1
|
Lian H, Zhang Y, Zhu Z, Wan R, Wang Z, Yang K, Ma S, Wang Y, Xu K, Cheng L, Zhao W, Li Y, Wang L, Yu G. Fatty acid synthase inhibition alleviates lung fibrosis via β-catenin signal in fibroblasts. Life Sci Alliance 2025; 8:e202402805. [PMID: 39567194 PMCID: PMC11579593 DOI: 10.26508/lsa.202402805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and lethal interstitial lung disease with an unclear etiology and limited treatment options. Fatty acid synthase (FASN) plays various roles in metabolic-related diseases. This study demonstrates that FASN expression is increased in fibroblasts from the lung tissues of patients with idiopathic pulmonary fibrosis and in bleomycin-treated mice. In MRC-5 cells, the inhibition of FASN using shRNA or the pharmacological inhibitor C75 resulted in the increased mRNA and protein expression of glycogen synthase kinase 3β and Axin1, both negative regulators of the Wnt/β-catenin signaling pathway, and promoted autophagy. This outcome led to a decrease in β-catenin protein and mRNA levels, effectively inhibiting the proliferation, migration, and differentiation of lung fibroblasts into myofibroblasts, while inducing the differentiation of fibroblasts into adipofibroblasts. In vivo experiments showed that C75 alleviated bleomycin-induced lung fibrosis in mice by inhibiting β-catenin. In conclusion, these findings suggest that inhibiting FASN in fibroblasts may diminish the activity of the Wnt/β-catenin signaling pathway, providing a potential therapeutic avenue for pulmonary fibrosis.
Collapse
Affiliation(s)
- Hui Lian
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yujie Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Zhao Zhu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Zhixia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Kun Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Wenyu Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yajun Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
2
|
Minchenko OH, Khita OO, Krasnytska DA, Viletska YM, Rudnytska OV, Hnatiuk OS, Minchenko DO. Inhibition of ERN1 affects the expression of TGIF1 and other homeobox gene expressions in U87MG glioblastoma cells. Arch Biochem Biophys 2024; 758:110073. [PMID: 38914217 DOI: 10.1016/j.abb.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The ERN1 (endoplasmic reticulum to nucleus signaling 1) pathway plays an important role in the regulation of gene expression in glioblastoma, but molecular mechanism has not yet been fully elucidated. The aim of this study was to evaluate the relative relevance of ERN1 activity as a kinase in comparison to its endoribonuclease activity in the regulation of homeobox gene expression. METHODS Two sublines of U87MG glioblastoma cells with different ways of ERN1 inhibition were used: dnERN1 (overexpressed transgene without protein kinase and endoribonuclease) and dnrERN1 (overexpressed transgene with mutation in endoribonuclease). ERN1 suppression was also done using siRNA for ERN1. Silencing of XBP1 mRNA by specific siRNA was used for suppression of ERN1 endoribonuclease function mediated by XBP1s. The expression levels of homeobox genes and microRNAs were evaluated by qPCR. RESULTS The expression of TGIF1 and ZEB2 genes was downregulated in both types of glioblastoma cells with inhibition of ERN1 showing the ERN1 endoribonuclease-dependent mechanism of their regulation. However, the expression of PBX3 and PRPRX1 genes did not change significantly in dnrERN1 glioblastoma cells but was upregulated in dnERN1 cells indicating the dependence of these gene expressions on the ERN1 protein kinase. At the same time, the changes in PAX6 and PBXIP1 gene expressions introduced in glioblastoma cells by dnrERN1 and dnERN1 were different in direction and magnitude indicating the interaction of ERN1 protein kinase and endoribonuclease activities in regulation of these gene expressions. The impact of ERN1 and XBP1 silencing on the expression of studied homeobox genes is similar to that observed in dnERN1 and dnrERN1 glioblastoma cells, correspondingly. CONCLUSION The expression of TGIF1 and other homeobox genes is dependent on the ern1 signaling pathways by diverse mechanisms because inhibition of ERN1 endoribonuclease and both ERN1 enzymatic activities had dissimilar impacts on the expression of most studied genes showing that ERN1 protein kinase plays an important role in controlling homeobox gene expression associated with glioblastoma cell invasion.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Daria A Krasnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha V Rudnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana S Hnatiuk
