1
|
Takaya K, Imbe Y, Wang Q, Okabe K, Sakai S, Aramaki-Hattori N, Kishi K. Rac1 inhibition regenerates wounds in mouse fetuses via altered actin dynamics. Sci Rep 2024; 14:27213. [PMID: 39516580 PMCID: PMC11549422 DOI: 10.1038/s41598-024-78395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Mammalian wounds leave visible scars, and there are no methods for complete regeneration. However, mouse fetuses regenerate their skin, including epidermal and dermal structures, up to embryonic day (E)13. This regeneration pattern requires the formation of actin cables in the wound margin epithelium; however, the molecular mechanisms are not fully understood. Rac1 alters actin in cells and is involved in the formation of filopodia. We investigated whether actin remodeling and skin regeneration patterns can be reproduced through the regulation of Rac1 signaling. Rac1 expression was downregulated in E13 wounds and upregulated after E15 when scars remained. NSC23766, a Rac1-specific inhibitor, altered actin dynamics at the cell margin from filopodia formation to cable formation and inhibited the migration of mouse epidermal keratinocyte, PAM212, by Rac1 signaling suppression. NSC23766 suppressed Rac1 activity and completely regenerated the fetal mouse wounds, even at E14, by changing actin dynamics. Knocked-out Rac1 transgenic mice experienced delayed epithelialization of wounds with suppressed epidermal migration in adults; however, in fetuses, complete wound regeneration via Rac1 signal suppression was observed. Therefore, Rac1 suppression in the wound epidermis can achieve regenerative wound healing in fetuses and may be a potential candidate for healing scars.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuka Imbe
- Faculty of Pharmacy, Keio University, Shiba, Minatoku, Tokyo, Japan
| | - Qi Wang
- Faculty of Pharmacy, Keio University, Shiba, Minatoku, Tokyo, Japan
| | - Keisuke Okabe
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
2
|
Ma Z, Liu X, Zhang M, Wu Z, Zhang X, Li S, An J, Luo Z. Research Progress on the Role of Cartilage Endplate in Intervertebral Disc Degeneration. Cell Biochem Funct 2024; 42:e4118. [PMID: 39267363 DOI: 10.1002/cbf.4118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
Low back pain significantly impacts individuals' quality of life, with intervertebral disc degeneration (IDD) being a primary contributor to this condition. Currently, IDD treatment primarily focuses on symptom management and does not achieve a definitive cure. The cartilage endplate (CEP), a crucial nutrient-supplying tissue of the intervertebral disc, plays a pivotal role in disc degeneration. This review examines the mechanisms underlying CEP degeneration, summarizing recent advancements in understanding the structure and function of CEP, the involvement of various signaling pathways, and the roles of cartilage endplate stem cells (CESCs) and exosomes (Exos) in this process. The aim of this review is to provide a comprehensive reference for future research on CEP. Despite progress in understanding the role of CEP in IDD, the mechanisms underlying CEP degeneration remain incompletely elucidated. Future research poses significant challenges, necessitating further investigations to elucidate the complexities of CEP.
Collapse
Affiliation(s)
- Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zuolong Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Pukkanasut P, Jaskula-Sztul R, Gomora JC, Velu SE. Therapeutic targeting of voltage-gated sodium channel Na V1.7 for cancer metastasis. Front Pharmacol 2024; 15:1416705. [PMID: 39045054 PMCID: PMC11263763 DOI: 10.3389/fphar.2024.1416705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
This review focuses on the expression and function of voltage-gated sodium channel subtype NaV1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented. Despite the lack of clarity on the precise mechanism by which NaV1.7 contributes to cancer progression and metastasis; many studies have suggested a connection between NaV1.7 and proteins involved in multiple signaling pathways such as PKA and EGF/EGFR-ERK1/2. Moreover, the functional activity of NaV1.7 appears to elevate the expression levels of MACC1 and NHE-1, which are controlled by p38 MAPK activity, HGF/c-MET signaling and c-Jun activity. This cascade potentially enhances the secretion of extracellular matrix proteases, such as MMPs which play critical roles in cell migration and invasion activities. Furthermore, the NaV1.7 activity may indirectly upregulate Rho GTPases Rac activity, which is critical for cytoskeleton reorganization, cell adhesion, and actin polymerization. The relationship between NaV1.7 and cancer progression has prompted researchers to investigate the therapeutic potential of targeting NaV1.7 using inhibitors. The positive outcome of such studies resulted in the discovery of several inhibitors with the ability to reduce cancer cell migration, invasion, and tumor growth underscoring the significance of NaV1.7 as a promising pharmacological target for attenuating cancer cell proliferation and metastasis. The research findings summarized in this review suggest that the regulation of NaV1.7 expression and function by small molecules and/or by genetic engineering is a viable approach to discover novel therapeutics for the prevention and treatment of metastasis of cancers with elevated NaV1.7 expression.