1
|
Ma C, Wang Y. BHLHE40 regulates microglia polarization after spinal cord injury via the NF-κB pathway. Brain Res Bull 2025; 220:111139. [PMID: 39586332 DOI: 10.1016/j.brainresbull.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Spinal cord injury (SCI) is a devastating disease characterized by neuroinflammation and irreversible neuronal loss. The basic helix-loop-helix family member e40 (Bhlhe40) is a stress-responsive transcription factor involved in the pathological process of inflammation. However, Bhlhe40 expression and its role in SCI are largely unknown. SCI rat models were established with an aneurysm clip and then the rats were injected with lentiviral Bhlhe40 shRNA to knock down Bhlhe40 expression. In vitro, BV2 microglia cells were stimulated with LPS and IFN-γ to promote M1 microglia polarization. The results showed that Bhlhe40 expression was significantly elevated in the injured spinal cord tissue. Bhlhe40 deficiency reduced neuroinflammation and neuronal loss, and then promoted the recovery of neurological function. Additionally, Bhlhe40 knockdown alleviated neuronal apoptosis by regulating microglia polarization. In our study, Bhlhe40 knockdown inhibited M1 microglia polarization and the secretion of pro-inflammatory factors (TNF-α, IL-1β, and IL-6). Meanwhile, the NF-κB pathway was inhibited after the Bhlhe40 knockdown in SCI rats. To further explore the functional role of Bhlhe40, we performed in vitro experiments. Bhlhe40 knockdown decreased M1 microglia polarization by inhibiting the NF-κB pathway. In conclusion, our study indicates that Bhlhe40 knockdown can alleviate the progression of SCI and its underlying mechanism in regulating macrophage polarization through the NF-κB pathway.
Collapse
Affiliation(s)
- Chao Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Zhao J, Zhao G, Lang J, Sun B, Feng S, Li D, Sun G. Astragaloside IV ameliorated neuroinflammation and improved neurological functions in mice exposed to traumatic brain injury by modulating the PERK-eIF2α-ATF4 signaling pathway. J Investig Med 2024; 72:747-762. [PMID: 38869170 DOI: 10.1177/10815589241261293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Increasing evidence suggests that endoplasmic reticulum stress (ER stress) and neuroinflammation are involved in the complex pathological process of traumatic brain injury (TBI). However, the pathological mechanisms of their interactions in TBI remain incompletely elucidated. Therefore, investigating and ameliorating neuroinflammation and ER stress post-TBI may represent effective strategies for treating secondary brain injury. Astragaloside IV (AS-IV) has been reported as a potential neuroprotective and anti-inflammatory agent in neurological diseases. This study utilized a mouse TBI model to investigate the pathological mechanisms and crosstalk of ER stress, neuroinflammation, and microglial cell morphology in TBI, as well as the mechanisms and potential of AS-IV in improving TBI. The research revealed that post-TBI, inflammatory factors IL-6, IL-1β, and TNF-α increased, microglial cells were activated, and the specific inhibitor of PERK phosphorylation, GSK2656157, intervened to alleviate neuroinflammation and inhibit microglial cell activation. Post-TBI, levels of ER stress-related proteins (p-PERK, p-eIF2a, ATF4, ATF6, and p-IRE1a) increased. Following AS-IV treatment, neurological dysfunction in TBI mice improved. Levels of p-PERK, p-eIF2a, and ATF4 decreased, along with reductions in inflammatory factors IL-6, IL-1β, and TNF-α. Changes in microglial/macrophage M1/M2 polarization were observed. Additionally, the PERK activator CCT020312 intervention eliminated the impact of AS-IV on post-TBI inflammation and ER stress-related proteins p-PERK, p-eIF2a, and ATF4. These results indicate that AS-IV alleviates neuroinflammation and brain damage post-TBI through the PERK pathway, offering new directions and theoretical insights for TBI treatment.
Collapse
Affiliation(s)
- Jianfei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, The People's Republic of China
| | - Gengshui Zhao
- Department of Neurosurgery, The People's Hospital of Hengshui City, Hengshui, The People's Republic of China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Shiyao Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| | - Dongsheng Li
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, The People's Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, The People's Republic of China
| |
Collapse
|
3
|
Zhang Q, Li Y, Liu Y, Wang X, Yang Y, Shi L. The cGAS/STING signaling pathway is involved in sevoflurane induced neuronal necroptosis via regulating microglia M1 polarization. Cell Signal 2024; 119:111195. [PMID: 38688381 DOI: 10.1016/j.cellsig.2024.111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE The specific mechanisms of sevoflurane-induced neurotoxicity are still undetermined. The aim of the current study was to investigate the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in sevoflurane-induced neuronal necroptosis. METHODS BV2 microglial cells were divided into a control group and a 4% sevoflurane exposure group. Western blotting was used to detect expression of the M1 polarization marker inducible nitric oxide synthase (iNOS). RNA was collected for RNA sequencing analysis. After STING knockdown in microglia, western blotting was performed to examine expression of the pro-inflammatory markers CD16 and CD32. The tumor necrosis factor-α (TNF-α) level in media was detected using an enzyme-linked immunosorbent assay. BV2 microglia conditioned media was collected to incubate HT22 neuronal cells, and their cell activity was measured using a CCK8 assay. Calcium was observed by fluorescence. Western blotting was performed to evaluate receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) expression. Neuronal necroptosis rate were detected using flow cytometry. RESULTS Sevoflurane exposure promoted microglial M1 polarization. The cGAS/STING pathway was screened and identified by RNA sequencing analysis of sevoflurane-exposed microglia and the control group. Compared with the control group, STING knockdown in microglia rescued the amoeboid morphology, inhibited TNF-α release, and significantly decreased iNOS, CD16, and CD32 expression. Moreover, calcium ions and necroptosis within neurons were decreased, and RIPK1, RIPK3, and p-MLKL expression was markedly decreased in microglia media culture with STING knockdown. CONCLUSION These results suggest that sevoflurane can regulate microglial M1 polarization by activating the cGAS/STING signaling pathway and increasing immune factor release, thus accelerating the neuronal necroptosis induced by calcium overload.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Yanqin Liu
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China
| | - Xin Wang
- Department of Neurology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China
| | - Yonghui Yang
- Department of Pathology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China.
| | - Lei Shi
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China.
| |
Collapse
|
4
|
Zhang J, Huang J, Lan J, Li Q, Ke L, Jiang Q, Li Y, Zhang H, Zhong H, Yang P, Chen T, Song Y. Astragaloside IV protects against autoimmune myasthenia gravis in rats via regulation of mitophagy and apoptosis. Mol Med Rep 2024; 30:129. [PMID: 38785143 PMCID: PMC11140232 DOI: 10.3892/mmr.2024.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Astragaloside IV (AS‑IV) has various pharmacological effects, including antioxidant and immunoregulatory properties, which can improve myasthenia gravis (MG) symptoms. However, the potential mechanism underlying the effects of AS‑IV on MG remains to be elucidated. The present study aimed to investigate whether AS‑IV has a therapeutic effect on MG and its potential mechanism of action. By subcutaneously immunizing rats with R97‑116 peptide, an experimental autoimmune (EA) MG rat model was established. AS‑IV (40 or 80 mg/kg/day) treatment was then applied for 28 days after modeling. The results demonstrated that AS‑IV significantly ameliorated the weight loss, Lennon score and pathological changes in the gastrocnemius muscle of EAMG rats compared with the model group. Additionally, the levels of acetylcholine receptor antibody (AChR‑Ab) were significantly decreased, whereas mitochondrial function [ATPase and cytochrome c (Cyt‑C) oxidase activities] and ultrastructure were improved in the AS‑IV treated rats. Moreover, the mRNA and protein expression levels of phosphatase and tensin homolog‑induced putative kinase 1, Parkin, LC3II and Bcl‑2, key signaling molecules for mitophagy and apoptosis, were upregulated, whereas the mRNA and protein expression levels of p62, Cyt‑C, Bax, caspase 3 and caspase 9 were downregulated following AS‑IV intervention. In conclusion, AS‑IV may protect against EAMG in a rat model by modulating mitophagy and apoptosis. These findings indicated the potential mechanism underlying the effects of AS‑IV on MG and provided novel insights into treatment strategies for MG.
