, antioxidant and anti-inflammatory activities.
Collapse
|
15
|
Yang W, Li J, Zhang M, Yu H, Zhuang Y, Zhao L, Ren L, Gong J, Bi H, Zeng L, Xue Y, Yang J, Zhao Y, Wang S, Gao S, Fu Z, Li D, Zhang J, Wang T, Shan M, Tang B, Li X. Elevated expression of the rhythm gene NFIL3 promotes the progression of TNBC by activating NF-κB signaling through suppression of NFKBIA transcription. J Exp Clin Cancer Res 2022; 41:67. [PMID: 35180863 PMCID: PMC8855542 DOI: 10.1186/s13046-022-02260-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background Epidemiological studies have confirmed that abnormal circadian rhythms are associated with tumorigenesis in breast cancer. However, few studies have investigated the pathological roles of rhythm genes in breast cancer progression. In this study, we aimed to evaluate the aberrant expression of 32 rhythm genes in breast cancer and detect the pathological roles and molecular mechanisms of the altered rhythm gene in regulating the progression of triple negative breast cancer (TNBC). Methods The aberrant expression of rhythm genes in breast cancer was screened by searching the GEPIA database and validated by using qRT-PCR and immunohistochemistry staining. Bioinformatics analysis combined with luciferase reporter experiment and chromatinimmunopercitation (ChIP) were used to investigate the molecular mechanism about aberrant expression of identified rhythm gene in breast cancer. The pathological roles of identified rhythm gene in TNBC progression was evaluated by colony formation assay, wound healing experiment, transwell assay, subcutaneous tumor formation and the mouse tail vein injection model through gain-of-function and loss-of-function strategies respectively. mRNA array, bioinformatics analysis, luciferase reporter experiment, ChIP and immunoflurescence assay were employed to investigate the key molecules and signaling pathways by which the identified rhythm gene regulating TNBC progression. Results We identified that nuclear factor interleukin 3 regulated (NFIL3) expression is significantly altered in TNBC compared with both normal breast tissues and other subtypes of breast cancer. We found that NFIL3 inhibits its own transcription, and thus, downregulated NFIL3 mRNA indicates high expression of NFIL3 protein in breast cancer. We demonstrated that NFIL3 promotes the proliferation and metastasis of TNBC cells in vitro and in vivo, and higher expression of NFIL3 is associated with poor prognosis of patients with TNBC. We further demonstrated that NFIL3 enhances the activity of NF-κB signaling. Mechanistically, we revealed that NFIL3 directly suppresses the transcription of NFKBIA, which blocks the activation of NF-κB and inhibits the progression of TNBC cells in vitro and in vivo. Moreover, we showed that enhancing NF-κB activity by repressing NFKBIA largely mimics the oncogenic effect of NFIL3 in TNBC, and anti-inflammatory strategies targeting NF-κB activity block the oncogenic roles of NFIL3 in TNBC. Conclusion NFIL3 promotes the progression of TNBC by suppressing NFKBIA transcription and then enhancing NF-κB signaling-mediated cancer-associated inflammation. This study may provide a new target for TNBC prevention and therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02260-1.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jing Li
- Department of Pathology, Harbin Medical University, Harbin, China.,Electronic Microscope Center of Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Haichuan Yu
- School of Medical Laboratory, Xinxiang Medical University, Xinxiang, China
| | - Yuan Zhuang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jinan Gong
- Clinicopathological Diagnosis Center, Qiqihar Medical University, Qiqihar, China
| | - Hongjie Bi
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lixuan Zeng
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yang Xue
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jinjin Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yan Zhao
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zitong Fu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Dongze Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jinxing Zhang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Ming Shan
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| | - Bo Tang
- Department of Pathology, Harbin Medical University, Harbin, China. .,Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Wang G, Fan Y, Cao P, Tan K. Insight into the mitochondrial unfolded protein response and cancer: opportunities and challenges. Cell Biosci 2022; 12:18. [PMID: 35180892 PMCID: PMC8857832 DOI: 10.1186/s13578-022-00747-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved protective transcriptional response that maintains mitochondrial proteostasis by inducing the expression of mitochondrial chaperones and proteases in response to various stresses. The UPRmt-mediated transcriptional program requires the participation of various upstream signaling pathways and molecules. The factors regulating the UPRmt in Caenorhabditis elegans (C. elegans) and mammals are both similar and different. Cancer cells, as malignant cells with uncontrolled proliferation, are exposed to various challenges from endogenous and exogenous stresses. Therefore, in cancer cells, the UPRmt is hijacked and exploited for the repair of mitochondria and the promotion of tumor growth, invasion and metastasis. In this review, we systematically introduce the inducers of UPRmt, the biological processes in which UPRmt participates, the mechanisms regulating the UPRmt in C. elegans and mammals, cross-tissue signal transduction of the UPRmt and the roles of the UPRmt in promoting cancer initiation and progression. Disrupting proteostasis in cancer cells by targeting UPRmt constitutes a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Ge Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.,Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Pengxiu Cao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.
