1
|
Yu X, Jiang J, Li C, Wang Y, Ren Z, Hu J, Yuan T, Wu Y, Wang D, Sun Z, Wu Q, Chen B, Fang P, Ding H, Meng J, Jiang H, Zhao J, Bao N. Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade. Mol Med 2024; 30:266. [PMID: 39707212 DOI: 10.1186/s10020-024-01034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Periprosthetic osteolysis and subsequent aseptic loosening are the leading causes of failure following total joint arthroplasty. Osteogenic impairment induced by wear particles is regarded as a crucial contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress identified as a key underlying mechanism. Therefore, identifying potential therapeutic targets and agents that can regulate ER stress adaption in osteoblasts is necessary for arresting aseptic loosening. Osthole (OST), a natural coumarin derivative, has demonstrated promising osteogenic properties and the ability to modulate ER stress adaption in various diseases. However, the impact of OST on ER stress-mediated osteogenic impairment caused by wear particles remains unclear. METHODS TiAl6V4 particles (TiPs) were sourced from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was utilized to explore the effects of OST on TiPs-induced osteogenic impairment in vivo. Primary mouse osteoblasts were employed to investigate the impact of OST on ER stress-mediated osteoblast apoptosis and osteogenic inhibition induced by TiPs in vitro. The mechanisms underlying OST-modulated alleviation of ER stress induced by TiPs were elucidated through Molecular docking, immunochemistry, PCR, and Western blot analysis. RESULTS In this study, we found that OST treatment effectively mitigated TiAl6V4 particles (TiPs)-induced osteolysis by enhancing osteogenesis in a mouse calvarial model. Furthermore, we observed that OST could attenuate ER stress-mediated apoptosis and osteogenic reduction in osteoblasts exposed to TiPs in vitro and in vivo. Mechanistically, we demonstrated that OST exerts bone-sparing effects on stressed osteoblasts upon TiPs exposure by specifically suppressing the ER stress-dependent PERK signaling cascade. CONCLUSION Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade. These findings suggest that OST may serve as a potential therapeutic agent for combating wear particle-induced osteogenic impairment, offering a novel alternative strategy for managing aseptic prosthesis loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cheng Li
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yongjie Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongsheng Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziying Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Bin Chen
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Peng Fang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Ding
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Hui Jiang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Bakr El-Nassan H. Applications of therapeutic deep eutectic solvents (THEDESs) as antimicrobial and anticancer agents. Pharm Dev Technol 2024; 29:1084-1092. [PMID: 39452425 DOI: 10.1080/10837450.2024.2421786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Deep eutectic solvents (DESs) are green alternatives to ionic liquids with wide applications in organic synthesis and catalysis. DESs are characterized by being easily prepared, biodegradable, nontoxic, and noninflammable. When one or more of the DES components is active pharmaceutical ingredient (API), the eutectic mixtures are named as therapeutic deep eutectic solvents (THEDESs). THEDESs are prepared in order to improve the solubility and/or the permeability of the APIs. This review presents a brief summary of the most important THEDESs reported to date having antimicrobial and/or anticancer activities. The challenges and limitations of THEDES preparation were also discussed. The work presented here indicated the importance of THEDES as a promising drug delivery system that can overcome the bioavailability problems while retaining or enhancing the biological activity of its components.