Collapse
Affiliation(s)
- Jingjing Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jiayan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jinlian Lan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qilong Jiang
- Department of Gastrosplenic Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Han Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huiya Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Peidan Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
5
|
Rao Y, Li J, Qiao R, Luo J, Liu Y. Synergistic effects of tetramethylpyrazine and astragaloside IV on spinal cord injury via alteration of astrocyte A1/A2 polarization through the Sirt1-NF-κB pathway. Int Immunopharmacol 2024; 131:111686. [PMID: 38461631 DOI: 10.1016/j.intimp.2024.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Reactive astrocytes are hallmarks of traumatic spinal cord injury (T-SCI) and are associated with neuropathic pain (NP). Mediating the functional phenotype of reactive astrocytes helps neural repair and ameliorates NP in T-SCI. Here, we aimed to explore the role of tetramethylpyrazine (TMPZ) and astragaloside IV (AGS-IV) in astrocyte polarization and the underlying molecular mechanism in T-SCI. METHODS Primary cultured astrocytes from mice were treated with LPS or conditioned medium from "M1" polarized microglia (M1-CM), followed by TMPZ and/or AGS-IV administration. The expression levels of "A1" astrocyte-specific markers (including C3, GBP2, Serping1, iNOS), "A2" astrocyte-specific markers (including S100a10 and PTX3), Sirt1 and NF-κB were detected via western blotting. TNF-α and IL-1β levels were detected via ELISA. RT-PCR was used to evaluate OIP5-AS1 and miR-34a expression. si-OIP5-AS1 or the Sirt1 inhibitor EX-527 was administered to astrocytes. A spinal cord injury (SCI) model was constructed in Sprague-Dawley (SD) rats. Alterations in astrocytic "A1/A2" polarization in the spinal cord tissues were evaluated. RESULTS LPS and M1-CM induced "A1" polarization of primary astrocytes. TMPZ and ASG IV could substantially reduce the expression of "A1"-related biomarkers but enhance "A2"-related biomarkers. OIP5-AS1 and Sirt1 levels were reduced in "A1"-polarized astrocytes, while miR-34a and p-NF-κB p65 were elevated. TMPZ and ASG IV enhanced OIP5-AS1 and Sirt1 levels and, in contrast, attenuated the changes in miR-34a and p-NF-κB p65 levels. Notably, the TMPZ and ASG IV combination had stronger effects on astrocyte polarization than the single treatment with TMPZ or ASG IV. OIP5-AS1 knockdown and Sirt1 inhibition both reversed the regulatory effects of TMPZ and ASG IV in astrocytic polarization. According to the in vivo experiments, the expression of "A1"-associated markers was enhanced in the spinal cords of SCI rats. The TMPZ and ASG IV combination reduced astrocytic "A1" polarization and enhanced astrocytic "A2" polarization. The expression of lncRNA OIP5-AS1 and Sirt1 was enhanced by TMPZ and ASG IV, while that of miR-34a and p-NF-κB p65 was inhibited. CONCLUSION The combination of TMPZ and ASG IV can ameliorate dysregulated astrocytic polarization induced by spinal cord injury by affecting the lncRNA OIP5-AS1-Sirt1-NF-κB pathway.
Collapse
Affiliation(s)
- Yaojian Rao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Junjie Li
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Ruofei Qiao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinxin Luo
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yan Liu
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
6
|
Ge C, Liu D, Sun Y. The promotive effect of activation of the Akt/mTOR/p70S6K signaling pathway in oligodendrocytes on nerve myelin regeneration in rats with spinal cord injury. Br J Neurosurg 2024; 38:284-292. [PMID: 33345640 DOI: 10.1080/02688697.2020.1862056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE Akt/mTOR/p70S6K signaling pathway promotes motor function recovery after spinal cord injury (SCI) in both neurons and astrocytes. But the role and mechanism of this pathway in oligodendrocytes during nerve repair following SCI has not been researched. This study aimed to investigate the effect and mechanism of this signaling pathway in oligodendrocytes on nerve myelin regeneration and motor function recovery in rats with SCI. METHODS After inhibiting or activating this signaling pathway, Western blotting and double immunofluorescence labeling were used to determine the levels of the signaling molecules in this pathway and myelin formation-related proteins in the plane of the thoracic segment of the injured spinal cord. The level of motor function recovery was evaluated and the oligodendrocytes involved in nerve myelin regeneration were studied. Primary oligodendrocytes were isolated and cultured in vitro, then MBP, PLP, and MOG were measured with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Akt/mTOR/p70S6K signaling pathway was activated after SCI compared with the sham-operated rats, prominently elevated levels of the pathway components were observed in the SC79-treated group. The activation of the signaling pathway significantly increased the expression levels of myelin formation-related proteins, including MBP, PLP, and MOG, and improved the Basso, Beattie, and Bresnahan (BBB) scores in the injured spinal cord. Conversely, rapamycin suppressed the expression of these signaling molecules and reduced the levels of myelin formation-related proteins. CONCLUSION Akt/mTOR/p70S6K signaling pathway activation can contribute to nerve myelin regeneration and has the potential to improve the regenerative environment and motor function, as well as the potential to promote repair of SCI.
Collapse
Affiliation(s)
- Chen Ge
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedics, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongming Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Zhang J, Lu M, Li C, Yan B, Xu F, Wang H, Zhang Y, Yang Y. Astragaloside IV mitigates hypoxia-induced cardiac hypertrophy through calpain-1-mediated mTOR activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155250. [PMID: 38295664 DOI: 10.1016/j.phymed.2023.155250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Astragaloside IV (AsIV), a key functioning element of Astragalus membranaceus, has been recognized for its potential cardiovascular protective properties. However, there is a need to elucidate the impacts of AsIV on myocardial hypertrophy under hypoxia conditions and its root mechanisms. PURPOSE This study scrutinized the influence of AsIV on cardiac injury under hypoxia, with particular emphasis on the role of calpain-1 (CAPN1) in mediating mTOR pathways. METHODS Hypoxia-triggered cardiac hypertrophy was examined in vivo with CAPN1 knockout and wild-type C57BL/6 mice and in vitro with H9C2 cells. The impacts of AsIV, 3-methyladenine, and CAPN1 inhibition on hypertrophy, autophagy, apoptosis, [Ca2+]i, and CAPN1 and mTOR levels in cardiac tissues and H9C2 cells were investigated. RESULTS Both AsIV treatment and CAPN1 knockout mitigated hypoxia-induced cardiac hypertrophy, autophagy, and apoptosis in mice and H9C2 cells. Moreover, AsIV, 3-methyladenine, and CAPN1 inhibition augmented p-mTOR level but reduced [Ca2+]i and CAPN1 level. Additionally, lentivirus-mediated CAPN1 overexpression in H9C2 cells exacerbated myocardial hypertrophy, apoptosis, and p-mTOR inhibition under hypoxia. Specifically, AsIV treatment reversed the impacts of increased CAPN1 expression on cardiac injury and the inhibition of p-mTOR. CONCLUSION These findings suggest that AsIV may alleviate cardiac hypertrophy under hypoxia by attenuating apoptosis and autophagy through CAPN1-mediated mTOR activation.