| |
Collapse
|
17
|
Cui Z, Sun S, Li J, Li J, Sha T, He J, Zuo L. UBE2L3 promotes squamous cell carcinoma progression in the oral cavity and hypopharynx via activating the NF‐κB signaling by increasing IκBα degradation. Cell Biol Int 2022; 46:806-818. [PMID: 35128752 DOI: 10.1002/cbin.11772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Zhi Cui
- The Third Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin UniversityChangchunJilinChina
| | - Shiqun Sun
- Department of Prosthodontics, Hospital of Stomatology, Jilin UniversityChangchunJilinChina
| | - Jia Li
- Department of Oral and Maxillofacial Surgery Clinic, Hospital of Stomatology, Jilin UniversityChangchunJilinChina
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin UniversityChangchunJilinChina
| | - Tong Sha
- The Third Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin UniversityChangchunJilinChina
| | - Jie He
- Department of Dental Implantology, Hospital of Stomatology, Jilin UniversityChangchunJilinChina
| | - Linjing Zuo
- Department of Pedodontics, Hospital of Stomatology, Jilin UniversityChangchunJilinChina
| |
Collapse
|
18
|
Albakova Z, Mangasarova Y, Albakov A, Gorenkova L. HSP70 and HSP90 in Cancer: Cytosolic, Endoplasmic Reticulum and Mitochondrial Chaperones of Tumorigenesis. Front Oncol 2022; 12:829520. [PMID: 35127545 PMCID: PMC8814359 DOI: 10.3389/fonc.2022.829520] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
HSP70 and HSP90 are two powerful chaperone machineries involved in survival and proliferation of tumor cells. Residing in various cellular compartments, HSP70 and HSP90 perform specific functions. Concurrently, HSP70 and HSP90 homologs may also translocate from their primary site under various stress conditions. Herein, we address the current literature on the role of HSP70 and HSP90 chaperone networks in cancer. The goal is to provide a comprehensive review on the functions of cytosolic, mitochondrial and endoplasmic reticulum HSP70 and HSP90 homologs in cancer. Given that high expression of HSP70 and HSP90 enhances tumor development and associates with tumor aggressiveness, further understanding of HSP70 and HSP90 chaperone networks may provide clues for the discoveries of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Zarema Albakova,
| | | | | | | |
Collapse
|
19
|
Qiao ZW, Jiang Y, Wang L, Wang L, Jiang J, Zhang JR, Mu P. LINC00852 promotes the proliferation and invasion of ovarian cancer cells by competitively binding with miR-140-3p to regulate AGTR1 expression. BMC Cancer 2021; 21:1004. [PMID: 34496800 PMCID: PMC8424870 DOI: 10.1186/s12885-021-08730-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) has been identified in ovarian cancer. However, the expression and biological functions of LINC00852 in ovarian cancer are not understood. Methods The expressions of LINC00852, miR-140-3p and AGTR1 mRNA in ovarian cancer tissues and cells were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Gain- and loss-of-function assays were performed to explore the biological functions of LINC00852 and miR-140-3p in the progression of ovarian cancer in vitro. The bindings between LINC00852 and miR-140-3p were confirmed by luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. Results We found that LINC00852 expression was significantly up-regulated in ovarian cancer tissues and cells, whereas miR-140-3p expression was significantly down-regulated in ovarian cancer tissues. Functionally, LINC00852 knockdown inhibited the viability, proliferation and invasion of ovarian cancer cells, and promoted the apoptosis of ovarian cancer cells. Further investigation showed that LINC00852 interacted with miR-140-3p, and miR-140-3p overexpression suppressed the viability, proliferation and invasion of ovarian cancer cells. In addition, miR-140-3p interacted with AGTR1 and negatively regulated