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Xiang P, Luo ZP, Che YJ. Insights into the mechanical microenvironment within the cartilaginous endplate: An emerging role in maintaining disc homeostasis and normal function. Heliyon 2024; 10:e31162. [PMID: 38803964 PMCID: PMC11128916 DOI: 10.1016/j.heliyon.2024.e31162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Biomechanical factors are strongly linked with the emergence and development of intervertebral disc degeneration (IVDD). The intervertebral disc (IVD), as a unique enclosed biomechanical structure, exhibits distinct mechanical properties within its substructures. Damage to the mechanical performance of any substructure can disrupt the overall mechanical function of the IVD. Endplate degeneration serves as a significant precursor to IVDD. The endplate (EP) structure, especially the cartilaginous endplate (CEP), serves as a conduit for nutrient and metabolite transport in the IVD. It is inevitably influenced by its nutritional environment, mechanical loading, cytokines and extracellular components. Currently, reports on strategies targeting the CEP for the prevention and treatment of IVDD are scarce. This is due to two primary reasons: first, limited knowledge of the biomechanical microenvironment surrounding the degenerated CEP cells; and second, innovative biological treatment strategies, such as implanting active cells (disc or mesenchymal stem cells) or modulating natural cell activity through the addition of therapeutic factors or genes to treat IVDD often overlook a critical aspect-the restoration of the nutrient supply function and mechanical microenvironment of the endplate. Therefore, restoring the healthy structure of the CEP and maintaining a stable mechanical microenvironment within the EP are crucial for the prevention of IVDD and the repair of degenerated IVDs. We present a comprehensive literature review on the mechanical microenvironment characteristics of cartilage endplates and their associated mechanical signaling pathways. Our aim is to provide valuable insights into the development and implementation of strategies to prevent IVDD by delaying or reversing CEP degeneration.
Collapse
Affiliation(s)
- Pan Xiang
- Department of Orthopaedics, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, 215000, PR China
| | - Zong-Ping Luo
- Department of Orthopaedics, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, 215000, PR China
| | - Yan-Jun Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, PR China
| |
Collapse
|
5
|
Zhang Y, Liu C, Li Y, Xu H. Mechanism of the Mitogen-Activated Protein Kinases/Mammalian Target of Rapamycin Pathway in the Process of Cartilage Endplate Stem Cell Degeneration Induced by Tension Load. Global Spine J 2023; 13:2396-2408. [PMID: 35400210 PMCID: PMC10538332 DOI: 10.1177/21925682221085226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Basic Research. OBJECTIVE Intervertebral disc degeneration (IVDD) is caused by the cartilage endplate (CEP). Cartilage endplate stem cell (CESC) is involved in the recovery of CEP degeneration. Tension load (TL) contributes a lot to the initiation and progression of IVDD. This study aims to investigate the regulatory mechanism of the Mitogen-activated protein kinases/Mammalian target of rapamycin (MAPK/mTOR) pathway during TL-induced CESC degeneration. METHODS CESCs were isolated from New Zealand big-eared white female rabbits (6 months old). FX-4000T cell stress loading system was applied to establish a TL-induced degeneration model of CESCs. Western blotting was used to detect the level of mTOR pathway-related proteins and autophagy markers LC3-Ⅱ, Beclin-1, and p62 in degenerative CESCs. The expression of MAPK pathway-related proteins JNK and extracellular signal-regulated kinases (ERK) in degenerated CESCs was inhibited by cell transfection to explore whether JNK and ERK play a regulatory role in TL-induced autophagy in CESCs. RESULTS In the CESC degeneration model, the mTOR pathway was activated. After inhibition of mTOR, the autophagy level of CESCs was increased, and the degeneration of CESCs was alleviated. The MAPK pathway was also activated in the CESC degeneration model. Inhibition of JNK expression may alleviate TL-induced CEP degeneration by inhibiting Raptor phosphorylation and activating autophagy. Inhibition of ERK expression may alleviate TL-induced CEP degeneration by inhibiting mTOR phosphorylation and activating autophagy. CONCLUSION Inhibition of JNK and ERK in the MAPK signaling family alleviated TL-induced CESC degeneration by inhibiting the phosphorylation of Raptor and mTOR in the mTOR pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Chen Liu
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Yu Li
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| |
Collapse
|
6
|