Collapse
Affiliation(s)
- Jingliang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Cong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Bingju Yan
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fang Xu
- Department of Pharmacy, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| | - Yingjie Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Yuhong Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
8
|
Guan P, Fan L, Zhu Z, Yang Q, Kang X, Li J, Zhang Z, Liu S, Liu C, Wang X, Xu J, Wang K, Sun Y. M2 microglia-derived exosome-loaded electroconductive hydrogel for enhancing neurological recovery after spinal cord injury. J Nanobiotechnology 2024; 22:8. [PMID: 38167113 PMCID: PMC10763283 DOI: 10.1186/s12951-023-02255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Electroconductive hydrogels offer a promising avenue for enhancing the repair efficacy of spinal cord injuries (SCI) by restoring disrupted electrical signals along the spinal cord's conduction pathway. Nonetheless, the application of hydrogels composed of diverse electroconductive materials has demonstrated limited capacity to mitigate the post-SCI inflammatory response. Recent research has indicated that the transplantation of M2 microglia effectively fosters SCI recovery by attenuating the excessive inflammatory response. Exosomes (Exos), small vesicles discharged by cells carrying similar biological functions to their originating cells, present a compelling alternative to cellular transplantation. This investigation endeavors to exploit M2 microglia-derived exosomes (M2-Exos) successfully isolated and reversibly bonded to electroconductive hydrogels through hydrogen bonding for synergistic promotion of SCI repair to synergistically enhance SCI repair. In vitro experiments substantiated the significant capacity of M2-Exos-laden electroconductive hydrogels to stimulate the growth of neural stem cells and axons in the dorsal root ganglion and modulate microglial M2 polarization. Furthermore, M2-Exos demonstrated a remarkable ability to mitigate the initial inflammatory reaction within the injury site. When combined with the electroconductive hydrogel, M2-Exos worked synergistically to expedite neuronal and axonal regeneration, substantially enhancing the functional recovery of rats afflicted with SCI. These findings underscore the potential of M2-Exos as a valuable reparative factor, amplifying the efficacy of electroconductive hydrogels in their capacity to foster SCI rehabilitation.
Collapse
Affiliation(s)
- Pengfei Guan
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhaobo Zhu
- Department of Orthopedic Surgery, Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, 510080, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinchang Kang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junji Li
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Zuyu Zhang
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Can Liu
- Department of Spine Surgery, Center for Orthopedic Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Xuelian Wang
- The Operating Room of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Kun Wang
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yongjian Sun
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Wang R, Bai J. Pharmacological interventions targeting the microcirculation following traumatic spinal cord injury. Neural Regen Res 2024; 19:35-42. [PMID: 37488841 PMCID: PMC10479866 DOI: 10.4103/1673-5374.375304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic spinal cord injury is a devastating disorder characterized by sensory, motor, and autonomic dysfunction that severely compromises an individual's ability to perform activities of daily living. These adverse outcomes are closely related to the complex mechanism of spinal cord injury, the limited regenerative capacity of central neurons, and the inhibitory environment formed by traumatic injury. Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury. A number of therapeutic agents have been shown to improve the injury environment, mitigate secondary damage, and/or promote regeneration and repair. Among them, the spinal cord microcirculation has become an important target for the treatment of spinal cord injury. Drug interventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury. These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neurons, axons, and glial cells. This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury, including its structure and histopathological changes. Further, it summarizes the progress of drug therapies targeting the spinal cord microcirculation after spinal cord injury.
Collapse
Affiliation(s)
- Rongrong Wang
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Jinzhu Bai
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Xu A, Yang Y, Shao Y, Jiang M, Sun Y, Feng B. FHL2 regulates microglia M1/M2 polarization after spinal cord injury via PARP14-depended STAT1/6 pathway. Int Immunopharmacol 2023; 124:110853. [PMID: 37708708 DOI: 10.1016/j.intimp.2023.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Neuronal apoptosis and inflammation exacerbate the secondary injury after spinal cord injury (SCI). Four and a half domains 2 (FHL2) is a multifunctional scaffold protein with tissue- and cell-type specific effects on the regulation of inflammation, but its role in SCI remains unclear. The T10 mouse spinal cord contusion model was established, and the mice were immediately injected with lentiviruses carrying FHL2 shRNA after SCI. The results showed that FHL2 expression was increased following SCI, and then gradually decreased. Moreover, FHL2 depletion aggravated functional impairment, neuronal necrosis, and enlarged lesion cavity areas in the injured spinal cord. FHL2 deficiency facilitated neuronal apoptosis by elevating cleaved caspase 3/9 expression, neuroinflammation by regulating microglia polarization, and bone loss. Indeed, FHL2 deficiency increased the secretion of TNF-α and IL-6, M1 microglia polarization, and the activation of STAT1 pathway but decreased the secretion of IL-10 and IL-4, M2 microglia polarization, and the activation of the STAT6 pathway in the spinal cord. In vitro, FHL2 silencing promoted LPS + IFN-γ-induced microglia M1 polarization through activating the STAT1 pathway and alleviated IL-4-induced microglia M2 polarization via inhibiting the STAT6 pathway. FHL2 positively regulated the expression of poly (ADP-ribose) polymerase family member 14 (PARP14) by promoting its transcription. PARP14 overexpression inhibited FHL2 silencing-induced microglia M1 polarization and relieved the inhibitory effect of FHL2 silencing on microglia M2 polarization. Collectively, the study suggests that FHL2 reduces the microglia M1/M2 polarization-mediated inflammation via PARP14-dependent STAT1/6 pathway and thereby improves functional recovery after SCI.
Collapse
Affiliation(s)
- Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Manyu Jiang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Bo Feng
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
12
|
Sun X, Li M, Huang S, Zhang H, Li K. Protective effect of bone morphogenetic protein-7 induced differentiation of bone marrow mesenchymal stem cells in rat with acute spinal cord injury. Funct Integr Genomics 2023; 23:68. [PMID: 36849554 DOI: 10.1007/s10142-023-00994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The principal aim of present study was to assess the therapeutic efficacy of bone morphogenetic protein-7 (BMP-7) induced differentiation of bone marrow mesenchymal stem cells (BMSCs) in a rat acute spinal cord injury (SCI) model. BMSCs were isolated from rats, and then divided into a control and a BMP-7 induction groups. The proliferation ability of BMSCs and glial cell markers were determined. Forty Sprague-Dawley (SD) rats were randomly divided into sham, SCI, BMSC, and BMP7 + BMSC groups (n = 10). Among these rats, the recovery of hind limb motor function, the pathological related markers, and motor evoked potentials (MEP) were identified. BMSCs differentiated into neuron-like cells after the introduction of exogenous BMP-7. Interestingly, the expression levels of MAP-2 and Nestin increased, whereas the expression level of GFAP decreased after the treatment with exogenous BMP-7. Furthermore, the Basso, Beattie, and Bresnahan (BBB) score reached 19.33 ± 0.58 in the BMP-7 + BMSC group at day 42. Nissl bodies in the model group were reduced compared to the sham group. After 42 days, in both the BMSC and BMP-7 + BMSC groups, the number of Nissl bodies increased. This is especially so for the number of Nissl bodies in the BMP-7 + BMSC group, which was more than that in the BMSC group. The expression of Tuj-1 and MBP in BMP-7 + BMSC group increased, whereas the expression of GFAP decreased. Moreover, the MEP waveform decreased significantly after surgery. Furthermore, the waveform was wider and the amplitude was higher in BMP-7 + BMSC group than that in BMSC group. BMP-7 promotes BMSC proliferation, induces the differentiation of BMSCsinto neuron-like cells, and inhibits the formation of glial scar. BMP-7 plays a confident role in the recovery of SCI rats.
