1
|
Wang X, Hu S, Ouyang S, Pan X, Fu Y, Chen X, Wu S. TsMS combined with EA promotes functional recovery and axonal regeneration via mediating the miR-539-5p/Sema3A/PlexinA1 signalling axis in sciatic nerve-injured rats. Neurosci Lett 2024; 824:137691. [PMID: 38373630 DOI: 10.1016/j.neulet.2024.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.
Collapse
Affiliation(s)
- Xianbin Wang
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China; Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shouxing Hu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuai Ouyang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xiao Pan
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Yingxue Fu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xingyu Chen
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuang Wu
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China; Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Fu SP, Wu XC, Yang RL, Zhao DZ, Cheng J, Qian H, Ao J, Zhang Q, Zhang T. The role and mechanisms of mesenchymal stem cells regulating macrophage plasticity in spinal cord injury. Biomed Pharmacother 2023; 168:115632. [PMID: 37806094 DOI: 10.1016/j.biopha.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response. Recently, Mesenchymal Stem Cells (MSCs) have shown significant therapeutic potential in tissue engineering and regenerative medicine due to their potential multidirectional differentiation and immunomodulatory properties. Accumulating evidence shows that MSCs can regulate the balance of M1/M2 macrophage polarization, suppress downstream inflammatory responses, facilitate tissue repair and regeneration, and improve the prognosis of SCI. This article briefly overviews the impact of macrophages and MSCs on SCI and repair. It discusses the mechanisms by which MSCs regulate macrophage plasticity, including paracrine action, release of exosomes and apoptotic bodies, and metabolic reprogramming. Additionally, the article summarizes the relevant signaling pathways of MSCs that regulate macrophage polarization.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Cheng
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Li SS, Wu JJ, Xing XX, Li YL, Ma J, Duan YJ, Zhang JP, Shan CL, Hua XY, Zheng MX, Xu JG. Focal ischemic stroke modifies microglia-derived exosomal miRNAs: potential role of mir-212-5p in neuronal protection and functional recovery. Biol Res 2023; 56:52. [PMID: 37789455 PMCID: PMC10548705 DOI: 10.1186/s40659-023-00458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Ischemic stroke is a severe type of stroke with high disability and mortality rates. In recent years, microglial exosome-derived miRNAs have been shown to be promising candidates for the treatment of ischemic brain injury and exert neuroprotective effects. Mechanisms underlying miRNA dysregulation in ischemic stroke are still being explored. Here, we aimed to verify whether miRNAs derived from exosomes exert effects on functional recovery. METHODS MiR-212-5p agomir was employed to upregulate miR-212-5p expression in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) as well as an oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Western blot analysis, qRT-PCR and immunofluorescence staining and other methods were applied to explore the underlying mechanisms of action of miR-212-5p. RESULTS The results of our study found that intervention with miR-212-5p agomir effectively decreased infarct volume and restored motor function in MCAO/R rats. Mechanistically, miR-212-5p agomir significantly reduced the expression of PlexinA2 (PLXNA2). Additionally, the results obtained in vitro were similar to those achieved in vivo. CONCLUSION In conclusion, the present study indicated that PLXNA2 may be a target gene of miR-212-5p, and miR-212-5p has great potential as a target for the treatment and diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiang-Xin Xing
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China
| | - Jie Ma
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yu-Jie Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.
