1
|
Liang F, Peng C, Luo X, Wang L, Huang Y, Yin L, Yue L, Yang J, Zhao X. A single-cell atlas of immunocytes in the spleen of a mouse model of Wiskott-Aldrich syndrome. Cell Immunol 2023; 393-394:104783. [PMID: 37944382 DOI: 10.1016/j.cellimm.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the Was gene, which is specifically expressed in hematopoietic cells. The spleen plays a major role in hematopoiesis and red blood cell clearance. However, to date, comprehensive analyses of the spleen in wild-type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptome level, have not been reported. In this study, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanisms underlying immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11,269 cells; these cell types included B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, granulocytes, stem cells and erythrocytes. Moreover, we evaluated gene expression differences among cell subtypes, identified differentially expressed genes (DEGs), and performed enrichment analyses to identify the reasons for the dysfunction in these different cell populations in WAS. Furthermore, some key genes were identified based on a comparison of the DEGs in each cell type involved in specific and nonspecific immune responses, and further analysis showed that these key genes were previously undiscovered pathology-related genes in WAS-KO mice. In summary, we present a landscape of immune cells in the spleen of WAS-KO mice based on detailed data obtained at single-cell resolution. These unprecedented data revealed the transcriptional characteristics of specific and nonspecific immune cells, and the key genes were identified, laying a foundation for future studies of WAS, especially studies into novel and underexplored mechanisms that may improve gene therapies for WAS.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Cheng Peng
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Xianze Luo
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Linlin Wang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yanyan Huang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Le Yin
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Luming Yue
- Singleron Biotechnologies, Nanjing, Jiangsu, China
| | - Jun Yang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Xiaodong Zhao
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Li X, Wang HY, Gao F, Guo FF, Wang XN, Pan YX, Bai GQ. Tenofovir alters the immune microenvironment of pregnant women with hepatitis B virus infection: Evidence from single-cell RNA sequencing. Int Immunopharmacol 2023; 119:110245. [PMID: 37163920 DOI: 10.1016/j.intimp.2023.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Mother-to-child is the main route of the transmission of hepatitis B virus (HBV) infection. Tenofovir fumarate (TDF) antiviral treatment has become the most extensive choice worldwide. However, the effects of TDF treatment on the immune function of pregnant women remains unclear. Here we investigate the effect of TDF treatment on the immune microenvironment of pregnant women with HBV infection using single-cell RNA sequencing (scRNA-seq). METHODS Three HBV-infected pregnant women were treated with TDF and six samples were collected before and after the treatment. In total, 68,200 peripheral blood mononuclear cells (PBMCs) were extracted for 10 × scRNA-seq. The cells were clustered using t-distributed stochastic neighbor embedding (t-SNE) and unbiased computational informatics analysis. RESULTS The analysis identified four-cell subtypes, including T cells, monocytes, natural killer (NK) cells, and B cells, and unraveled the developmental trajectory and maturation of CD4+ T and CD8+ T cell subtypes. The cellular state and molecular features of the effector/memory T cells revealed a significant increase in the inflammatory state of CD4+ T cells and the cytotoxic characteristics of CD8+ T cells. Additionally, after TDF treatment, the monocytes showed a tendency for M1 polarization, and the cytotoxicity of NK cells was enhanced. Furthermore, the analysis of intercellular communication revealed the interaction of various subtypes of cells and the heterogeneous expression of key signal pathways. CONCLUSIONS The findings of this study reveal significant differences in cellular subtypes and molecular characteristics of PBMCs of pregnant women with HBV infection before and after TDF treatment and demonstrate the recovery of immune response after treatment. These findings could help develop immune intervention measures to control HBV during pregnancy and the puerperium period.
Collapse
Affiliation(s)
- Xia Li
- Gene Joint Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong-Yan Wang
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fan Gao
- Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fan-Fan Guo
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao-Na Wang
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi-Xia Pan
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gui-Qin Bai
- Gene Joint Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Cocker ATH, Guethlein LA, Parham P. The CD56-CD16+ NK cell subset in chronic infections. Biochem Soc Trans 2023:233017. [PMID: 37140380 DOI: 10.1042/bst20221374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Long-term human diseases can shape the immune system, and natural killer (NK) cells have been documented to differentiate into distinct subsets specifically associated with chronic virus infections. One of these subsets found in large frequencies in HIV-1 are the CD56-CD16+ NK cells, and this population's association with chronic virus infections is the subject of this review. Human NK cells are classically defined by CD56 expression, yet increasing evidence supports the NK cell status of the CD56-CD16+ subset which we discuss herein. We then discuss the evidence linking CD56-CD16+ NK cells to chronic virus infections, and the potential immunological pathways that are altered by long-term infection that could be inducing the population's differentiation. An important aspect of NK cell regulation is their interaction with human leukocyte antigen (HLA) class-I molecules, and we highlight work that indicates both virus and genetic-mediated variations in HLA expression that have been linked to CD56-CD16+ NK cell frequencies. Finally, we offer a perspective on CD56-CD16+ NK cell function, taking into account recent work that implies the subset is comparable to CD56+CD16+ NK cell functionality in antibody-dependent cell cytotoxicity response, and the definition of CD56-CD16+ NK cell subpopulations with varying degranulation capacity against target cells.