Collapse
Affiliation(s)
- Xudong Sun
- The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.280, Changhuai Road, Longzihu Distract, Bengbu, 233044, Anhui Province, China
| | - Maoyong Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.280, Changhuai Road, Longzihu Distract, Bengbu, 233044, Anhui Province, China
| | - Shiyuan Huang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.280, Changhuai Road, Longzihu Distract, Bengbu, 233044, Anhui Province, China
| | - Heng Zhang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.280, Changhuai Road, Longzihu Distract, Bengbu, 233044, Anhui Province, China.
| | - Kuanxin Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.280, Changhuai Road, Longzihu Distract, Bengbu, 233044, Anhui Province, China.
| |
Collapse
|
13
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Rao Y, Li J, Qiao R, Luo J, Liu Y. Tetramethylpyrazine and Astragaloside IV have synergistic effects against spinal cord injury-induced neuropathic pain via the OIP5-AS1/miR-34a/Sirt1/NF-κB axis. Int Immunopharmacol 2023; 115:109546. [PMID: 36577153 DOI: 10.1016/j.intimp.2022.109546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/09/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Both Tetramethylpyrazine (TMPZ) and Astragaloside IV (AGS-IV) can ameliorate neuronal apoptosis and neuroinflammation in CNS diseases. This study revolves around the underlying mechanism of TMPZ and AGS-IV in spinal cord injury (SCI)-associated neuropathic pain (NP). MATERIALS AND METHODS An in-vivo NP model was constructed in Sprague-Dawley (SD) rats via SCI. qRT-PCR was employed to detect OIP5-AS1 and miR-34a. The paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of the rats were evaluated. Neuronal apoptosis in the spinal cord of rats was examined by Nissl staining and TUNEL staining. The interactions between OIP5-AS1 and miR-34a as well as miR-34a and Sirt1 were investigated through dual luciferase assay and RIP assay. The protein expressions of Bad, Bax, Caspase-3, iNOS, COX2, NF-κB, and Sirt1 were examined by western blot. RESULTS TMPZ and AGS-IV combination relieved behavioral symptoms of neuropathic pain in the SCI rat model, enhanced the levels of OIP5-AS1 and Sirt1, and lowered the profile of miR-34a. OIP5-AS1 downregulation weakened the neuroprotective function of TMPZ and AGS-IV in SCI rats and reversed their anti-inflammatory and anti-apoptotic effects on LPS-elicited primary spinal cord neurons. miR-34a was identified as a target of OIP5-AS1. Upregulated miR-34a partly abated the protective functions of TMPZ and AGS-IV in primary spinal cord neurons. Additionally, miR-34a targeted and repressed Sirt1, thus activating the NF-κB pathway and inflammatory reactions. Sirt1 inhibition reduced the protective effects mediated by OIP5-AS1. CONCLUSION TMPZ and AGS-IV ameliorate SCI-elicited NP via the OIP5-AS1/miR-34a/Sirt1/NF-κB pathway.
Collapse
Affiliation(s)
- Yaojian Rao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Junjie Li
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Ruofei Qiao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinxin Luo
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yan Liu
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
15
|
Li RY, Hu Q, Shi X, Luo ZY, Shao DH. Crosstalk between exosomes and autophagy in spinal cord injury: fresh positive target for therapeutic application. Cell Tissue Res 2023; 391:1-17. [PMID: 36380098 PMCID: PMC9839811 DOI: 10.1007/s00441-022-03699-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Spinal cord injury (SCI) is a very serious clinical traumatic illness with a very high disability rate. It not only causes serious functional disorders below the injured segment, but also causes unimaginable economic burden to social development. Exosomes are nano-sized cellular communication carriers that exist stably in almost all organisms and cell types. Because of their capacity to transport proteins, lipids, and nucleic acids, they affect various physiological and pathological functions of recipient cells and parental cells. Autophagy is a process that relies on the lysosomal pathway to degrade cytoplasmic proteins and organelles and involves a variety of pathophysiological processes. Exosomes and autophagy play critical roles in cellular homeostasis following spinal cord injury. Presently, the coordination mechanism of exosomes and autophagy has attracted much attention in the early efficacy of spinal cord injury. In this review, we discussed the interaction of autophagy and exosomes from the perspective of molecular mechanisms, which might provide novel insights for the early therapeutic application of spinal cord injury.
Collapse
Affiliation(s)
- Rui-yu Li
- Anqing First People’s Hospital of Anhui Medical University, Anqing, 246000 Anhui Province, China
| | - Qi Hu
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Xu Shi
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Zhen-yu Luo
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Dong-hua Shao
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| |
Collapse
|
16
|
Yang Y, Hong M, Lian WW, Chen Z. Review of the pharmacological effects of astragaloside IV and its autophagic mechanism in association with inflammation. World J Clin Cases 2022; 10:10004-10016. [PMID: 36246793 PMCID: PMC9561601 DOI: 10.12998/wjcc.v10.i28.10004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Astragalus membranaceus Bunge, known as Huangqi, has been used to treat various diseases for a long time. Astragaloside IV (AS-IV) is one of the primary active ingredients of the aqueous Huangqi extract. Many experimental models have shown that AS-IV exerts broad beneficial effects on cardiovascular disease, nervous system diseases, lung disease, diabetes, organ injury, kidney disease, and gynaecological diseases. This review demonstrates and summarizes the structure, solubility, pharmacokinetics, toxicity, pharmacological effects, and autophagic mechanism of AS-IV. The autophagic effects are associated with multiple signalling pathways in experimental models, including the PI3KI/Akt/mTOR, PI3K III/Beclin-1/Bcl-2, PI3K/Akt, AMPK/mTOR, PI3K/Akt/mTOR, SIRT1–NF-κB, PI3K/AKT/AS160, and TGF-β/Smad signalling pathways. Based on this evidence, AS-IV could be used as a replacement therapy for treating the multiple diseases referenced above.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Wen Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
17
|
Zhou LY, Chen XQ, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. The effect of metformin on ameliorating neurological function deficits and tissue damage in rats following spinal cord injury: A systematic review and network meta-analysis. Front Neurosci 2022; 16:946879. [PMID: 36117612 PMCID: PMC9479497 DOI: 10.3389/fnins.2022.946879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 12/09/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with few treatment options. Metformin, a classical antidiabetic and antioxidant, has extended its application to experimental SCI treatment. Here, we performed a systematic review to evaluate the neurobiological roles of metformin for treating SCI in rats, and to assess the potential for clinical translation. PubMed, Embase, China National Knowledge Infrastructure, WanFang data, SinoMed, and Vip Journal Integration Platform databases were searched from their inception dates to October 2021. Two reviewers independently selected controlled studies evaluating the neurobiological roles of metformin in rats following SCI, extracted data, and assessed the quality of methodology and evidence. Pairwise meta-analyses, subgroup analyses and network analysis were performed to assess the roles of metformin in neurological function and tissue damage in SCI rats. Twelve articles were included in this systematic review. Most of them were of moderate-to-high methodological quality, while the quality of evidence from those studies was not high. Generally, Basso, Beattie, and Bresnahan scores were increased in rats treated with metformin compared with controls, and the weighted mean differences (WMDs) between metformin and control groups exhibited a gradual upward trend from the 3rd (nine studies, n = 164, WMD = 0.42, 95% CI = −0.01 to 0.85, P = 0.06) to the 28th day after treatment (nine studies, n = 136, WMD = 3.48, 95% CI = 2.04 to 4.92, P < 0.00001). Metformin intervention was associated with improved inclined plane scores, tissue preservation ratio and number of anterior horn motor neurons. Subgroup analyses indicated an association between neuroprotection and metformin dose. Network meta-analysis showed that 50 mg/kg metformin exhibited greater protection than 10 and 100 mg/kg metformin. The action mechanisms behind metformin were associated with activating adenosine monophosphate-activated protein kinase signaling, regulating mitochondrial function and relieving endoplasmic reticulum stress. Collectively, this review indicates that metformin has a protective effect on SCI with satisfactory safety and we demonstrate a rational mechanism of action; therefore, metformin is a promising candidate for future clinical trials. However, given the limitations of animal experimental methodological and evidence quality, the findings of this pre-clinical review should be interpreted with caution.