| |
Collapse
|
4
|
Zhao Q, Su H, Jiang W, Luo H, Pan L, Liu Y, Yang C, Yin Y, Yu L, Tan B. IGF-1 Combined with OPN Promotes Neuronal Axon Growth in Vitro Through the IGF-1R/Akt/mTOR Signaling Pathway in Lipid Rafts. Neurochem Res 2023; 48:3190-3201. [PMID: 37395917 DOI: 10.1007/s11064-023-03971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
This study aims to investigate the effect of insulin-like growth factor 1 (IGF-1) combined with osteopontin (OPN) on the protein expression levels and growth of neuronal axons and its possible mechanism. In this study, IGF-1 combined with OPN promoted neuronal axon growth through the IGF-1R/Akt/mTOR signaling pathway in lipid rafts, and the effect was better than that of either agent alone. This effect was suppressed when given the mTOR inhibitor rapamycin or the lipid raft cholesterol extraction agent methyl-β-cyclodextrin (M-β-CD). Rapamycin could inhibit the expression of phosphorylated ribosomal S6 protein (p-S6) and phosphorylated protein kinase B (p-Akt) and limit axon growth. In addition to the above effects, M-β-CD significantly downregulated the expression of phosphorylated insulin-like growth factor 1 receptor (p-IR). To further investigate the changes in lipid rafts when stimulated by different recombinant proteins, membrane lipid rafts were isolated to observe the changes by western blot. The expression levels of insulin-like growth factor 1 receptor (IR) and P-IR in the IGF-1 combined with OPN group were the highest. When M-β-CD was administered to the lipid rafts of neurons, the enrichment of IR by IGF-1 combined with OPN was weakened, and the p-IR was decreased. Our study found that IGF-1 combined with OPN could promote axon growth by activating the IGF-1R/Akt/mTOR signaling pathway in neuronal lipid rafts.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Su
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wei Jiang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Haodong Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
You L, Deng Y, Li D, Lin Y, Wang Y. GLP-1 rescued gestational diabetes mellitus-induced suppression of fetal thalamus development. J Biochem Mol Toxicol 2023; 37:e23258. [PMID: 36424357 DOI: 10.1002/jbt.23258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Diabetes can be classified as type 1, type 2, and gestational diabetes mellitus (GDM). It has been reported that children born from mothers with GDM present motor impairment, however, underlying mechanisms of GDM-induce fetal neurological diseases remain unknown. In this study, NOD (nonobese diabetic) mice were used to construct the GDM model; after 2 weeks of gestation, thalamocortical axon development of fetal was evaluated by immunofluorescence. PCR of LRRC4C was used to confirm axon development of the thalamus cortex. RNA array was used to predict possible targets affected by GDM during fetal neurodevelopment. Western blot was used to investigate the underlying mechanism, PI3K inhibitor, and MAPK inhibitor was used to determine key pathway involved in this model, in vitro axonal growth was evaluated using neural stem cells, tactile sensory behavior of offspring was assessed to confirm neurological influence further. The result shown that maternal diabetes significantly suppressed axonal development of fetal thalamus cortex, PCR array of GDM fetal brain indicated that upregulation of GLP-1R compared with normal fetal, ELISA confirmed that GLP-1 level was decreased in GDM maternal serum compared with that of wild type pregnant mice. In vitro study observed enhanced axonal elongation after supplements of GLP-1 analog, GLP-1 analog PI3K-dependently active ROCK1 activity, IP injection of GLP-1 analog could partly reverse GDM-induced suppression of fetal thalamocortical axon development and improve tactile sensory behavior of GDM offspring. Our study provided a novel mechanism of GDM induced-neurological diseases and predicted GLP-1 as possible prevention supplement during gestation.
Collapse
Affiliation(s)
- Longfei You
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujie Deng
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- Interventional Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Kimura T, Horikoshi Y. MicroRNA-based targeting of the Rho/ROCK pathway in therapeutic strategies after spinal cord injury. Neural Regen Res 2023; 18:311-312. [PMID: 35900410 PMCID: PMC9396497 DOI: 10.4103/1673-5374.346480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Hong L, Jiang H, Liu M, Zhao G, Shi X, Tan H, Peng D, Wang L, Chen W, He L. Investigation of Naoluoxintong on the neural stem cells by facilitating proliferation and differentiation in vitro and on protecting neurons by up-regulating the expression of nestin in MCAO rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115684. [PMID: 36058480 DOI: 10.1016/j.jep.2022.