Collapse
Affiliation(s)
- Hala Bakr El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Zheng S, Hu G, Zheng J, Li Y, Li J. Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis-angiogenesis coupling of BMSCs via the Wnt/β-catenin pathway. Phytother Res 2024. [PMID: 38873735 DOI: 10.1002/ptr.8267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/12/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy-induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up-regulated the expression of angiogenic-related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis-angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/β-catenin pathway. Subsequently, using ovariectomy-induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis-angiogenesis coupling of BMSCs via the Wnt/β-catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guanyu Hu
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yikai Li
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junhua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Xu T, Yin J, Dai X, Liu T, Shi H, Zhang Y, Wang S, Yue G, Zhang Y, Zhao D, Gao S, Prentki M, Wang L, Zhang D. Cnidii Fructus: A traditional Chinese medicine herb and source of antiosteoporotic drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155375. [PMID: 38507853 DOI: 10.1016/j.phymed.2024.155375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Osteoporosis (OP) is a prevalent chronic metabolic bone disease for which limited countermeasures are available. Cnidii Fructus (CF), primarily derived from Cnidium monnieri (L.) Cusson., has been tested in clinical trials of traditional Chinese medicine for the management of OP. Accumulating preclinical studies indicate that CF may be used against OP. MATERIALS AND METHODS Comprehensive documentation and analysis were conducted to retrieve CF studies related to its main phytochemical components as well as its pharmacokinetics, safety and pharmacological properties. We also retrieved information on the mode of action of CF and, in particular, preclinical and clinical studies related to bone remodeling. This search was performed from the inception of databases up to the end of 2022 and included PubMed, China National Knowledge Infrastructure, the National Science and Technology Library, the China Science and Technology Journal Database, Weipu, Wanfang, the Web of Science and the China National Patent Database. RESULTS CF contains a wide range of natural active compounds, including osthole, bergapten, imperatorin and xanthotoxin, which may underlie its beneficial effects on improving bone metabolism and quality. CF action appears to be mediated via multiple processes, including the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK), Wnt/β-catenin and bone morphogenetic protein (BMP)/Smad signaling pathways. CONCLUSION CF and its ingredients may provide novel compounds for developing anti-OP drugs.
Collapse
Affiliation(s)
- Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gaiyue Yue
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 102488, PR China
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montreal, QC, H1W 4A4, Canada
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
5
|
Wumiti T, Wang L, Xu B, Ma Y, Zhu Y, Zuo X, Qian W, Chu X, Sun H. lncTIMP3 promotes osteogenic differentiation of bone marrow mesenchymal stem cells via miR-214/Smad4 axis to relieve postmenopausal osteoporosis. Mol Biol Rep 2024; 51:719. [PMID: 38824271 DOI: 10.1007/s11033-024-09652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.
Collapse
Affiliation(s)
- Taxi Wumiti
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University, Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| | - Bin Xu
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xinchen Zuo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Weiqing Qian
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Xudong Chu
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China.
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China.
| |
Collapse
|
6
|
Lin H, You Q, Wei X, Chen Z, Wang X. Osthole, a Coumarin from Cnidium monnieri: A Review on Its Pharmacology, Pharmacokinetics, Safety, and Innovative Drug Delivery Platforms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1397-1425. [PMID: 39327653 DOI: 10.1142/s0192415x24500678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Osthole, a coumarin compound mainly derived from Cnidium monnieri (L.), has attracted much interest from the scientific community owing to its multiple therapeutic properties. However, its pharmacological mechanism, pharmacokinetics, and toxicological effects are far from clear. Furthermore, the potential drug delivery platforms of osthole remain to be comprehensively delineated. The present review aimed to systematically summarize the most up-to-date information related to pharmacology, pharmacokinetics, and safety issues related to osthole, and discuss the investigations of novel drug delivery platforms. The information herein discussed was retrieved from authoritative databases, including PubMed, Web of Science, Google Scholar, Chinese National Knowledge Infrastructure (CNKI) and so on, reviewing information published up until February of 2024. New evidence shows that osthole induces a sequence of therapeutic actions and has a moderate absorption rate and rapid metabolic characteristics. In addition, this phytoconstituent possesses potential hepatotoxicity, and caution should be exercised against the risk of the drug combination. Furthermore, given its needy solubility in aqueous medium and non-organizational targeting, novel drug delivery methods have been designed to overcome these shortcomings. Given the properties of osthole, its therapeutic benefits ought to be elucidated in a greater array of comprehensive research studies, and the molecular mechanisms underlying these benefits should be explored.