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu-Qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin-Bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng-Xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Xiao S, Zhong N, Yang Q, Li A, Tong W, Zhang Y, Yao G, Wang S, Liu J, Liu Z. Aucubin promoted neuron functional recovery by suppressing inflammation and neuronal apoptosis in a spinal cord injury model. Int Immunopharmacol 2022; 111:109163. [PMID: 35994851 DOI: 10.1016/j.intimp.2022.109163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) can cause severe motor impairment. Post-SCI treatment has focused primarily on secondary injury, with neuroinflammation and neuronal apoptosis as the primary therapeutic targets. Aucubin (Au), a Chinese herbal medicine, exerts anti-inflammatory and neuroprotective effects. The therapeutic effects of Aucubin in SCI have not been reported. METHODS In this study, we carried out an in vivo SCI model and a series of in vitro experiments to explore the therapeutic effect of Aucubin. Western Blotting and immunofluorescence were used to study the effect of Aucubin on microglial polarization and neuronal apoptosis and its underlying mechanism. RESULTS We found that Aucubin can promote axonal regeneration by reducing neuroinflammation and neuronal apoptosis, which is beneficial to motor recovery after spinal cord injury in rats. Our further in vitro experiments showed that Aucubin can activate the toll-like receptor 4 (TLR4)/myeloid differentiation protein-88 (MyD88)/IκBα/nuclear factor kappa B (NF-κB) signaling pathway to reduce neuroinflammation and reverse mitochondrial dysfunction to reduce neuronal apoptosis. CONCLUSIONS In summary, these results suggest that Aucubin may ameliorate secondary injury after SCI by reducing neuroinflammation and neuronal apoptosis. Therefore, Au may be a promising post-SCI therapeutic drug.
Collapse
Affiliation(s)
- Shining Xiao
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Nanshan Zhong
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Quanming Yang
- Department of Orthopedics, Ningbo First Hospital, Ningbo 315000, China
| | - Anan Li
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Weilai Tong
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Yu Zhang
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Geliang Yao
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Shijiang Wang
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiaming Liu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China.
| | - Zhili Liu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
19
|
Grape Seed Proanthocyanidins Exert a Neuroprotective Effect by Regulating Microglial M1/M2 Polarisation in Rats with Spinal Cord Injury. Mediators Inflamm 2022; 2022:2579003. [PMID: 35966334 PMCID: PMC9371824 DOI: 10.1155/2022/2579003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is a highly disabling disorder for which few effective treatments are available. Grape seed proanthocyanidins (GSPs) are polyphenolic compounds with various biological activities. In our preliminary experiment, GSP promoted functional recovery in rats with SCI, but the mechanism remains unclear. Therefore, we explored the protective effects of GSP on SCI and its possible underlying mechanisms. We found that GSP promoted locomotor recovery, reduced neuronal apoptosis, increased neuronal preservation, and regulated microglial polarisation in vivo. We also performed in vitro studies to verify the effects of GSP on neuronal protection and microglial polarisation and their potential mechanisms. We found that GSP regulated microglial polarisation and inhibited apoptosis in PC12 cells induced by M1-BV2 cells through the Toll-like receptor 4- (TLR4-) mediated nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinase/serine threonine kinase (PI3K/AKT) signaling pathways. This suggests that GSP regulates microglial polarisation and prevents neuronal apoptosis, possibly by the TLR4-mediated NF-κB and PI3K/AKT signaling pathways.
Collapse
|
20
|
Pang QM, Chen SY, Xu QJ, Zhang M, Liang DF, Fu SP, Yu J, Liu ZL, Zhang Q, Zhang T. Effects of astrocytes and microglia on neuroinflammation after spinal cord injury and related immunomodulatory strategies. Int Immunopharmacol 2022; 108:108754. [PMID: 35397392 DOI: 10.1016/j.intimp.2022.108754] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a catastrophic event which is still without adequate therapies. Neuroinflammation is the main pathogenesis of secondary damage post-SCI, leading to tissue loss and neurological dysfunction. Previous studies have shown that microglia and astrocytes are the major immune cells in the central nervous system (CNS) and play a crucial role in modulating neuroinflammatory responses. In this study, we mainly review the effects of neuroinflammation in SCI, focusing on the contributions of microglia and astrocytes and their cross-talk. Furthermore, we will also discuss therapeutic strategies on how to regulate their immunophenotype to suppress robust inflammation and facilitate injury prognosis.
Collapse
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Jing Xu
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Da-Fei Liang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiang Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zu-Lin Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
21
|
Zhou HJ, Wang LQ, Zhan RY, Zheng XJ, Zheng JS. lncRNA MEG3 restrained the M1 polarization of microglia in acute spinal cord injury through the HuR/A20/NF-κB axis. Brain Pathol 2022; 32:e13070. [PMID: 35338543 PMCID: PMC9425005 DOI: 10.1111/bpa.13070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
The M1 polarization of microglia and neuroinflammation restrict the treatment of acute spinal cord injury (ASCI), and long non‐coding ribonucleic acid (lncRNA) maternally expressed gene 3 (MEG3) expression is lessened in ASCI. However, the function and mechanism of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI are unclear. The expressions of lncRNA MEG3 in ASCI mouse spinal cord tissues and lipopolysaccharide (LPS)‐treated primary microglia and BV2 cells were quantified through a quantitative real‐time polymerase chain reaction. In‐vitro assays were conducted to explore the function of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI. RNA degradation, RNA immunoprecipitation, RNA pull‐down, cycloheximide‐chase, and ubiquitination analyses were carried out to probe into the mechanism of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI. The lncRNA MEG3 expression was lessened in the ASCI mouse spinal cord tissues and LPS‐treated primary microglia and BV2 cells, and the overexpression of lncRNA MEG3 restrained the M1 polarization of microglia and the neuroinflammation by regulating the NF‐κB signaling pathway. For the investigation of the potential mechanism of such, the overexpression of lncRNA MEG3 restrained the M1 polarization of microglia through the HuR/A20/NF‐κB axis and boosted the motor function recovery and neuroinflammation relief in the mice with SCI. The overexpression of lncRNA MEG3 restrained the M1 polarization of microglia through the HuR/A20/NF‐κB axis.
Collapse
Affiliation(s)
- Heng-Jun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Qing Wang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren-Ya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiu-Jue Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie-Sheng Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
23
|
Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021; 14:5713-5737. [PMID: 34764668 PMCID: PMC8576359 DOI: 10.2147/jir.s329864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic injury of the central nervous system, characterized by neurological dysfunction and locomotor disability. Although the underlying pathological mechanism of SCI is complex and remains unclear, the important role of neuroinflammation has been gradually unveiled in recent years. The inflammation process after SCI involves disruption of the blood–spinal cord barrier (BSCB), activation of gliocytes, infiltration of peripheral macrophages, and feedback loops between different cells. Thus, our first aim is to illustrate pathogenesis, related cells and factors of neuroinflammation after SCI in this review. Due to the good bioactivity of natural products derived from plants and medicinal herbs, these widely exist as food, health-care products and drugs in our lives. In the inflammation after SCI, multiple natural products exert satisfactory effects. Therefore, the second aim of this review is to sum up the effects and mechanisms of 25 natural compounds and 7 extracts derived from plants or medicinal herbs on neuroinflammation after SCI. Clarification of the SCI inflammation mechanism and a summary of the related natural products is helpful for in-depth research and drug development.