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The classic traditional Chinese compound Naoluoxintong (NLXT) has been proven an effective remedy for ischemic stroke (IS). The protective effect of NLXT on neural stem cells (NSCs), however, remains unclear. AIM OF THE STUDY To investigate the protective effect of NLXT on NSCs in rats with middle cerebral artery occlusion (MCAO) and the effect of Nestin expression in vivo. MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: the sham-operated group, the MCAO model group and the NLXT group. The MCAO model in rats was established by modified Longa wire embolization method. The sham-operated group, the model group and the NLXT groups were divided into three subgroups according to the sampling time points of 1 d, 3 d and 7 d after successful model-making. Immunofluorescence staining, including bromodeoxyuridine (BrdU)/glial fibrillary acidic protein (GFAP), β-tubulinIII/GFAP, BrdU/doublecortin (DCX) and BrdU/neuronal nuclei (NeuN), was used to detect the proliferation and survival of NSCs in the hippocampal after drug administration. Protein expression of Nestin, DCX, GFAP and NeuN in the hippocampal was detected by Western blot (WB). RESULTS Immunofluorescence experiment of Nestin labeled: on the first day, a few Nestin-positive cells were found in the hippocampal DG area. Afterwards, the number of Nestin-labeled positive cells in the model group increased, while the number of cells in the sham group did not fluctuate significantly. The number of positive cells in each administration group increased more than that in the model and normal group. β-tubulin III/GFAP double-labeled: a small amount of double labeled cells was expressed in the normal group, and the number subsequently fluctuated little. In the model group, β-tubulin III/GFAP positive cells increased initially after acute ischemia, and gradually decreased afterwards. In the NLXT-treated group, β-Tubulin III positive cells were significantly increased on day 1, 3 and 7, while GFAP positive cells had little change. BrdU/DCX double-labeled: initially, a small number of BrdU/DCX-labeled positive cells were observed in the normal group and the model group, but there was no increasing trend over time. The positive cells in the NLXT group increased over time, and those in the seven-day group were significantly higher than those in the one-day and three-day groups. BrdU/NEUN double-labeled: in the normal group, BrdU/NEUN positive cells were enriched and distributed regularly. The number of positive cells in the model group was small and decreased gradually with time, and the decrease was most obvious on the third day. The number of positive cells in the NLXT group was significantly higher than that in the model group, and the number of positive cells in the seven-day group was significantly higher than that in the one-day and three-day groups. WB results reflected those three proteins, Nestin, NeuN and DCX, showed an increase in expression, except GFAP, which showed a decreasing trend. CONCLUSIONS Preliminarily, NLXT can promote the migration and differentiation of NSCs. It may have a protective effect on the brain by promoting repair of brain tissue damage through upregulation of Nestin after IS.
Collapse
Affiliation(s)
- Lu Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Huihui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Mingming Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guodong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xiaoqian Shi
- Department of Pharmacy, Huaibei People's Hospital, Hefei, Anhui, 235000, China
| | - Hui Tan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, 230012, China; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Ling He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, 230012, China; School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| |
Collapse
|
8
|
Hu R, Shi M, Xu H, Wu X, He K, Chen Y, Wu L, Ma R. Integrated bioinformatics analysis identifies the effects of Sema3A/NRP1 signaling in oligodendrocytes after spinal cord injury in rats. PeerJ 2022; 10:e13856. [PMID: 35990904 PMCID: PMC9390322 DOI: 10.7717/peerj.13856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Objective To investigate the effect of Sema3A/NRP1 signaling in oligodendrocytes (OLs) after spinal cord injury. Methods Three analysis strategies, namely differential expression gene analysis, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were applied. The protein-protein interaction (PPI) network was constructed using the STRING website to explore the correlation between Sema3A/NRP1 and oligodendrocytes. Then, the T10 spinal cord segment of rats was injured by the Allen method to establish a spinal cord injury (SCI) model. Real-time quantitative PCR, Western blotting, Nissl staining and immunofluorescence staining were used to detect the effect of Sema3A/NRP1 signaling on oligodendrocytes in vivo. Results After the SCI model was established, significantly fewer oligodendrocytes were observed. At the same time, R software was used to analyze the expression of related genes, and NRP1 expression was increased. PCR also demonstrated similar results, and NRP1 ligand Sema3A was also upregulated. KEGG and GO functional enrichment analysis indicated that the SCI model was mainly related to cytokine interaction, cell proliferation, differentiation and maturation. Interestingly, we found that NRP1 was involved in semaphorin-plexin signaling pathway neuronal projection guidance and axon guidance, mediating cell growth and migration. Moreover, Sema3A/NRP1 signaling was closely associated with platelet-derived growth factor receptor α (PDGFRα) in the PPI network. When Sema3A/NRP1 signaling was specifically blocked at early stages, PDGFRα expression was effectively inhibited, and the expression of OLs was promoted. Furthermore, inhibition of Sema3A/NRP1 signaling increased the Basso-Beattie-Bresnahan (BBB) score of lower limb motor function in SCI rats and promoted the survival of motor neurons in the ventral horn of the injured spinal cord. Conclusion Our data suggest that Sema3A/NRP1 signaling may regulate the development of OPCs and OLs after SCI, thereby affecting functional recovery.