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Zhao Y, Tang H, Xu J, Sun F, Zhao Y, Li Y. HNF4A-Bridging the Gap Between Intestinal Metaplasia and Gastric Cancer. Evol Bioinform Online 2024; 20:11769343241249017. [PMID: 38680615 PMCID: PMC11047246 DOI: 10.1177/11769343241249017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Background Intestinal metaplasia (IM) of gastric epithelium has traditionally been regarded as an irreversible stage in the process of the Correa cascade. Exploring the potential molecular mechanism of IM is significant for effective gastric cancer prevention. Methods The GSE78523 dataset, obtained from the Gene Expression Omnibus (GEO) database, was analyzed using RStudio software to identify the differently expressed genes (DEGs) between IM tissues and normal gastric epithelial tissues. Subsequently, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GESA), and protein-protein interaction (PPI) analysis were used to find potential genes. Additionally, the screened genes were analyzed for clinical, immunological, and genetic correlation aspects using single gene clinical correlation analysis (UALCAN), Tumor-Immune System Interactions Database (TISIDB), and validated through western blot experiments. Results Enrichment analysis showed that the lipid metabolic pathway was significantly associated with IM tissues and the apolipoprotein B (APOB) gene was identified in the subsequent analysis. Experiment results and correlation analysis showed that the expression of APOB was higher in IM tissues than in normal tissues. This elevated expression of APOB was also found to be associated with the expression levels of hepatocyte nuclear factor 4A (HNF4A) gene. HNF4A was also found to be associated with immune cell infiltration to gastric cancer and was linked to the prognosis of gastric cancer patients. Moreover, HNF4A was also highly expressed in both IM tissues and gastric cancer cells. Conclusion Our findings indicate that HNF4A regulates the microenvironment of lipid metabolism in IM tissues by targeting APOB. Higher expression of HNF4A tends to lead to a worse prognosis in gastric cancer patients implying it may serve as a predictive indicator for the progression from IM to gastric cancer.
Collapse
Affiliation(s)
| | | | - Jianhua Xu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feifei Sun
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Li
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Chi Z, Wang Q, Tong L, Qiu J, Yang F, Guo Q, Li W, Zheng J, Chen Z. Silencing geranylgeranyltransferase I inhibits the migration and invasion of salivary adenoid cystic carcinoma through RhoA/ROCK1/MLC signaling and suppresses proliferation through cell cycle regulation. Cell Biol Int 2024; 48:174-189. [PMID: 37853939 DOI: 10.1002/cbin.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.
Collapse
Affiliation(s)
- Zengpeng Chi
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Qimin Wang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Lei Tong
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jing Qiu
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Fang Yang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Qingyuan Guo
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Wenjian Li
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
5
|
Jaber MA, Hassan M, Ingafou M, Elameen AM. Adenoid Cystic Carcinoma of the Minor Salivary Glands: A Systematic Review and Meta-Analysis of Clinical Characteristics and Management Strategies. J Clin Med 2024; 13:267. [PMID: 38202273 PMCID: PMC10779762 DOI: 10.3390/jcm13010267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Intraoral adenoid cystic carcinoma (ACC) arising from minor salivary glands (MSG) is a rare malignancy associated with delayed diagnosis and unfavorable outcomes. This study aimed to comprehensively review ACC of MSGs, focusing on clinical characteristics, imaging modalities, treatment approaches, and long-term outcomes. METHODS A systematic search was conducted in PubMed, Web of Science, and MEDLINE databases to identify relevant articles reporting cases of ACC of MSGs between January 1997 and March 2023. The study was registered in PROSPERO (ID: CRD42023449478). A total of 10 studies that met the inclusion criteria were selected for critical review. In total, 902 patients were diagnosed with ACC of MSGs with an age range of 44.3 to 63 years, and an average age of 56.6 years. The female to male ratio ranges from 1:1 to 