Collapse
Affiliation(s)
- Xue Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| |
Collapse
|
24
|
Alshorman J, Wang Y, Zhu F, Zeng L, Chen K, Yao S, Jing X, Qu Y, Sun T, Guo X. Medical Communication Services after Traumatic Spinal Cord Injury. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4798927. [PMID: 34512936 PMCID: PMC8424255 DOI: 10.1155/2021/4798927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
It is difficult to assess and monitor the spinal cord injury (SCI) because of its pathophysiology after injury, with different degrees of prognosis and various treatment methods, including laminectomy, durotomy, and myelotomy. Medical communication services with different factors such as time of surgical intervention, procedure choice, spinal cord perfusion pressure (SCPP), and intraspinal pressure (ISP) contribute a significant role in improving neurological outcomes. This review aims to show the benefits of communication services and factors such as ISP, SCPP, and surgical intervention time in order to achieve positive long-term outcomes after an appropriate treatment method in SCI patients. The SCPP was found between 90 and 100 mmHg for the best outcome, MAP was found between 110 and 130 mmHg, and mean ISP is ≤20 mmHg after injury. Laminectomy alone cannot reduce the pressure between the dura and swollen cord. Durotomy and duroplasty considered as treatment choices after severe traumatic spinal cord injury (TSCI).
Collapse
Affiliation(s)
- Jamal Alshorman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhao Zhu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
Li W, Wang S, Wang H, Wang J, Jin F, Fang F, Fang C. Astragaloside IV prevents memory impairment in D-galactose-induced aging rats via the AGEs/RAGE/ NF-κB axis. Arch Med Res 2021; 53:20-28. [PMID: 34217517 DOI: 10.1016/j.arcmed.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated the effects of astragaloside IV (AS-IV) on memory function in aging rats mimicked by D-galactose administration and explored the potential molecular mechanisms. METHODS Twenty-seven male rats were randomly divided into control group (N = 9), model group (N = 9), and AS-IV treated group (N = 9). Aging model was stimulated by D-galactose (400 mg/kg/d, i.p., dissolved in saline) for 8 weeks in rats. The general status of the rats was observed weekly. Learning and memory function was determined using the eight-arm radical maze and step-down test. Pathological changes in the hippocampal CA1 region were determined by hematoxylin and eosin staining. Organ indexes, superoxide dismutase (SOD) activity and malonaldehyde (MDA) content in the serum were measured. Expression of advanced glycation end products (AGEs), receptor for AGEs (RAGE), nuclear factor-κB (NF-κB), interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, real-time polymerase chain reaction or western blotting. RESULTS AS-IV improved the general status of the aging rats induced by D-galactose, prevented the impairment of memory function, organ indexes, and the pathological damage of the hippocampus. From the prospective of oxidative stress, AS-IV increased sera SOD activity and decreased MDA content. Additionally, AS-IV also reduced the inflammatory response by reducing hippocampal IL-1β, TNF-α, and IL-6 expression. Importantly, AS-IV prevented D-galactose-induced expression of AGEs, RAGE and NF-κB in the hippocampus. CONCLUSION AS-IV could prevent D-galactose-induced aging and memory impairment in rats, likely via regulation of inflammatory response, which was modulated by AGEs/RAGE/NF-κB axis.
Collapse
Affiliation(s)
- Wei Li
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shuo Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Hao Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jiepeng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Feng Jin
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chaoyi Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang 050091, China.
| |
Collapse
|
26
|
Sirtuins: Potential Therapeutic Targets for Defense against Oxidative Stress in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7207692. [PMID: 34257819 PMCID: PMC8249122 DOI: 10.1155/2021/7207692] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is one of the most incapacitating neurological disorders. It involves complex pathological processes that include a primary injury and a secondary injury phase, or a delayed stage, which follows the primary injury and contributes to the aggravation of the SCI pathology. Oxidative stress, a key pathophysiological event after SCI, contributes to a cascade of inflammation, excitotoxicity, neuronal and glial apoptosis, and other processes during the secondary injury phase. In recent years, increasing evidence has demonstrated that sirtuins are protective toward the pathological process of SCI through a variety of antioxidant mechanisms. Notably, strategies that modulate the expression of sirtuins exert beneficial effects in cellular and animal models of SCI. Given the significance and novelty of sirtuins, we summarize the oxidative stress processes that occur in SCI and discuss the antioxidant effects of sirtuins in SCI. We also highlight the potential of targeting sirtuins for the treatment of SCI.
Collapse
|
27
|
Chien JY, Lin SF, Chou YY, Huang CYF, Huang SP. Protective Effects of Oroxylin A on Retinal Ganglion Cells in Experimental Model of Anterior Ischemic Optic Neuropathy. Antioxidants (Basel) 2021; 10:antiox10060902. [PMID: 34204966 PMCID: PMC8226497 DOI: 10.3390/antiox10060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of acute vision loss in older people, and there is no effective therapy. The effect of the systemic or local application of steroids for NAION patients remains controversial. Oroxylin A (OA) (5,7-dihydroxy-6-methoxyflavone) is a bioactive flavonoid extracted from Scutellariae baicalensis Georgi. with various beneficial effects, including anti-inflammatory and neuroprotective effects. A previous study showed that OA promotes retinal ganglion cell (RGC) survival after optic nerve (ON) crush injury. The purpose of this research was to further explore the potential actions of OA in ischemic injury in an experimental anterior ischemic optic neuropathy (rAION) rat model induced by photothrombosis. Our results show that OA efficiently attenuated ischemic injury in rats by reducing optic disc edema, the apoptotic death of retinal ganglion cells, and the infiltration of inflammatory cells. Moreover, OA significantly ameliorated the pathologic changes of demyelination, modulated microglial polarization, and preserved visual function after rAION induction. OA activated nuclear factor E2 related factor (Nrf2) signaling and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1 (HO-1) in the retina. We demonstrated that OA activates Nrf2 signaling, protecting retinal ganglion cells from ischemic injury, in the rAION model and could potentially be used as a therapeutic approach in ischemic optic neuropathy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Shu-Fang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Yu-Yau Chou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan;
| | - Chi-Ying F. Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (C.-Y.F.H.); (S.-P.H.); Tel.: +886-2-28267904 (C.-Y.F.H.); +886-3-8565301#2664 (S.-P.H.)
| | - Shun-Ping Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan;
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung 472, Taiwan
- Correspondence: (C.-Y.F.H.); (S.-P.H.); Tel.: +886-2-28267904 (C.-Y.F.H.); +886-3-8565301#2664 (S.-P.H.)