Collapse
Affiliation(s)
- Alexander T H Cocker
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| |
Collapse
|
4
|
Jin J, Liu Y, Xu X, Wang Z, Niu J. The association between Fc gamma RIIb expression levels and chronic hepatitis B virus infection progression. BMC Infect Dis 2021; 21:1235. [PMID: 34879827 PMCID: PMC8653572 DOI: 10.1186/s12879-021-06918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fc gamma receptor IIb (FcγRIIb) is an important inhibitory receptor that plays vital roles in regulating various immune response processes and the pathogenesis of many infectious diseases. The purpose of our research was to evaluate FcγRIIb expression in serum and liver biopsy specimens from hepatitis B virus (HBV)-infected patients and to explore the association of FcγRIIb with chronic HBV infection. METHODS Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the serum FcγRIIb levels in 119 HBV-infected patients and 24 healthy controls. An immunohistochemical method was then employed to identify FcγRIIb expression in biopsy specimens from patients with chronic hepatitis B (CHB). The integrated optical density (IOD) value was measured to represent FcγRIIb expression levels. RESULTS Serum FcγRIIb levels were decreased in CHB patients compared to controls (P < 0.001). The FcγRIIb levels in the CHB patient group were remarkably lower than those in the HBV carrier group (P < 0.001). In addition, FcγRIIb levels were negatively associated with AST and ALT (r = -0.3936, P = 0.0063; r = -0.3459, P = 0.0097, respectively). The IOD values of FcγRIIb expression in the moderate and severe CHB groups were significantly lower than those in the control group (P = 0.006 and P < 0.001, respectively). The FcγRIIb level tended to be lower with pathological changes related to hepatitis. Furthermore, correlation analysis revealed that FcγRIIb had negative correlations with AST and ALT (r = -0.688, P = 0.0016; r = -0.686, P = 0.0017, respectively) but a positive association with the platelet count (r = 0.6464, P = 0.0038). CONCLUSIONS FcγRIIb levels are significantly related to chronic HBV infection and the progression of CHB. Changes in FcγRIIb may affect the progression of liver inflammation and fibrosis in CHB patients.
Collapse
Affiliation(s)
- Jinglan Jin
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China
| | - Yuwei Liu
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China
| | - Xiaotong Xu
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China
| | - Zhongfeng Wang
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, First Bethune Hospital of Jilin University, 71 Xin Min Street, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
5
|
Zhang D, Guo S, Schrodi SJ. Mechanisms of DNA Methylation in Virus-Host Interaction in Hepatitis B Infection: Pathogenesis and Oncogenetic Properties. Int J Mol Sci 2021; 22:9858. [PMID: 34576022 PMCID: PMC8466338 DOI: 10.3390/ijms22189858] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV), the well-studied oncovirus that contributes to the majority of hepatocellular carcinomas (HCC) worldwide, can cause a severe inflammatory microenvironment leading to genetic and epigenetic changes in hepatocyte clones. HBV replication contributes to the regulation of DNA methyltransferase gene expression, particularly by X protein (HBx), and subsequent methylation changes may lead to abnormal transcription activation of adjacent genes and genomic instability. Undoubtedly, the altered expression of these genes has been known to cause diverse aspects of infected hepatocytes, including apoptosis, proliferation, reactive oxygen species (ROS) accumulation, and immune responses. Additionally, pollutant-induced DNA methylation changes and aberrant methylation of imprinted genes in hepatocytes also complicate the process of tumorigenesis. Meanwhile, hepatocytes also contribute to epigenetic modification of the viral genome to affect HBV replication or viral protein production. Meanwhile, methylation levels of HBV integrants and surrounding host regions also play crucial roles in their ability to produce viral proteins in affected hepatocytes. Both host and viral changes can provide novel insights into tumorigenesis, individualized responses to therapeutic intervention, disease progress, and early diagnosis. As such, DNA methylation-mediated epigenetic silencing of cancer-related genes and viral replication is a compelling therapeutic goal to reduce morbidity and mortality from liver cancer caused by chronic HBV infection. In this review, we summarize the most recent research on aberrant DNA methylation associated with HBV infection, which is involved in HCC development, and provide an outlook on the future direction of the research.