Wang Y, Cheng H, Wang T, Zhang K, Zhang Y, Kang X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif 2023; 56:e13448. [PMID: 36915968 PMCID: PMC10472537 DOI: 10.1111/cpr.13448] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Low back pain (LBP) is a leading cause of labour loss and disability worldwide, and it also imposes a severe economic burden on patients and society. Among symptomatic LBP, approximately 40% is caused by intervertebral disc degeneration (IDD). IDD is the pathological basis of many spinal degenerative diseases such as disc herniation and spinal stenosis. Currently, the therapeutic approaches for IDD mainly include conservative treatment and surgical treatment, neither of which can solve the problem from the root by terminating the degenerative process of the intervertebral disc (IVD). Therefore, further exploring the pathogenic mechanisms of IDD and adopting targeted therapeutic strategies is one of the current research hotspots. Among the complex pathophysiological processes and pathogenic mechanisms of IDD, oxidative stress is considered as the main pathogenic factor. The delicate balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining the normal function and survival of IVD cells. Excessive ROS levels can cause damage to macromolecules such as nucleic acids, lipids, and proteins of cells, affect normal cellular activities and functions, and ultimately lead to cell senescence or death. This review discusses the potential role of oxidative stress in IDD to further understand the pathophysiological processes and pathogenic mechanisms of IDD and provides potential therapeutic strategies for the treatment of IDD.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huiguang Cheng
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tao Wang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kun Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yumin Zhang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xin Kang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
7
|
Liu A, Yu L, Li X, Zhang K, Zhang W, So KF, Tissir F, Qu Y, Zhou L. Celsr2-mediated morphological polarization and functional phenotype of reactive astrocytes in neural repair. Glia 2023. [PMID: 37186402 DOI: 10.1002/glia.24378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Neural repair is highly influenced by reactive astrocytes. Atypical cadherin Celsr2 regulates neuron development and axon regeneration, while its role in glial cells remains unexplored. In this study, we show that Celsr2 is highly expressed in spinal astrocytes of adult mice, and knockout of Celsr2 results in reactive astrocytes with longer protrusions preferentially orientated towards lesion borders in culture scratch assay and injured spinal cord, and elevation of total and active Cdc42 and Rac1 protein in western blots. Inactivation of Celsr2 enhances calcium influx in reactive astrocytes in time-lapse imaging. Morphological phenotypes of cultured Celsr2-/- astrocytes are rescued by Cdc42 or Rac1 inhibitors. Following spinal cord injury (SCI), Celsr2-/- mice exhibit smaller lesion cavity and glial scar, enhanced fiber regeneration, weaker microglial response, and improved functional recovery than control animals. Similar phenotypes are found in mice with conditional knockout of Celsr2 in astrocytes. In Celsr2-/- mice, astrocyte phenotype is changed and neuroinflammation is alleviated after injury. Inhibiting Cdc42/Rac1 activities compromises astrocyte polarization and the improvement of neural repair and functional recovery in Celsr2-/- mice with SCI. In conclusion, Celsr2 regulates morphological polarization and functional phenotype of reactive astrocytes and inactivating Celsr2 is a potential therapeutic strategy for neural repair.
Collapse
Affiliation(s)
- Aimei Liu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
| | - Lingtai Yu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Xuejun Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Kejiao Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Wei Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Fadel Tissir
- Institute of Neuroscience, Developmental Neurobiology, Université catholique de Louvain, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yibo Qu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Ma N, Xu E, Luo Q, Song G. Rac1: A Regulator of Cell Migration and A Potential Target for Cancer Therapy. Molecules 2023; 28:molecules28072976. [PMID: 37049739 PMCID: PMC10096471 DOI: 10.3390/molecules28072976] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cell migration is crucial for physiological and pathological processes such as morphogenesis, wound repair, immune response and cancer invasion/metastasis. There are many factors affecting cell migration, and the regulatory mechanisms are complex. Rac1 is a GTP-binding protein with small molecular weight belonging to the Rac subfamily of the Rho GTPase family. As a key molecule in regulating cell migration, Rac1 participates in signal transduction from the external cell to the actin cytoskeleton and promotes the establishment of cell polarity which plays an important role in cancer cell invasion/metastasis. In this review, we firstly introduce the molecular structure and activity regulation of Rac1, and then summarize the role of Rac1 in cancer invasion/metastasis and other physiological processes. We also discuss the regulatory mechanisms of Rac1 in cell migration and highlight it as a potential target in cancer therapy. Finally, the current state as well as the future challenges in this area are considered. Understanding the role and the regulatory mechanism of Rac1 in cell migration can provide fundamental insights into Rac1-related cancer progression and further help us to develop novel intervention strategies for cancer therapy in clinic.