| |
Collapse
|
28
|
Zhu Y, Su Y, Zhang J, Zhang Y, Li Y, Han Y, Dong X, Li W, Li W. Astragaloside IV alleviates liver injury in type 2 diabetes due to promotion of AMPK/mTOR‑mediated autophagy. Mol Med Rep 2021; 23:437. [PMID: 33846768 PMCID: PMC8060804 DOI: 10.3892/mmr.2021.12076] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic liver injury is a serious complication of type 2 diabetes mellitus (T2DM), which is often irreversible in the later stage, and affects the quality of life. Autophagy serves an important role in the occurrence and development of diabetic liver injury. For example, it can improve insulin resistance (IR), dyslipidaemia, oxidative stress and inflammation. Astragaloside IV (AS-IV) is a natural saponin isolated from the plant Astragalus membranaceus, which has comprehensive pharmacological effects, such as anti-oxidation, anti-inflammation and anti-apoptosis properties, as well as can enhance immunity. However, whether AS-IV can alleviate diabetic liver injury in T2DM and its underlying mechanisms remain unknown. The present study used high-fat diets combined with low-dose streptozotocin to induce a diabetic liver injury model in T2DM rats to investigate whether AS-IV could alleviate diabetic liver injury and to identify its underlying mechanisms. The results demonstrated that AS-IV treatment could restore changes in food intake, water intake, urine volume and body weight, as well as improve liver function and glucose homeostasis in T2DM rats. Moreover, AS-IV treatment promoted suppressed autophagy in the liver of T2DM rats and improved IR, dyslipidaemia, oxidative stress and inflammation. In addition, AS-IV activated adenosine monophosphate-activated protein kinase (AMPK), which inhibited mTOR. Taken together, the present study suggested that AS-IV alleviated diabetic liver injury in T2DM rats, and its mechanism may be associated with the promotion of AMPK/mTOR-mediated autophagy, which further improved IR, dyslipidaemia, oxidative stress and inflammation. Thus, the regulation of autophagy may be an effective strategy to treat diabetic liver injury in T2DM.
Collapse
Affiliation(s)
- Yunfeng Zhu
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Zhang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanhua Zhang
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weiping Li
- Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
29
|
Wang B, Zhang C, Chu D, Ma X, Yu T, Liu X, Hu C. Astragaloside IV improves angiogenesis under hypoxic conditions by enhancing hypoxia‑inducible factor‑1α SUMOylation. Mol Med Rep 2021; 23:244. [PMID: 33537820 PMCID: PMC7893755 DOI: 10.3892/mmr.2021.11883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Improving angiogenic capacity under hypoxic conditions is essential for improving the survival of skin grafts, as they often lack the necessary blood supply. The stable expression levels of hypoxia‑inducible factor‑1α (HIF‑1α) in the nucleus directly affect the downstream vascular endothelial growth factor (VEGF) signaling pathway and regulate angiogenesis in a hypoxic environment. Astragaloside IV (AS‑IV), an active component isolated from Astragalus membranaceus, has multiple biological effects including antioxidant and anti‑diabetic effects, and the ability to provide protection from cardiovascular damage. However, the mechanisms underlying these effects have not previously been elucidated. The present study investigated whether AS‑IV promotes angiogenesis via affecting the balance between ubiquitination and small ubiquitin‑related modifier (SUMO) modification of HIF‑1α. The results demonstrated that persistent hypoxia induces changes in expression levels of HIF‑1α protein and significantly increases the proportion of dysplastic blood vessels. Further western blotting experiments showed that rapid attenuation and delayed compensation of SUMO1 activity is one of the reasons for the initial increase then decrease in HIF‑1α levels. SUMO1 overexpression stabilized the presence of HIF‑1α in the nucleus and decreased the extent of abnormal blood vessel morphology observed following hypoxia. AS‑IV induces vascular endothelial cells to continuously produce SUMO1, stabilizes the HIF‑1α/VEGF pathway and improves angiogenesis in hypoxic conditions. In summary, the present study confirmed that AS‑IV stimulates vascular endothelial cells to continuously resupply SUMO1, stabilizes the presence of HIF‑1α protein and improves angiogenesis in adverse hypoxic conditions, which may improve the success rate of flap graft surgery following trauma or burn.
Collapse
Affiliation(s)
- Baoshen Wang
- Department of Cardiovascular Surgery, The No. 1 Central Hospital of Baoding City, Baoding, Hebei 071000, P.R. China
| | - Chunyan Zhang
- Department of Pharmacy, Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin 300450, P.R. China
| | - Dongmei Chu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Tian Yu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Changqing Hu
- The Fifth Orthopaedics Department, The No. 1 Central Hospital of Baoding City, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
30
|
Li L, Gan H, Jin H, Fang Y, Yang Y, Zhang J, Hu X, Chu L. Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats. Int Immunopharmacol 2021; 92:107335. [PMID: 33429332 DOI: 10.1016/j.intimp.2020.107335] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
Microglia/macrophages play a dual role in brain injury and repair following cerebral ischemia/reperfusion. Promoting microglia/macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype has been considered as a potential treatment for ischemic stroke. Astragaloside IV (AS-IV) is a primary active ingredient of Chinese herb Radix Astragali, which protects against acute cerebral ischemic/reperfusion injury through its antioxidant, anti-inflammatory, and anti-apoptotic properties. However, it remains unknown whether AS-IV improves ischemic brain tissue repair and its underlying mechanism. A transient middle cerebral artery occlusion (tMCAO) rat model was used in this study. The results showed that AS-IV significantly improved long-term brain injury, reduced the expression of M1 microglia/macrophage markers and increased the expression of M2 microglia/macrophage markers 14 days after cerebral ischemia/reperfusion. AS-IV also increased peroxisome proliferator-activated receptor γ (PPARγ) mRNA and protein expression. Moreover, AS-IV promoted neurogenesis and angiogenesis, and increased the protein expression of brain-derived growth factor (BDNF), insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF). However, these beneficial effects were greatly blocked by PPARγ antagonist T0070907. These results together suggest that AS-IV could enhance neurogenesis, angiogenesis and neurological functional recovery, which may be partially through transforming microglia/macrophage from M1 to M2 phenotype in a PPARγ-dependent manner after cerebral ischemia/reperfusion injury. Therefore, AS-IV can be considered as a promising therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiyan Gan
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huaqian Jin
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Fang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Yang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianping Zhang
- Department of Anatomy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowei Hu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
31
|
Zheng XQ, Huang JF, Lin JL, Zhu YX, Wang MQ, Guo ML, Zan XJ, Wu AM. Controlled release of baricitinib from a thermos-responsive hydrogel system inhibits inflammation by suppressing JAK2/STAT3 pathway in acute spinal cord injury. Colloids Surf B Biointerfaces 2020; 199:111532. [PMID: 33385822 DOI: 10.1016/j.colsurfb.2020.111532] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Aggressive inflammation is an important pathological process of secondary injury in acute spinal cord injury (SCI). However, traditional treatments of secondary injury in acute SCI have achieved little success. Novel biomaterials combined with small molecule drugs are considered as a potential treatment for SCI. Baricitinib, a highly selective JAK1/JAK2 inhibitor, can effectively inhibit the JAK2/STAT3 pathway involved in the modulation of inflammation. However, to evaluate Baricitinib's therapeutic effect on SCI remains to be confirmed. In this study, we designed an injectable PLGA-PEG-PLGA thermos-sensitive hydrogel with baricitinib (Bari-P hydrogel) and measured its efficacy, physical and biological properties in vitro. In the SCI rat, Bari-P hydrogel was injected into the injured spinal cord. Neuronal regeneration was evaluated at 3 days and 4 weeks after surgery by determining the inflammatory cytokine levels, behavioral tests, and histological analysis. The hydrogel can gel in the body, disintegrate almost within 72 h and achieve drug release. Baricitinib can effectively inhibit the JAK2/STAT3 pathway of microglia in vitro; while in vivo experiments show that Bari-P hydrogel treatment can inhibit the phosphorylation of JAK2, STAT3 and suppress the production of inflammatory cytokines, and reduces neuronal apoptosis. Histopathological analysis and behavioral tests showed that Bari-P hydrogel reduced neuronal apoptosis in the early stage of injury and later promoted functional recovery. In summary, Bari-P hydrogel reduced neuronal apoptosis and promoted functional recovery in spinal cord injured rats by inhibiting the JAK2-STAT3 pathway and controlling the expression of inflammatory cytokines in the early stages of injury.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
| | - Jin-Feng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ya-Xin Zhu
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035. China
| | - Min-Qi Wang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mei-Liang Guo
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xing-Jie Zan
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035. China.