Collapse
Affiliation(s)
- Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Zheng W, Jiang F, Shan J, Wang Y, Jia Y, Guo Q, Lou J, Zhao Y. Levels of serum IgG subclasses in patients with liver disease: A retrospective study. Exp Ther Med 2020; 21:45. [PMID: 33273974 PMCID: PMC7706388 DOI: 10.3892/etm.2020.9476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Viral and alcoholic liver disease, drug induced liver disease (DILD), primary biliary cirrhosis (PBC) and autoimmune hepatitis (AIH) are among the most common liver diseases observed in clinical practice. These diseases lack unique clinical characteristics at the beginning of pathogenesis, which renders specific diagnosis difficult. Immunoglobulin G (IgG) subclasses are the main isoform of antibodies that can be found in the serum that serve important protective roles in immunity. The present study aimed to investigate the serum IgG subclass distribution in patients with the five common liver diseases aforementioned. The present study retrospectively recorded and analyzed the serum IgG subclass levels of different patients, who were grouped according to their clinical diagnosis. Serum IgG subclass levels were measured using immunonephelometric assays. IgG3 levels were found to be significantly increased whereas IgG4 levels were significantly decreased in patients with PBC. In patients with AIH, IgG1 levels were significantly increased. By contrast, IgG1/IgG level ratios in patients with viral liver disease were significantly increased. No clear pattern in the distribution characteristics of IgG subclasses could be observed in cohorts with alcoholic liver disease and DILD in the present study. Additionally, model for end-stage liver disease scores regarding IgG1 in patients with AIH shared a synergistic relationship. Anti-mitochondrial antibody subtype M2 (AMA-M2) and IgG3 in patients with PBC demonstrated a synergistic relationship. These results suggested that IgG subclasses may be used as biomarkers to further the understanding of liver disease, which could allow for early diagnosis.
Collapse
Affiliation(s)
- Wei Zheng
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Feifei Jiang
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jing Shan
- Department of Hepatology and Immunology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Ying Wang
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yongmei Jia
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Qiuyan Guo
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jinli Lou
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yan Zhao
- Clinical Laboratory Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
7
|
Jin J, Xu H, Wu R, Gao N, Wu N, Li S, Niu J. Identification of key genes and pathways associated with different immune statuses of hepatitis B virus infection. J Cell Mol Med 2019; 23:7474-7489. [PMID: 31565863 PMCID: PMC6815815 DOI: 10.1111/jcmm.14616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
We aimed to identify key genes and pathways associated with different immune statuses of hepatitis B virus (HBV) infection. The gene expression and DNA methylation profiles were analysed in different immune statuses of HBV infection. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified, followed by their functional and integrative analyses. The differential expression of IgG Fc receptors (FcγRs) in chronic HBV-infected patients and immune cells during different stages of HBV infection was investigated. Toll-like receptor (TLR) signalling pathway (including TLR6) and leucocyte transendothelial migration pathway (including integrin subunit beta 1) were enriched during acute infection. Key DEGs, such as FcγR Ib and FcγR Ia, and interferon-alpha inducible protein 27 showed correlation with alanine aminotransferase levels, and they were differentially expressed between acute and immune-tolerant phases and between immune-tolerant and immune-clearance phases. The integrative analysis of DNA methylation profile showed that lowly methylated and highly expressed genes, including cytotoxic T lymphocyte-associated protein 4 and mitogen-activated protein kinase 3 were enriched in T cell receptor signalling pathway during acute infection. Highly methylated and lowly expressed genes, such as Ras association domain family member 1 and cyclin-dependent kinase inhibitor 2A were identified in chronic infection. Furthermore, differentially expressed FcγR Ia, FcγR IIa and FcγR IIb, CD3- CD56+ CD16+ natural killer cells and CD14high CD16+ monocytes were identified between immune-tolerant and immune-clearance phases by experimental validation. The above genes and pathways may be used to distinguish different immune statuses of HBV infection.
Collapse
MESH Headings
- DNA Methylation/genetics
- DNA Methylation/immunology
- Female
- Gene Expression/genetics
- Hepatitis B/genetics
- Hepatitis B/immunology
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Humans
- Killer Cells, Natural/immunology
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Signal Transduction/genetics
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jinglan Jin
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| | - Na Gao
- Department of Infectious DiseaseThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Na Wu
- Lanshan People’s HospitalLinyiChina
| | - Shibo Li
- Department of Pediatrics, Genetics LaboratoryUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| |
Collapse
|