Collapse
|
9
|
Jess R, Ling T, Xiong Y, Wright CJ, Zhao F. Mechanical environment for in vitro cartilage tissue engineering assisted by in silico models. BIOMATERIALS TRANSLATIONAL 2023; 4:18-26. [PMID: 37206302 PMCID: PMC10189812 DOI: 10.12336/biomatertransl.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 05/21/2023]
Abstract
Mechanobiological study of chondrogenic cells and multipotent stem cells for articular cartilage tissue engineering (CTE) has been widely explored. The mechanical stimulation in terms of wall shear stress, hydrostatic pressure and mechanical strain has been applied in CTE in vitro. It has been found that the mechanical stimulation at a certain range can accelerate the chondrogenesis and articular cartilage tissue regeneration. This review explicitly focuses on the study of the influence of the mechanical environment on proliferation and extracellular matrix production of chondrocytes in vitro for CTE. The multidisciplinary approaches used in previous studies and the need for in silico methods to be used in parallel with in vitro methods are also discussed. The information from this review is expected to direct facial CTE research, in which mechanobiology has not been widely explored yet.
Collapse
Affiliation(s)
- Rob Jess
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
| | - Tao Ling
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Corresponding authors: Feihu Zhao, ; Yi Xiong,
| | - Chris J. Wright
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Feihu Zhao
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
- Corresponding authors: Feihu Zhao, ; Yi Xiong,
| |
Collapse
|
10
|
Bailly C, Beignet J, Loirand G, Sauzeau V. Rac1 as a therapeutic anticancer target: Promises and limitations. Biochem Pharmacol 2022; 203:115180. [PMID: 35853497 DOI: 10.1016/j.bcp.2022.115180] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Small molecule inhibitors of GTPases are increasingly considered for the treatment of multiple human pathologies. The GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) plays major roles in vital cellular processes, notably in the control cell motility and dynamic, the regulation of oxidative stress, and in inflammatory and immune surveillance. As such, Rac1 is viewed as a potential target to combat cancers but also diverse inflammatory, metabolic, neurodegenerative, respiratory, cardiovascular, viral, and parasitic diseases. Potent and selective Rac1 inhibitors have been identified and designed, such as compounds GYS32661 and MBQ-167 both in preclinical development for the treatment of advanced solid tumors. The pleiotropic roles and ubiquitous expression of the protein can be viewed as limitations for anticancer approaches. However, the frequent overexpression and/or hyperactivation of the Rac1 in difficult-to-treat chemoresistant cancers, make Rac1 an attractive target in oncology. The key roles of Rac1 in multiple cellular pathways, together with its major implications in carcinogenesis, tumor proliferation and metastasis, support the development of small molecule inhibitors. The challenge is high and the difficulty shall not be underestimated, but the target is innovative and promising in combination with chemo- and/or immuno-therapy. Opportunities and challenges associated with the targeting of Rac1 are discussed.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes cedex, France
| | - Gervaise Loirand
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| |
Collapse
|
11
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
12
|
Destouni A, Tsolis KC, Economou A, Papathanasiou I, Balis C, Mourmoura E, Tsezou A. Chondrocyte protein co-synthesis network analysis links ECM mechanosensing to metabolic adaptation in osteoarthritis. Expert Rev Proteomics 2021; 18:623-635. [PMID: 34348542 DOI: 10.1080/14789450.2021.1962299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Knee osteoarthritis (OA) is one of the most common structural OA disorders globally. Incomplete understanding of the fundamental biological aspects of osteoarthritis underlies the current lack of effective treatment or disease modifying drugs. RESEARCH DESIGN AND METHODS We implemented a systems approach by making use of the statistical network concepts in Weighted Gene Co-expression Analysis to reconstruct the organization of the core proteome network in chondrocytes obtained from OA patients and healthy individuals. Protein modules reflect groups of tightly co-ordinated changes in protein abundance across healthy and OA chondrocytes. RESULTS The unbiased systems analysis identified extracellular matrix (ECM) mechanosensing and glycolysis as two modules that are most highly correlated with ΟΑ. The ECM module was enriched in the OA genetic risk factors tenascin-C (TNC) and collagen 11A1 (COL11A1), as well as in cartilage oligomeric matrix protein (COMP), a biomarker associated with cartilage integrity. Mapping proteins that are unique to OA or healthy chondrocytes onto the core interactome, which connects microenvironment sensing and regulation of glycolysis, identified differences in metabolic and anti-inflammatory adaptation. CONCLUSION The interconnection between cartilage ECM remodeling and metabolism is indicative of the dynamic chondrocyte states and their significance in osteoarthritis.