Collapse
Affiliation(s)
- Hao Lin
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, P. R. China
| | - Qiang You
- Clinical Trial Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, P. R. China
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
| | - Xing Wei
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Sichuan University, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zongjun Chen
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, P. R. China
| | - Xianwei Wang
- Department of Digestive Endoscopy, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, P. R. China
| |
Collapse
|
7
|
Wang L, Pan Y, Liu M, Sun J, Yun L, Tu P, Wu C, Yu Z, Han Z, Li M, Guo Y, Ma Y. Wen-Shen-Tong-Luo-Zhi-Tong Decoction regulates bone-fat balance in osteoporosis by adipocyte-derived exosomes. PHARMACEUTICAL BIOLOGY 2023; 61:568-580. [PMID: 36999351 PMCID: PMC10071966 DOI: 10.1080/13880209.2023.2190773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Wen-Shen-Tong-Luo-Zhi-Tong (WSTLZT) Decoction is a Chinese prescription with antiosteoporosis effects, especially in patients with abnormal lipid metabolism. OBJECTIVE To explore the effect and mechanism of WSTLZT on osteoporosis (OP) through adipocyte-derived exosomes. MATERIALS AND METHODS Adipocyte-derived exosomes with or without WSTLZT treated were identified by transmission electron microscopy, nanoparticle tracking analysis (NTA) and western blotting (WB). Co-culture experiments for bone marrow mesenchymal stem cells (BMSCs) and exosomes were performed to examine the uptake and effect of exosome in osteogenesis and adipogenic differentiation of BMSC. MicroRNA profiles, luciferase and IP were used for exploring specific mechanisms of exosome on BMSC. In vivo, 80 Balb/c mice were randomly divided into four groups: Sham, Ovx, Exo (30 μg exosomes), Exo-WSTLZT (30 μg WSTLZT-exosomes), tail vein injection every week. After 12 weeks, the bone microstructure and marrow fat distribution were analysed by micro-CT. RESULTS ALP, Alizarin red and Oil red staining showed that WSTLZT-induced exosomes from adipocyte can regulate osteoblastic and adipogenic differentiation of BMSC. MicroRNA profiles observed that WSTLZT treatment resulted in 87 differentially expressed miRNAs (p < 0.05). MiR-122-5p with the greatest difference was screened by q-PCR (p < 0.01). The target relationship between miR-122-5p and SPRY2 was tested by luciferase and IP. MiR-122-5p negatively regulated SPRY2 and elevated the activity of MAPK signalling pathway, thereby regulating the osteoblastic and adipogenic differentiation of BMSC. In vivo, exosomes can not only improve bone microarchitecture but also significantly reduce accumulation of bone marrow adipose. CONCLUSIONS WSTLZT can exert anti-OP effect through SPRY2 via the MAKP signalling by miR-122-5p carried by adipocyte-derived exosomes.
Collapse
Affiliation(s)
- Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University and Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- TCM Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengmig Liu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Yun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziceng Yu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhitao Han
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Liang J, Liu L, Feng H, Yue Y, Zhang Y, Wang Q, Zhao H. Therapeutics of osteoarthritis and pharmacological mechanisms: A focus on RANK/RANKL signaling. Biomed Pharmacother 2023; 167:115646. [PMID: 37804812 DOI: 10.1016/j.biopha.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease afflicting millions globally. Despite the development of numerous pharmacological treatments for OA, a substantial unmet need for effective therapies persists. The RANK/RANKL signaling pathway has emerged as a promising therapeutic target for OA, owing to its pivotal role in regulating osteoclast differentiation and activity. In this comprehensive review, we aim to elucidate the relevant mechanisms of OA mediated by RANK/RANKL signaling, including bone remodeling, inflammation, cartilage degradation, osteophyte formation, and pain sensitization. Furthermore, we discuss and summarize the cutting-edge strategies targeting RANK/RANKL signaling for OA therapy, encompassing approaches such as gene-based interventions and biomaterials-aided pharmacotherapy. In addition, we highlight the prevailing challenges associated with pharmacological OA treatments and explore potential future directions, approached through a clinical-translational lens.