2.4:1. Regarding the primary site of ACC, the palate was the most common location, accounting for 30.5% to 83.3%, followed by the buccal mucosa, floor of the mouth, and lip and the retromolar area. For histology, the solid mass pattern was the most prevalent, seen in 95.2% of patients, followed by the cribriform pattern. Regarding treatment modalities, surgery was the most common approach, applied in 76.3% of cases, with a combination of surgery and radiotherapy used in 29.0% of cases. A smaller fraction, 3.2%, received a combination of surgery, chemotherapy, and radiotherapy, and 8.3% underwent radiotherapy alone. Local recurrence rates varied between 1% and 28.5%, and distant metastasis occurred in 18.2% to 33.3% of cases, predominantly to lymph nodes (14.5%). An analysis of overall survival across various stages and patient numbers indicated a 5-year survival rate of 68.0%. The findings of this study provide valuable insights for physicians in making treatment decisions and emphasize the need for ongoing research and collaborative clinical efforts to improve the management and outcomes of this challenging disease. CONCLUSION ACC of MSGs is a multifaceted condition typically manifesting as asymptomatic enlargement and ulceration. This disease is marked by distinct histopathological patterns and perineural invasion (PNI). Recognizing these distinctive aspects is key in shaping the treatment plan, which can range from surgical procedures to radiation therapy, chemotherapy, and evolving targeted treatments. Continuous research and collaborative clinical efforts remain critical for ongoing progress in the treatment and management of this challenging condition.
Collapse
Affiliation(s)
- Mohamed A. Jaber
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (M.H.); (M.I.)
- Center of Medical and Bio Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mawada Hassan
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (M.H.); (M.I.)
| | - Mohamed Ingafou
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (M.H.); (M.I.)
| | | |
Collapse
|
6
|
Wang J, Yang Z, Liu Y, Li H, Yang X, Gao W, Zhao Q, Yang X, Wei J. The GAL/GALR2 axis promotes the perineural invasion of salivary adenoid cystic carcinoma via epithelial-to-mesenchymal transition. Cancer Med 2023; 12:4496-4509. [PMID: 36039037 PMCID: PMC9972115 DOI: 10.1002/cam4.5181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Perineural invasion (PNI) is a typical pathological characteristic of salivary adenoid cystic carcinoma (SACC) and other neurotrophic cancers. The mechanism of the neural microenvironment controlling tumor progression during the PNI process is unclear. In the present study, we investigated the role and molecular mechanisms of nerve-derived neuropeptide galanin (GAL) and its receptor (GALR2) in the regulation of PNI in SACC. METHODS Immunohistochemistry staining and clinical association studies were performed to analyze the expression of GAL and GALR2 in SACC tissues and their clinical value. Dorsal root ganglion or SH-SY5Y cells were co-cultured with SACC cells in vitro to simulate the interactions between the neural microenvironment and tumor cells, and a series of assays including transcriptome sequencing, Western blot, and Transwell were performed to investigate the role and molecular mechanism of GAL and GALR2 in the regulation of SACC cells. Moreover, both the in vitro and in vivo PNI models were established to assess the potential PNI-specific therapeutic effects by blocking the GAL/GALR2 axis. RESULTS GAL and GALR2 were highly expressed in SACC tissues, and were associated with PNI and poor prognosis in SACC patients (p < 0.05). Nerve-derived GAL activated GALR2 expression in SACC cells and induced epithelial-to-mesenchymal transition (EMT) in SACC cells. Adding human recombinant GAL to the co-culture system promoted the proliferation, migration, and invasion of SACC cells significantly, but inhibited the apoptosis of SACC cells. Adding M871, a specific antagonist of GALR2, significantly blocked the above effects (p < 0.05) and inhibited the PNI of SACC cells in vitro and in vivo (p < 0.05). CONCLUSIONS This study demonstrated that nerve-derived GAL activated GALR2 expression, and promoted EMT in SACC cells, thereby enhancing the PNI process. Interruption of the GAL/GALR2 axis might be a novel strategy for anti-PNI therapy for SACC.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zihui Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yuanyang Liu