Collapse
Affiliation(s)
- Aspasia Destouni
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos C Tsolis
- KULeuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium
| | - Anastassios Economou
- KULeuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Charalampos Balis
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
13
|
Zhang G, Liu M, Chen H, Wu Z, Gao Y, Ma Z, He X, Kang X. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif 2021; 54:e13057. [PMID: 34028920 PMCID: PMC8249791 DOI: 10.1111/cpr.13057] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/25/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a common clinical degenerative disease of the spine. A series of factors, such as inflammation, oxidative stress and mechanical stress, promote degradation of the extracellular matrix (ECM) of the intervertebral discs (IVD), leading to dysfunction and structural destruction of the IVD. Nuclear factor-κB (NF-κB) transcription factor has long been regarded as a pathogenic factor of IDD. Therefore, NF-κB may be an ideal therapeutic target for IDD. As NF-κB is a multifunctional functional transcription factor with roles in a variety of biological processes, a comprehensive understanding of the function and regulatory mechanism of NF-κB in IDD pathology will be useful for the development of targeted therapeutic strategies for IDD, which can prevent the progression of IDD and reduce potential risks. This review discusses the role of the NF-κB signalling pathway in the nucleus pulposus (NP) in the process of IDD to understand pathological NP degeneration further and provide potential therapeutic targets that may interfere with NF-κB signalling for IDD therapy.
Collapse
Affiliation(s)
- Guang‐Zhi Zhang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Ming‐Qiang Liu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Hai‐Wei Chen
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Zuo‐Long Wu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Yi‐Cheng Gao
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Zhan‐Jun Ma
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xue‐Gang He
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xue‐Wen Kang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal DisordersLanzhouChina
| |
Collapse
|
14
|
Zhang F, Liu Y, You Q, Yang E, Liu B, Wang H, Xu S, Nawaz W, Chen D, Wu Z. NSC23766 and Ehop016 Suppress Herpes Simplex Virus-1 Replication by Inhibiting Rac1 Activity. Biol Pharm Bull 2021; 44:1263-1271. [PMID: 34162786 DOI: 10.1248/bpb.b21-00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) infection of the eyes leads to herpes simplex virus keratitis (HSK), the main cause of infectious blindness in the world. As the current therapeutics for HSV-1 infection are rather limited and prolonged use of acyclovir (ACV)/ganciclovir (GCV) and in immunocompromised patients lead to the rise of drug resistant mutants, it underlines the urgent need for new antiviral agents with distinct mechanisms. Our study attempted to establish ras-related C3 botulinum toxin substrate 1 (Rac1) as a new therapeutic target for HSV-1 infection by using Rac1-specific inhibitors to evaluate the in vitro inhibition of virus growth. Our results showed that increased Rac1 activity facilitated HSV-1 replication and inhibition of Rac1 activity by NSC23766 and Ehop016 significantly reduced HSV-1 replication. Thus, we identified NSC23766 and Ehop016 as possessing potent anti-HSV-1 activities by suppressing the Rac1 activity, suggesting that Rac1 is a potential target for treating HSV-1-related diseases.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Public Health Research, Medical School of Nanjing University.,Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University
| | - Ye Liu
- Center for Public Health Research, Medical School of Nanjing University.,Department of Ophthalmology, JinLing Hospital, Medical School of Nanjing University
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University
| | - Enhui Yang
- Nanjing Children's Hospital, Nanjing Medical University
| | - Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University
| | - Huanru Wang
- Center for Public Health Research, Medical School of Nanjing University
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University
| | - Waqas Nawaz
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University.,School of Life Sciences, Ningxia University
| |
Collapse
|
15
|
Ge Q, Ying J, Shi Z, Mao Q, Jin H, Wang PE, Chen J, Yuan W, Tong P, Li J. Chlorogenic Acid retards cartilaginous endplate degeneration and ameliorates intervertebral disc degeneration via suppressing NF-κB signaling. Life Sci 2021; 274:119324. [PMID: 33711382 DOI: 10.1016/j.lfs.2021.119324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