Collapse
Affiliation(s)
- Jingqi Liang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Liang Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Hui Feng
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Yang Yue
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Qiong Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
9
|
Chen J, Liao X, Gan J. Review on the protective activity of osthole against the pathogenesis of osteoporosis. Front Pharmacol 2023; 14:1236893. [PMID: 37680712 PMCID: PMC10481961 DOI: 10.3389/fphar.2023.1236893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Osteoporosis (OP), characterized by continuous bone loss and increased fracture risk, has posed a challenge to patients and society. Long-term administration of current pharmacological agents may cause severe side effects. Traditional medicines, acting as alternative agents, show promise in treating OP. Osthole, a natural coumarin derivative separated from Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim. f., exhibits protective effects against the pathological development of OP. Osthole increases osteoblast-related bone formation and decreases osteoclast-related bone resorption, suppressing OP-related fragility fracture. In addition, the metabolites of osthole may exhibit pharmacological effectiveness against OP development. Mechanically, osthole promotes osteogenic differentiation by activating the Wnt/β-catenin and BMP-2/Smad1/5/8 signaling pathways and suppresses RANKL-induced osteoclastogenesis and osteoclast activity. Thus, osthole may become a promising agent to protect against OP development. However, more studies should be performed due to, at least in part, the uncertainty of drug targets. Further pharmacological investigation of osthole in OP treatment might lead to the development of potential drug candidates.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou, China
| | - Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
10
|
Wu B, Zhu XF, Yang XQ, Wang WY, Lu JH. Effects of osthole on osteoporotic rats: a systematic review and meta-analysis. PHARMACEUTICAL BIOLOGY 2022; 60:1625-1634. [PMID: 35980123 PMCID: PMC9397480 DOI: 10.1080/13880209.2022.2110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Cnidium monnieri Cusson (Apiaceae) has been used in traditional Asian medicine for thousands of years. Recent studies showed its active compound, osthole, had a good effect on osteoporosis. But there was no comprehensive analysis. OBJECTIVE This meta-analysis evaluates the effects of osthole on osteoporotic rats and provides a basis for future clinical studies. METHODS Chinese and English language databases (e.g., PubMed, Web of Science, Cochrane Library, Google Scholar, Embase, China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform, Weipu Chinese Sci-tech periodical full-text database, and Chinese BioMedical Literature Database) were searched from their establishment to February 2021. The effects of osthole on bone mineral density, osteoclast proliferation, and bone metabolism markers were compared with the effects of control treatments. RESULTS To our knowledge, this is the first meta-analysis to evaluate osthole for the treatment of osteoporosis in rats. We included 13 randomized controlled studies conducted on osteoporotic rats. Osthole increased bone mineral density (standardized mean difference [SMD] = 3.08, 95% confidence interval [CI] = 2.08-4.09), the subgroup analysis showed that BMD significantly increased among rats in osthole <10 mg/kg/day and duration of osthole treatment >2 months. Osthole improved histomorphometric parameters and biomechanical parameters, also inhibited osteoclast proliferation and bone metabolism. CONCLUSIONS Osthole is an effective treatment for osteoporosis. It can promote bone formation and inhibit bone absorption.