- Senior Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiangming Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Wanpeng Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Qi Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Saleh E, Ukwas A. Adenoid Cystic Carcinoma of Salivary Glands: A Ten-Year Review and an Assessment of the Current Management, Surgery, Radiotherapy, and Chemotherapy. Int J Otolaryngol 2023; 2023:7401458. [PMID: 37159817 PMCID: PMC10163974 DOI: 10.1155/2023/7401458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 05/11/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) is a rare cancer that arises from the salivary glands and other sites in the body, such as the lung and breast. Although the tumor accounts for 10% of all salivary gland malignancies, it only accounts for 1% of head and neck malignancies. It can affect both major and minor salivary glands; here, it is called salivary gland adenoid cystic carcinoma or SACC, with a slight predilection to the latter, and commonly manifests between the 6th and 7th decades of life. The disease also shows a slight female predilection, with a reported female to male ratio of 3 : 2. Lesions of SACC are often insidious and slow-growing, and symptoms such as pain and altered sensation are frequently associated with advanced stages of the disease. Salivary adenoid cystic carcinoma is characterized by perineural invasion (PNI), a distinctive feature that potentially plays a significant role in the tumor's relapse and recurrence, which is approximately 50%. The disease is not prevalent, and its etiopathogenesis is poorly understood, although several genetic patterns and biomarkers have been linked to its initiation and/or progression. The discovery of these mutations and biomarkers has encouraged several clinical studies to use therapeutic agents to target the specific receptors on the cancer cells to potentially prevent further proliferation of the tumor cells and metastasis of the disease. Diagnosis of SACC is often challenging and frequently requires a combination of clinical examination, imaging, and histopathology. Management of SACC is primarily surgical excision, while radiotherapy has shown to be effective in improving local control in cases with microscopic residual disease. However, treatment of recurrent or metastatic tumors by radiotherapy with or without chemotherapy has so far shown limited success. The aim of this thesis is to provide an update of literature on SACC with a particular focus on the latest management approaches and future trends.
Collapse
Affiliation(s)
- Eyad Saleh
- Eastman Dental Institute, University College London, London, UK
| | | |
Collapse
|
8
|
Ginsenosides in cancer: A focus on the regulation of cell metabolism. Biomed Pharmacother 2022; 156:113756. [DOI: 10.1016/j.biopha.2022.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
|
9
|
Chen P, Li S, Zhou Z, Wang X, Shi D, Li Z, Li X, Xiao Y. Liver fat metabolism of broilers regulated by Bacillus amyloliquefaciens TL via stimulating IGF-1 secretion and regulating the IGF signaling pathway. Front Microbiol 2022; 13:958112. [PMID: 35966703 PMCID: PMC9363834 DOI: 10.3389/fmicb.2022.958112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Bacillus amyloliquefaciens TL (B.A-TL) is well-known for its capability of promoting protein synthesis and lipid metabolism, in particular, the abdominal fat deposition in broilers. However, the underlying molecular mechanism remains unclear. In our study, the regulations of lipid metabolism of broilers by B.A-TL were explored both in vivo and in vitro. The metabolites of B.A-TL were used to simulate in vitro the effect of B.A-TL on liver metabolism based on the chicken hepatocellular carcinoma cell line (i.e., LMH cells). The effects of B.A-TL on lipid metabolism by regulating insulin/IGF signaling pathways were investigated by applying the signal pathway inhibitors in vitro. The results showed that the B.A-TL metabolites enhanced hepatic lipid synthesis and stimulated the secretion of IGF-1. The liver transcriptome analysis revealed the significantly upregulated expressions of four genes (SI, AMY2A, PCK1, and FASN) in the B.A-TL treatment group, mainly involved in carbohydrate digestion and absorption as well as biomacromolecule metabolism, with a particularly prominent effect on fatty acid synthase (FASN). Results of cellular assays showed that B.A-TL metabolites were involved in the insulin/IGF signaling pathway, regulating the expressions of lipid metabolism genes (e.g., FASN, ACCα, LPIN, and ACOX) and the FASN protein, ultimately regulating the lipid metabolism via the IGF/PI3K/FASN pathway in broilers.