| | - Ai-Min Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
32
|
ZHENG X, GAN H, LI L, HU X, FANG Y, CHU L. [Astragaloside Ⅳ inhibits inflammation after cerebral ischemia in rats through promoting microglia/macrophage M2 polarization]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:679-686. [PMID: 33448170 PMCID: PMC10412416 DOI: 10.3785/j.issn.1008-9292.2020.12.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/09/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the effects of astragaloside Ⅳ (AS-Ⅳ) on microglia/macrophage M1/M2 polarization and inflammatory response after cerebral ischemia in rats. METHODS Forty eight male SD rats were randomly divided into sham operation control group, model control group and AS-Ⅳ group with 16 rats in each. Focal cerebral ischemia model was induced by occlusion of the right middle cerebral artery (MCAO) using the intraluminal filament. After ischemia induced, the rats in AS-Ⅳ group were intraperitoneally injected with 40 mg/kg AS-Ⅳ once a day for 3 days. The neurological functions were evaluated by the modified neurological severity score (mNSS) and the corner test on d1 and d3 after modelling. The infarct volume was measured by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining on d3 after ischemia. The expression of M1 microglia/macrophage markers CD86, inducible nitric oxide synthase (iNOS) and pro-inflammatory factors TNF-α, IL-1β, IL-6, M2 microglia/macrophages markers CD206, arginase-1 (Arg-1), chitinase-like protein (YM1/2) and anti-inflammatory factors interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) was detected by real-time RT-PCR. The expression of CD16/32/Iba1 and CD206/Iba1 was determined by double labeling immunefluorescence method in the peripheral area of cerebral ischemia. RESULTS Compared with model control group, AS-Ⅳ treatment improved neurological function recovery and reduced infarct volume after ischemia (P<0.05 or P<0.01). The qRT-PCR results showed that AS-Ⅳ treatment down-regulated the expression of CD86, iNOS, TNF-α, IL-1β, IL-6 mRNA (all P<0.01), and up-regulated the expression of CD206, Arg-1, YM1/2, IL-10 and TGF-β mRNA (all P<0.01). Furthermore, the results of immunefluorescence labeling showed that AS-Ⅳ treatment reduced the number of CD16/32+/Iba1+ cells (P<0.05) and increased the number of CD206+/Iba1+ cells (P<0.01) after cerebral ischemia. CONCLUSIONS The findings suggest that AS-Ⅳ ameliorates brain injury after cerebral ischemia in rats, which may be related to inhibiting inflammation through promoting the polarization of the microglia/macrophage from M1 to M2 phenotype in the ischemic brain.
Collapse
|
33
|
Xiao S, Wang C, Yang Q, Xu H, Lu J, Xu K. Rea regulates microglial polarization and attenuates neuronal apoptosis via inhibition of the NF-κB and MAPK signalings for spinal cord injury repair. J Cell Mol Med 2020; 25:1371-1382. [PMID: 33369103 PMCID: PMC7875927 DOI: 10.1111/jcmm.16220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammation and neuronal apoptosis aggravate the secondary damage after spinal cord injury (SCI). Rehmannioside A (Rea) is a bioactive herbal extract isolated from Rehmanniae radix with low toxicity and neuroprotection effects. Rea treatment inhibited the release of pro-inflammatory mediators from microglial cells, and promoted M2 polarization in vitro, which in turn protected the co-cultured neurons from apoptosis via suppression of the NF-κB and MAPK signalling pathways. Furthermore, daily intraperitoneal injections of 80 mg/kg Rea into a rat model of SCI significantly improved the behavioural and histological indices, promoted M2 microglial polarization, alleviated neuronal apoptosis, and increased motor function recovery. Therefore, Rea is a promising therapeutic option for SCI and should be clinically explored.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chenggui Wang
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Quanming Yang
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haibin Xu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Kan Xu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Tian R, Wang P, Huang L, Li C, Lu Z, Lu Z, Wu A, Bao K, Mao W, Huang Q, Xu P. Sanqi Oral Solution Ameliorates Renal Ischemia/Reperfusion Injury via Reducing Apoptosis and Enhancing Autophagy: Involvement of ERK/mTOR Pathways. Front Pharmacol 2020; 11:537147. [PMID: 33041791 PMCID: PMC7525120 DOI: 10.3389/fphar.2020.537147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) induced acute kidney injury (AKI) is a significant health problem with high morbidity and mortality, yet prophylaxis strategies and effective drugs are limited. Sanqi oral solution (SQ) is a formulated medicine widely used in clinical settings to treat various renal diseases via enriching qi and activating blood circulation while its role on I/R-AKI remains unclear. Herein, by establishing rat I/R-AKI models, we intended to investigate the effect of SQ on the prevention of I/R-AKI and explore its underlying mechanisms. We demonstrated that SQ treatment significantly attenuated renal dysfunction of I/R-AKI, alleviated histological damages, inhibited renal apoptosis, and enhanced autophagy. Further investigation proved that SQ could significantly inhibit the activation of ERK and mTOR signaling pathways. Moreover, its renoprotective effect can be abolished by autophagy inhibitor 3-methyladenine (3-MA). Collectively, our results suggest that SQ exerts renoprotective effects on renal I/R injury via reducing apoptosis and enhancing autophagy, which are associated with regulating ERK/mTOR pathways.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Pinchao Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pediatrics, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lihua Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhisheng Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Aijun Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pediatrics, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qingming Huang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pediatrics, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
35
|
Lin J, Pan X, Huang C, Gu M, Chen X, Zheng X, Shao Z, Hu S, Wang B, Lin H, Wu Y, Tian N, Wu Y, Gao W, Zhou Y, Zhang X, Wang X. Dual regulation of microglia and neurons by Astragaloside IV-mediated mTORC1 suppression promotes functional recovery after acute spinal cord injury. J Cell Mol Med 2019; 24:671-685. [PMID: 31675186 PMCID: PMC6933381 DOI: 10.1111/jcmm.14776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation and neuronal apoptosis contribute to the progression of secondary injury after spinal cord injury (SCI) and are targets for SCI therapy; autophagy is reported to suppress apoptosis in neuronal cells and M2 polarization may attenuate inflammatory response in microglia, while both are negatively regulated by mTORC1 signalling. We hypothesize that mTORC1 suppression may have dual effects on inflammation and neuronal apoptosis and may be a feasible approach for SCI therapy. In this study, we evaluate a novel inhibitor of mTORC1 signalling, Astragaloside IV (AS-IV), in vitro and in vivo. Our results showed that AS-IV may suppress mTORC1 signalling both in neuronal cells and microglial cells in vitro and in vivo. AS-IV treatment may stimulate autophagy in neuronal cells and protect them against apoptosis through autophagy regulation; it may also promote M2 polarization in microglial cells and attenuate neuroinflammation. In vivo, rats were intraperitoneally injected with AS-IV (10 mg/kg/d) after SCI, behavioural and histological evaluations showed that AS-IV may promote functional recovery in rats after SCI. We propose that mTORC1 suppression may attenuate both microglial inflammatory response and neuronal apoptosis and promote functional recovery after SCI, while AS-IV may become a novel therapeutic medicine for SCI.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangxiang Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China
| | - Xuanqi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|