Collapse
Affiliation(s)
- Bin Wu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiu-Fang Zhu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Qiang Yang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Yi Wang
- Department of Pneumology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Hua Lu
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Physicochemical and Anti-bacterial Properties of Novel Osthole-Menthol Eutectic System. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Sun J, Pan Y, Li X, Wang L, Liu M, Tu P, Wu C, Xiao J, Han Q, Da W, Ma Y, Guo Y. Quercetin Attenuates Osteoporosis in Orchiectomy Mice by Regulating Glucose and Lipid Metabolism via the GPRC6A/AMPK/mTOR Signaling Pathway. Front Endocrinol (Lausanne) 2022; 13:849544. [PMID: 35547008 PMCID: PMC9082363 DOI: 10.3389/fendo.2022.849544] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Quercetin, a flavonoid found in natural medicines, has shown a role in disease prevention and health promotion. Moreover, because of its recently identified contribution in regulating bone homeostasis, quercetin may be considered a promising agent for improving bone health. This study aimed to elucidate the role of quercetin in androgen deprivation therapy-induced osteoporosis in mice. C57BL/6 mice were subjected to orchiectomy, followed by quercetin treatment (75 and 150 mg/kg/d) for 8 weeks. Bone microstructure was then assessed by micro-computed tomography, and a three-point bending test was used to evaluate the biomechanical parameters. Hematoxylin and eosin (H&E) staining was used to examine the shape of the distal femur, gastrocnemius muscle, and liver. The balance motion ability in mice was evaluated by gait analysis, and changes in the gastrocnemius muscle were observed via Oil red O and Masson's staining. ELISA and biochemical analyses were used to assess markers of the bone, glucose, and lipid metabolism. Western blotting analyses of glucose and lipid metabolism-related protein expression was performed, and expression of the GPCR6A/AMPK/mTOR signaling pathway-related proteins was also assessed. After 8 weeks of quercetin intervention, quercetin-treated mice showed increased bone mass, bone strength, and improved bone microstructure. Additionally, gait analysis, including stride length and frequency, were significantly increased, whereas a reduction of the stride length and gait symmetry was observed. H&E staining of the gastrocnemius muscle showed that the cross-sectional area of the myofibers had increased significantly, suggesting that quercetin improves balance, motion ability, and muscle mass. Bone metabolism improvement was defined by a reduction of serum levels of insulin, triglycerides, total cholesterol, and low-density lipoprotein, whereas levels of insulin-like growth factor-1 and high-density lipoprotein were increased after quercetin treatment. Expression of proteins involved in glucose uptake was increased, whereas that of proteins involved in lipid production was decreased. Moreover, the GPRC6A and the phospho-AMPK/AMPK expression ratio was elevated in the liver and tibia tissues. In contrast, the phospho-mTOR/mTOR ratio was reduced in the quercetin group. Our findings indicate that quercetin can reduce the osteoporosis induced by testosterone deficiency, and its beneficial effects might be associated with the regulation of glucose metabolism and inhibition of lipid metabolism via the GPCR6A/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yalan Pan
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Li
- Department of Orthopedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jirimutu Xiao
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Qiuge Han
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Da
- Department of Orthopedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Weiwei Da, ; Yong Ma, ; Yang Guo,
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Weiwei Da, ; Yong Ma, ; Yang Guo,
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Weiwei Da, ; Yong Ma, ; Yang Guo,
| |
Collapse
|
13
|
Yin T, Wu J, Yuan J, Wang X. Therapeutic deep eutectic solvent based on osthole and paeonol: Preparation, characterization, and permeation behavior. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
15
|
Tavares SJS, Lima V. Bone anti-resorptive effects of coumarins on RANKL downstream cellular signaling: a systematic review of the literature. Fitoterapia 2021; 150:104842. [PMID: 33556550 DOI: 10.1016/j.fitote.2021.104842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Members of the botanical families Apiaceae/Umbelliferae, Asteraceae, Fabaceae/Leguminosae, and Thymelaeaceae are rich in coumarins and have traditionally been used as ethnomedicines in many regions including Europe, Asia, and South America. Coumarins are a class of secondary metabolites that are widely present in plants, fungi, and bacteria and exhibit several pharmacological, biochemical, and therapeutic effects. Recently, many plants rich in coumarins and their derivatives were found to affect bone metabolism. OBJECTIVE To review scientific literature describing the mechanisms of action of coumarins in osteoclastogenesis and bone resorption. MATERIALS AND METHODS For this systematic review, the PubMed, Scopus, and Periodical Capes databases and portals were searched. We included in vitro research articles published between 2010 and 2020 that evaluated coumarins using osteoclastogenic markers. RESULTS Coumarins have been reported to downregulate RANKL-RANK signaling and various downstream signaling pathways required for osteoclast development, such as NF-κB, MAPK, Akt, and Ca2+ signaling, as well as pathways downstream of the nuclear factor of activated T-cells (NFATc1), including tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), and matrix metalloproteinase 9 (MMP-9). CONCLUSIONS Coumarins primarily inhibit osteoclast differentiation and activation by modulating different intracellular signaling pathways; therefore, they could serve as potential candidates for controlled randomized clinical trials aimed at improving human bone health.