its level in ovarian cancer cells. Mechanistically, we found that LINC00852 acted as a ceRNA of miR-140-3p to promote AGTR1 expression and activate MEK/ERK/STAT3 pathway. Finally, LINC00852 knockdown inhibited the growth and invasion ovarian cancer in vivo. Conclusion LINC00852/miR-140-3p/AGTR1 is an important pathway to promote the proliferation and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Zhi-Wei Qiao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Ying Jiang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Ling Wang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Lei Wang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Jing Jiang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Jing-Ru Zhang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China.
| | - Peng Mu
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
20
|
Sadoughi F, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. Beta-glucans is a potential inhibitor of ovarian cancer: based on molecular and biological aspects. Curr Pharm Biotechnol 2021; 23:1142-1152. [PMID: 34375183 DOI: 10.2174/1389201022666210810090728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is a lethal type of cancer which is initiated in the ovaries and affects 1 out of every 75 women. Due to the high number of deaths (almost 152,000) related to this cancer, it seems that novel effiecient therapeutic methods are required in this field. Beta-glucans are a type of glucose linear polymers which have proven to have a lot of advantageous activities. Recently, investigations have declared that these polysaccharides have the potential to be used as anti-cancer drugs. These agents are able to affect several mechanisms such as inflammation and apoptosis and that is how cancers are prone to be affected by them. In this review, we attempt to investigate the role of beta-glucans on ovarian cancer. We hope that this paper might give novel insights in the field of ovarian cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Gao M, Liu L, Zhang X, Li Z, Zhang M. Interleukin-6 reverses Adriamycin resistance in nasal NK/T-cell lymphoma via downregulation of ABCC4 and inactivation of the JAK2/STAT3/NF-κB/P65 pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103639. [PMID: 33771682 DOI: 10.1016/j.etap.2021.103639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Chemotherapy is generally effective for extranodal natural killer (NK)/T-cell lymphoma (ENKTCL), nasal type. Nevertheless, multidrug resistance (MDR) remains a key challenge in treating nasal NK/T-cell lymphoma. Interleukin-6 (IL-6) is reportedly an important regulator of MDR in many cancers, implicating a role of IL-6 in the chemotherapy response. However, the effects and mechanism of IL-6 in nasal NK/T-cell lymphoma remain unclear. Herein, we demonstrated that the IL-6 serum level was decreased in nasal NK/T-cell lymphoma patients compared to chronic rhinitis patients. Lower serum levels of IL-6 were closely correlated with Ki67 expression and patient survival. ATP-binding cassette (ABC) drug transporter ABCC4 in patients was abnormally upregulated. IL-6 significantly inhibited resistance to Adriamycin (ADM) in ADM-resistant SNK-6 cells (SNK-6/ADM). Moreover, IL-6 resulted in cell cycle arrest and led to apoptosis in SNK-6/ADM cells. Furthermore, IL-6 decreased ABCC4, p-JAK2, p-STAT3, and phospho-NF-κB p65 expression in SNK-6/ADM cells. IL-6 in combination with ADM inhibited tumor growth and increased the survival of SNK-6/ADM xenograft mice. In conclusion, our findings suggest that IL-6 can inhibit the upregulation of ABCC4 and inactivate the JAK2/STAT3/NF-κB/P65 pathway to sensitize NK/T-cell lymphoma to ADM, indicating that combination therapy with IL-6 and other chemotherapeutic drugs may be effective in reversing acquired resistance in nasal NK/T-cell lymphoma.