AIMS Intervertebral Disc Degeneration (IDD) is a key factor involved in low back pain (LBP) which affects approximately 540 million individuals worldwide. Chlorogenic Acid (CGA), a natural compound, exerts anti-inflammatory property in several diseases. Here, we aim to investigate the biological effect of CGA on IDD and explore the underlying mechanism. MATERIALS AND METHODS Lumbar spine instability (LSI) model in mice was utilized to mimic process of IDD. The effects of CGA in response to LSI were evaluated by luminescent imaging, micro-CT, histomorphology, and immunohistochemistry in vivo. Besides, the cytotoxicity of CGA on chondrocytes was detected by cell counting kit-8 (CCK-8) and the biological effects were assessed by polymerase chain reaction (PCR) in vitro. KEY FINDINGS We found that CGA treatment dramatically suppressed the NF-κB activity in LSI mice. Moreover, administration of CGA mitigated cartilaginous endplate degeneration and postponed IDD development accompanying a decrease of inflammatory and catabolic mediators. Specifically, CGA ameliorated endplate degeneration might be related to its protective effects against endplate chondrocytes apoptosis and trans-differentiation. We further elucidated that CGA exerted these biological effects mainly by repressing NF-κB signaling in cartilage endplate. SIGNIFICANCE Our study has illustrated, for the first time, the curative effects as well as the latent mechanism of CGA in IDD and our results suggested that CGA administration might be used as an alternative therapy for IDD.
Collapse
Affiliation(s)
- Qinwen Ge
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jun Ying
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhenyu Shi
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiang Mao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping-Er Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Ju Li
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
16
|
Jiang C, Sun ZM, Zhu DC, Guo Q, Xu JJ, Lin JH, Chen ZX, Wu YS. Inhibition of Rac1 activity by NSC23766 prevents cartilage endplate degeneration via Wnt/β-catenin pathway. J Cell Mol Med 2020; 24:3582-3592. [PMID: 32040269 PMCID: PMC7131937 DOI: 10.1111/jcmm.15049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/22/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
Cartilage endplate (CEP) degeneration has been considered as one of important factors related to intervertebral disc degeneration (IVDD). Previous researches have showed that Rac1 played a pivotal role in chondrocyte differentiation. However, the effect of Rac1 during the process of CEP degeneration remains unclear. Herein, we explored the effect of Rac1 on CEP degeneration and elucidated the underlying molecular mechanism. We found expression of Rac1‐GTP increased in human‐degenerated CEP tissue and IL‐1β‐stimulated rat endplate chondrocytes (EPCs). Our study revealed that Rac1 inhibitor NSC23766 treatment promoted the expression of collagen II, aggrecan and Sox‐9, and decreased the expression of ADTAMTS5 and MMP13 in IL‐1β‐stimulated rat EPCs. Moreover, we also found that NSC23766 could suppress the activation of Wnt/β‐catenin pathway, suggesting that the beneficial effects of Rac1 inhibition in EPCs are mediated through the Wnt/β‐catenin signalling. Besides, puncture‐induced rats models showed that NSC23766 played a protective role on CEP and disc degeneration. Collectively, these findings demonstrated that Rac1 inhibition delayed the EPCs degeneration and its potential mechanism may be associated with Wnt/β‐catenin pathway regulation, which may help us better understand the association between Rac1 and CEP degeneration and provide a promising strategy for delaying the progression of IVDD.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopaedic surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ze-Ming Sun
- Department of Orthopaedic surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ding-Chao Zhu
- Department of Orthopaedic surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qiang Guo
- Department of Orthopaedic surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jia-Jing Xu
- Department of Orthopaedic surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jia-Hao Lin
- Department of Orthopaedic surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ze-Xin Chen
- Department of Orthopaedic surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yao-Sen Wu
- Department of Orthopaedic surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|