Collapse
Affiliation(s)
- Samia Jessica Silva Tavares
- School of Pharmacy, Nursing, and Dentistry, Federal University of Ceará, Fortaleza, Ceará 60430-355, Brazil.
| | - Vilma Lima
- School of Medicine, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará 60.430-275, Brazil.
| |
Collapse
|
16
|
Tang L, Xu M, Zhang L, Qu L, Liu X. Role of αVβ3 in Prostate Cancer: Metastasis Initiator and Important Therapeutic Target. Onco Targets Ther 2020; 13:7411-7422. [PMID: 32801764 PMCID: PMC7395689 DOI: 10.2147/ott.s258252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
In prostate cancer, distant organ metastasis is the leading cause of patient death. Although the mechanism of malignant tumor metastasis is unclear, studies have confirmed that integrin αVβ3 plays an important role in this process. In prostate cancer, αVβ3 mediates adhesion, invasion, immune escape and neovascularization through interactions with different ligands. Among these ligands and in addition to proteins that are directly related to tumor invasion, other proteins that contain the RGD structure could also bind to αVβ3 and cause a number of biological effects. In this article, we summarized the ligand and downstream proteins related to αVβ3-mediated prostate cancer metastasis as well as some diagnostic and therapeutic measures targeting αVβ3.
Collapse
Affiliation(s)
- Lin Tang
- College of Mathematics and Computer Science, Chifeng University, Chifeng, The Inner Mongol Autonomous Region 024005, People's Republic of China
| | - Meng Xu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, People's Republic of China.,R&D Department, Seekgene Technology Co., Ltd, Beijing 100000, People's Republic of China
| | - Long Zhang
- Department of Hepatobiliary Surgery, Yidu Central Hospital, Weifang, Shandong 262500, People's Republic of China
| | - Lin Qu
- Department of Orthopaedic Surgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, Liaoning 114000, People's Republic of China
| | - Xiaoyan Liu
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, People's Republic of China
| |
Collapse
|
17
|
Wang L, Zheng S, Huang G, Sun J, Pan Y, Si Y, Tu P, Xu G, Ma Y, Guo Y. Osthole-loaded N-octyl-O-sulfonyl chitosan micelles (NSC-OST) inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss in rats. J Cell Mol Med 2020; 24:4105-4117. [PMID: 32126148 PMCID: PMC7171421 DOI: 10.1111/jcmm.15064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Osthole (OST), a derivative of Fructus Cnidii, has been proved to have potential anti‐osteoporosis effects in our recent studies. However, its pharmacological effects are limited in the human body because of poor solubility and bioavailability. Under the guidance of the classical theory of Chinese medicine, Osthole‐loaded N‐octyl‐O‐sulfonyl chitosan micelles (NSC‐OST), which has not previously been reported in the literature, was synthesized in order to overcome the defects and obtain better efficacy. In this study, we found that NSC‐OST inhibited on the formation and resorption activity of osteoclasts through using a bone marrow macrophage (BMM)‐derived osteoclast culture system in vitro, rather than affecting the viability of cells. We also found that NSC‐OST inhibited osteoclast formation, hydroxyapatite resorption and RANKL‐induced osteoclast marker protein expression. In terms of mechanism, NSC‐OST suppressed the NFATc1 transcriptional activity and the activation of NF‐κB signalling pathway. In vivo, ovariectomized (OVX) rat models were established for further research. We found that NSC‐OST can attenuate bone loss in OVX rats through inhibiting osteoclastogenesis. Consistent with our hypothesis, NSC‐OST is more effective than OST in parts of the results. Taken together, our findings suggest that NSC‐OST can suppress RANKL‐induced osteoclastogenesis and prevents ovariectomy‐induced bone loss in rats and could be considered a safe and more effective anti‐osteoporosis drug than OST.
Collapse
Affiliation(s)
- Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyang Zheng
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guicheng Huang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,TCM Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Si
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengcheng Tu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guihua Xu
- TCM Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|