Collapse
Affiliation(s)
- Ming Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Liying Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
22
|
Cui Y, Wang D, Xie M. Tumor-Derived Extracellular Vesicles Promote Activation of Carcinoma-Associated Fibroblasts and Facilitate Invasion and Metastasis of Ovarian Cancer by Carrying miR-630. Front Cell Dev Biol 2021; 9:652322. [PMID: 34277601 PMCID: PMC8277948 DOI: 10.3389/fcell.2021.652322] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is a lethal gynecological malignancy. Extracellular vesicles (EVs) are crucial media in cell-to-cell communication by carrying microRNAs (miRs). The current study aims to investigate the underlying mechanism of miR-630 carried by OC cell-derived EVs in regard to invasion and metastasis of OC cells. miRs related to OC metastasis were searched and screened. The expression patterns of screened miRs in human normal fibroblasts (NFs) and carcinoma-associated fibroblasts (CAFs) were detected using RT-qPCR. miR-630 related to OC metastasis and CAFs activation was analyzed further. The levels of FAP and α-SMA were detected using Western blotting and immunofluorescence. The migration of NFs was measured using Transwell assay. OC cell-derived EVs were isolated and identified. Uptake of EVs by NFs was observed using immunofluorescence staining. The culture supernatant of NFs was collected and used to culture the low metastasis cell line OVCAR8. The migration and invasion of OC cells and epithelial mesenchymal transition (EMT) were measured. Moreover, a xenograft model was established by injecting OVCAR8 cells of different groups into nude mice. Lastly, the effect of EV-pretreated NFs on invasion and metastasis of OC cells was observed in vivo. miR-630 was upregulated in OC cells and CAFs, and further associated with CAF activation and OC metastasis. miR-630 overexpression increased the levels of FAP and α-SMA in NFs, resulting in the transformation of NFs into CAFs. EVs carried miR-630 into NFs and EVs promoted CAF activation. miR-630 targeted KLF6. miR-630 inhibition or KLF6 overexpression attenuated EVs-induced CAF activation. EVs activated the NF-κB pathway via the miR-630/KLF6 axis. The conditioned medium of NFs pretreated with EVs promoted the invasion and metastasis of OVCAR8 cells, while downregulating miR-630 in EVs partially inhibited the promotive effect of NFs. EV-pretreated NFs promoted invasion and metastasis of OC in vivo. In conclusion, EVs carried miR-630 into NFs, thereby facilitating CAF activation and promoting invasion and metastasis of OC by inhibiting KLF6 and activating the NF-κB pathway. Our findings might offer a novel mechanism of invasion and metastasis of OC from the perspective of tumor microenvironment.
Collapse
Affiliation(s)
- Yulan Cui
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | |
Collapse
|
23
|
Liu WJ, Huang YX, Wang W, Zhang Y, Liu BJ, Qiu JG, Jiang BH, Liu LZ. NOX4 Signaling Mediates Cancer Development and Therapeutic Resistance through HER3 in Ovarian Cancer Cells. Cells 2021; 10:cells10071647. [PMID: 34209278 PMCID: PMC8304464 DOI: 10.3390/cells10071647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Development of resistance to therapy in ovarian cancer is a major hinderance for therapeutic efficacy; however, new mechanisms of the resistance remain to be elucidated. NADPH oxidase 4 (NOX4) is responsible for higher NADPH activity to increase reactive oxygen species (ROS) production. In this study, we showed that higher levels of NOX4 were detected in a large portion of human ovarian cancer samples. To understand the molecular mechanism of the NOX4 upregulation, we showed that NOX4 expression was induced by HIF-1α and growth factor such as IGF-1. Furthermore, our results indicated that NOX4 played a pivotal role in chemotherapy and radiotherapy resistance in ovarian cancer cells. We also demonstrated that NOX4 knockdown increased sensitivity of targeted therapy and radiotherapy through decreased expression of HER3 (ERBB3) and NF-κB p65. Taken together, we identified a new HIF-1α/NOX4 signal pathway which induced drug and radiation resistance in ovarian cancer. The finding may provide a new option to overcome the therapeutic resistance of ovarian cancer in the future.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Basic Medical Science, Academy of Medical Science, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450001, China; (W.-J.L.); (Y.-X.H.); (W.W.); (Y.Z.); (B.-J.L.)