Collapse
Affiliation(s)
- Rong Hu
- Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Third School of Clinical Medicine (School of Rehabilitation Medicine), HangZhou, China
| | - Mengting Shi
- Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Third School of Clinical Medicine (School of Rehabilitation Medicine), HangZhou, China
| | - Haipeng Xu
- Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Third School of Clinical Medicine (School of Rehabilitation Medicine), HangZhou, China
| | - Xingying Wu
- Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Third School of Clinical Medicine (School of Rehabilitation Medicine), HangZhou, China
| | - Kelin He
- Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Third School of Clinical Medicine (School of Rehabilitation Medicine), HangZhou, China,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), HangZhou, China
| | - Yi Chen
- Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Third School of Clinical Medicine (School of Rehabilitation Medicine), HangZhou, China
| | - Lei Wu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), HangZhou, China
| | - Ruijie Ma
- Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Third School of Clinical Medicine (School of Rehabilitation Medicine), HangZhou, China,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), HangZhou, China
| |
Collapse
|
9
|
Ma H, Duan X, Zhang R, Li H, Guo Y, Tian Y, Huang M, Chen G, Wang Z, Li L. Loureirin A Exerts Antikeloid Activity by Antagonizing the TGF- β1/Smad Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8661288. [PMID: 35873644 PMCID: PMC9307331 DOI: 10.1155/2022/8661288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
It has been recently shown that loureirin A (LA), a major active component of resina draconis, might be effective in the prevention and treatment of liver fibrosis. We examined whether LA could inhibit the formation of keloids. To investigate the pharmacological effects of loureirin A on keloid formation and the underlying mechanisms. CellTiter-Blue viability assays were used to examine the proliferation of keloid fibroblasts (KFs) that were treated with LA. Fibroblast migration was evaluated using a cell migration assay. Immunofluorescence staining was used to measure the expression of α-SMA in KFs. RT-qPCR was used to evaluate the mRNA expression of Col-I, Col-III, α-SMA, Bax, and Caspase-3, while Western blotting was used to evaluate the protein expression of Col-I, Col-III, α-SMA, Bax, Caspase-3, p-Smad2, and p-Smad3. LA inhibited the proliferation of KFs and suppressed the migration and TGF-β1-induced myofibroblast differentiation of KFs. In addition, LA downregulated the mRNA and protein levels of Col-I, Col-III, and α-SMA while promoting the mRNA and protein levels of Bax and Caspase-3. Moreover, LA downregulated the protein levels of p-Smad2 and p-Smad3 in cultured TGF-β1-treated KFs ex vivo. These results show that LA has an antikeloid effect on KFs by suppressing the TGF-β1/Smad signalling pathway. Our findings suggest that LA may be a potential candidate drug for the prevention and treatment of keloids.
Collapse
Affiliation(s)
- Hui Ma
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, 23 Back Street, Art Museum, Dongcheng District, Beijing 100010, China
| | - Xingwu Duan
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Runtian Zhang
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Hang Li
- Department of Dermatology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Yang Guo
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Ye Tian
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Min Huang
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Guangshan Chen
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Zi Wang
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| | - Lingling Li
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing 100700, China
| |
Collapse
|
10
|
MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells 2022; 11:cells11142177. [PMID: 35883621 PMCID: PMC9318426 DOI: 10.3390/cells11142177] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal cord injury (SCI) represents a devastating injury to the central nervous system (CNS) that is responsible for impaired mobility and sensory function in SCI patients. The hallmarks of SCI include neuroinflammation, axonal degeneration, neuronal loss, and reactive gliosis. Current strategies, including stem cell transplantation, have not led to successful clinical therapy. MiRNAs are crucial for the differentiation of neural cell types during CNS development, as well as for pathological processes after neural injury including SCI. This makes them ideal candidates for therapy in this condition. Indeed, several studies have demonstrated the involvement of miRNAs that are expressed differently in CNS injury. In this context, the purpose of the review is to provide an overview of the pre-clinical evidence evaluating the use of miRNA therapy in SCI. Specifically, we have focused our attention on miRNAs that are widely associated with neuronal and axon regeneration. “MiRNA replacement therapy” aims to transfer miRNAs to diseased cells and improve targeting efficacy in the cells, and this new therapeutic tool could provide a promising technique to promote SCI repair and reduce functional deficits.