| | - Ying-Xue Huang
- School of Basic Medical Science, Academy of Medical Science, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450001, China; (W.-J.L.); (Y.-X.H.); (W.W.); (Y.Z.); (B.-J.L.)
| | - Wei Wang
- School of Basic Medical Science, Academy of Medical Science, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450001, China; (W.-J.L.); (Y.-X.H.); (W.W.); (Y.Z.); (B.-J.L.)
| | - Ye Zhang
- School of Basic Medical Science, Academy of Medical Science, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450001, China; (W.-J.L.); (Y.-X.H.); (W.W.); (Y.Z.); (B.-J.L.)
| | - Bing-Jie Liu
- School of Basic Medical Science, Academy of Medical Science, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450001, China; (W.-J.L.); (Y.-X.H.); (W.W.); (Y.Z.); (B.-J.L.)
| | - Jian-Ge Qiu
- School of Basic Medical Science, Academy of Medical Science, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450001, China; (W.-J.L.); (Y.-X.H.); (W.W.); (Y.Z.); (B.-J.L.)
- Correspondence: (J.-G.Q.); (B.-H.J.)
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence: (J.-G.Q.); (B.-H.J.)
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
24
|
ADAMTS19 Suppresses Cell Migration and Invasion by Targeting S100A16 via the NF-κB Pathway in Human Gastric Cancer. Biomolecules 2021; 11:biom11040561. [PMID: 33921267 PMCID: PMC8070242 DOI: 10.3390/biom11040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
A Disintegrin and Metalloproteinase with Thrombospondin motifs 19 (ADAMTS19) has been reported to participate in the pathogenesis of solid cancers. However, its role in gastric cancer (GC) remains undocumented. Using immunohistochemistry (IHC) staining and quantitative real-time polymerase chain reaction (qRT-PCR) on GC tissues and adjacent normal tissues, we found that ADAMTS19 was downregulated in GC tissues (IHC: p < 0.001; qRT-PCR: p = 0.017). Further investigation revealed that ADAMTS19 correlated with distant metastasis (p = 0.008) and perineural invasion (p = 0.018) and that patients with low ADAMTS19 had worse overall survival (p = 0.021). Gain- and loss-of-function assays showed that ADAMTS19 suppressed cell migration and invasion in vitro. Using bioinformatics analysis and co-immunoprecipitation, immunofluorescence, and dual-luciferase reporter gene assays, we confirmed that ADAMTS19 binds with cytoplasm P65, decreasing the nucleus phosphorylation of P65, a crucial transcription factor in the nuclear factor kappa-B (NF-κB) pathway, thereby downregulating S100 calcium-binding protein A16 (S100A16) expression. S100A16 acted as the downstream of ADAMTS19, reversing the suppression of cell migration and invasion by ADAMTS19 in vitro. A combination of ADAMTS19 and S100A16 expression provided the optimal prognostic indicator for GC. Patients with ADAMTS19high-S100A16low had better overall survival than ADAMTS19low-S100A16high patients (p = 0.006). These results suggest that ADAMTS19 suppresses cell migration and invasion by targeting S100A16 via the NF-κB pathway and that ADAMTS19 and S100A16 are potential metastasis and survival biomarkers for GC.