Collapse
|
11
|
You D, Cohen JD, Pustovalova O, Lewis L, Shen L. OUP accepted manuscript. Toxicol Sci 2022; 186:221-241. [PMID: 35134991 PMCID: PMC8963304 DOI: 10.1093/toxsci/kfac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Jennifer D Cohen
- Jennifer D. Cohen, Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121-1964, USA. E-mail:
| | | | - Lauren Lewis
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Lei Shen
- Data Science Institute, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
12
|
Kimura T, Horikoshi Y, Kuriyagawa C, Niiyama Y. Rho/ROCK Pathway and Noncoding RNAs: Implications in Ischemic Stroke and Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222111573. [PMID: 34769004 PMCID: PMC8584200 DOI: 10.3390/ijms222111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of the RhoA/ROCK pathway contributes to neuronal apoptosis, neuroinflammation, blood-brain barrier dysfunction, astrogliosis, and axon growth inhibition in IS and SCI. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were previously considered to be non-functional. However, they have attracted much attention because they play an essential role in regulating gene expression in physiological and pathological conditions. There is growing evidence that ROCK inhibitors, such as fasudil and VX-210, can reduce injury in IS and SCI in animal models and clinical trials. Recently, it has been reported that miRNAs are decreased in IS and SCI, while lncRNAs are increased. Inhibiting the Rho/ROCK pathway with miRNAs alleviates apoptosis, neuroinflammation, oxidative stress, and axon growth inhibition in IS and SCI. Further studies are required to explore the significance of ncRNAs in IS and SCI and to establish new strategies for preventing and treating these devastating diseases.
Collapse
Affiliation(s)
- Tetsu Kimura
- Correspondence: ; Tel.: +81-18-884-6175; Fax: +81-18-884-6448
| | | | | | | |
Collapse
|
13
|
Wang X, Li B, Wang Z, Wang F, Liang J, Chen C, Zhao L, Zhou B, Guo X, Ren L, Yuan X, Chen X, Wang T. miR-30b Promotes spinal cord sensory function recovery via the Sema3A/NRP-1/PlexinA1/RhoA/ROCK Pathway. J Cell Mol Med 2020; 24:12285-12297. [PMID: 32977360 PMCID: PMC7686968 DOI: 10.1111/jcmm.15591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) induces both motor and sensory dysfunctions. We wondered whether miR-30b could promote primary sensory neuron (PSN) axon growth in inhibitory microenvironment. The neurite growth was promoted by miR-30b agomir and inhibited by antagomir. MiR-30b targeted and degraded sema3A mRNA. MiR-30b regulated the formation of sema3A-NRP-1-PlexinA1 complex via targeting sema3A. The neurite length was induced by the miR-30b agomir, and the application of sema3A protein could reverse the effect of agomir. GTP-RhoA and ROCK expression were down-regulated by miR-30b. Neurite outgrowth that inhibited by sema3A and the miR-30b antagomir was increased by Y-27632. Agomir promoted neurite growth in NogoA inhibitory conditions, which indicated miR-30b could both enhance neuronal intrinsic regenerative ability and promote neurite growth against inhibitory microenvironment via Sema3A/NRP-1/PlexinA1/RhoA/ROCK axis. The agomir could also regulate Sema3A/NRP-1/PlexinA1/RhoA/ROCK axis in vivo and restore spinal cord sensory conductive function. In conclusion, miR-30b could be a novel target for sensation recovery after SCI.
Collapse
Affiliation(s)
- Xin Wang
- Chengde Medical University, Chengde, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Fengyan Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Jing Liang
- Department of Nursing, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Chuanjie Chen
- Department of Orthopedics, Chengde Central Hospital, Chengde, China
| | - Lei Zhao
- Department of Education, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Bo Zhou
- Chengde Medical University, Chengde, China.,Department of Neurology, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Xiaoling Guo
- Department of Neurology, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| | - Liqun Ren
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical University, Chengde, China
| | - Xin Yuan
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xueming Chen
- Department of Spine Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, China
| |
Collapse
|