Collapse
|
25
|
Weng M, Feng Y, He Y, Yang W, Li J, Zhu Y, Wang T, Wang C, Zhang X, Qiao Y, Li Q, Zhao L, Gao S, Zhang L, Wu Y, Zhao R, Wang G, Li Z, Jin X, Zheng T, Li X. Hypoxia-Induced LIN28A mRNA Promotes the Metastasis of Colon Cancer in a Protein-Coding-Independent Manner. Front Cell Dev Biol 2021; 9:642930. [PMID: 33665193 PMCID: PMC7921329 DOI: 10.3389/fcell.2021.642930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The hypoxic microenvironment is beneficial to the metastasis but not to the proliferation of cancer cells. However, the mechanisms regarding to hypoxia differentially regulating cancer metastasis and proliferation are largely unknown. In this study, we revealed that hypoxia induced the expression of LIN28A at mRNA level but segregated LIN28A mRNAs in the P-bodies and thus inhibits the production of LIN28A protein. This unexpected finding suggests that there may be non-coding role for LIN28A mRNA in the progression of colon cancer. We further showed that the non-coding LIN28A mRNA promotes the metastasis but not proliferation of colon cancer cells in vitro and in vivo. Mechanistically, we revealed that methionyl aminopeptidase 2 (METAP2) is one of the up-regulated metastasis regulators upon over-expression of non-coding LIN28A identified by mass spectrum, and confirmed that it is non-coding LIN28A mRNA instead of LIN28A protein promotes the expression of METAP2. Moreover, we demonstrated that knockdown of DICER abolished the promotional effects of non-coding LIN28A on the metastasis and METAP2 expression. Conclusively, we showed that hypoxia induces the production of LIN28A mRNAs but segregated them into the P-bodies together with miRNAs targeting both LIN28A and METAP2, and then promotes the metastasis by positively regulating the expression of METAP2. This study uncovered a distinctive role of hypoxia in manipulating the metastasis and proliferation by differently regulating the expression of LIN28A at mRNA and protein level.
Collapse
Affiliation(s)
- Mingjiao Weng
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yukuan Feng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jing Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xiao Zhang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yu Qiao
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yiqi Wu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Ran Zhao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoming Jin
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
27
|
Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019; 11:E1389. [PMID: 31540420 PMCID: PMC6769485 DOI: 10.3390/cancers11091389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis and poor survival rates associated with late stages of the disease are major obstacles against treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs. Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and aggressiveness of various cancers. However, relative to other cancers, there is limited body of knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review, we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
28
|
Li S, Lv M, Qiu S, Meng J, Liu W, Zuo J, Yang L. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin. J Cell Mol Med 2019; 23:4338-4348. [PMID: 30983127 PMCID: PMC6533498 DOI: 10.1111/jcmm.14325] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
Previous studies show that mortalin, a HSP70 family member, contributes to the development and progression of ovarian cancer. However, details of the transcriptional regulation of mortalin remain unknown. We aimed to determine whether NF‐κB p65 participates in the regulation of mortalin expression in ovarian cancer cells and to elucidate the underlying mechanism. Chromatin immunoprecipitation and luciferase reporter assay were used to identify mortalin gene sequences, to which NF‐κB p65 binds. Results indicated that NF‐κB p65 binds to the mortalin promoter at a site with the sequence ‘CGGGGTTTCA’. Using lentiviral pLVX‐NF‐κB‐puro and Lentivirus‐delivered NF‐κB short hairpin RNA (shRNA), we created ovarian cancer cell lines in which NF‐κB p65 was stably up‐regulated and down‐regulated. Using these cells, we found that downregulation of NF‐κB p65 inhibits the growth and migration of ovarian cancer cells. Further experimental evidence indicated that downregulation of NF‐κB p65 reduced mortalin, and upregulation of mortalin rescued the proliferation and migration of ovarian cancer cells reduced by NF‐κB p65 knockdown. In conclusion, NF‐κB p65 binds to the mortalin promoter and promotes ovarian cancer cells proliferation and migration via regulating mortalin.
Collapse
Affiliation(s)
- Shan Li
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyuan Lv
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shi Qiu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaqi Meng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|