Collapse
|
10
|
Yang R, Zhan Y, Li Y, Dai SY, He SW, Ye CJ, Meng LD, Chen DQ, Dong CB, Chen L, Chen G, Dong KR, Li K, Zheng S, Li J, Yao W, Dong R. The Cellular and Molecular Landscape of Synchronous Pediatric Sialoblastoma and Hepatoblastoma. Front Oncol 2022; 12:893206. [PMID: 35860547 PMCID: PMC9289541 DOI: 10.3389/fonc.2022.893206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Sialoblastoma (SBL) is an infrequent embryonal malignant tumor originating from the salivary gland, resembling primitive salivary gland anlage, whereas hepatoblastoma (HB) is the most common pediatric liver malignancy. The simultaneous occurrence of both tumors is extremely rare. Here we reported a case of a 6-month-old infant diagnosed with synchronous SBL and HB. The patient received neoadjuvant chemotherapy followed by surgical resection. Fresh tissues of both tumors were collected before and after chemotherapy, which were further profiled by whole exome sequencing (WES) and single-cell RNA sequencing (scRNA-seq). WES analysis revealed potential somatic driver mutation PIK3CA p.Glu454Lys for SBL and canonical mutation CTNNB1 p.Ser45Pro for HB. No shared somatic variants or common copy number alterations were found between SBL and HB primary tumor samples. Though scRNA-seq, single-cell atlases were constructed for both tumors. SBL may recapitulate a pre-acinar stage in the development of salivary gland, including basaloid, duct-like, myoepithelial-like, and cycling phenotypes. In the meantime, HB was composed of tumor cells resembling different stages of the liver, including hepatocyte-like, hepatic progenitor-like, and hepatoblast-like cells. After chemotherapy, both tumors were induced into a more mature phenotype. In terms of transcriptional signatures, SBL and HB showed enhanced expression of epithelial markers KRT8, KRT18, and essential embryo development genes SDC1, MDK, indicating the disruption of normal embryo epithelium development. Finally, heterozygous deleterious germline mutation BLM and FANCI were identified which could predispose the patient to higher cancer risk. It partially explained the reason for the co-occurrence of SBL and HB. Taken together, we provided valuable resources for deciphering cellular heterogeneity and adaptive change of tumor cells after chemotherapy for synchronous SBL and HB, providing insights into the mechanisms leading to synchronous pediatric tumors.
Collapse
Affiliation(s)
- Ran Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shu-Yang Dai
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shi-Wei He
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Chun-Jing Ye
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Ling-Du Meng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - De-Qian Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Chen-Bin Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Lian Chen
- Department of Pathology, Children’s Hospital of Fudan University, Shanghai, China
| | - Gong Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kai Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Jun Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| | - Wei Yao
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- *Correspondence: Rui Dong, ; Wei Yao, ; Jun Li,
| |
Collapse
|
11
|
Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis. Front Med 2021; 15:649-656. [PMID: 33973101 DOI: 10.1007/s11684-021-0830-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Tumorigenesis involves metabolic reprogramming and abnormal lipid metabolism, which is manifested by increased endogenous fat mobilization, hypertriglyceridemia, and increased fatty acid synthesis. Fatty acid synthase (FASN) is a key enzyme for the de novo synthesis of fatty acids, and monoacylglycerol esterase (MGLL) is an important metabolic enzyme that converts triglycerides into free fatty acids. Both enzymes play an important role in lipid metabolism and are associated with tumor-related signaling pathways, the most common of which is the PI3K-AKT signaling pathway. They can also regulate the immune microenvironment, participate in epithelial-mesenchymal transition, and then regulate tumor invasion and metastasis. Current literature have shown that these two genes are abnormally expressed in many types of tumors and are highly correlated with tumor migration and invasion. This article introduces the structures and functions of FASN and MGLL, their relationship with abnormal lipid metabolism, and the mechanism of the regulation of tumor invasion and metastasis and reviews the research progress of the relationship of FASN and MGLL with tumor invasion and metastasis.
Collapse
|
12
|
Zhang WL, Wang SS, Jiang YP, Liu Y, Yu XH, Wu JB, Wang K, Pang X, Liao P, Liang XH, Tang YL. Fatty acid synthase contributes to epithelial-mesenchymal transition and invasion of salivary adenoid cystic carcinoma through PRRX1/Wnt/β-catenin pathway. J Cell Mol Med 2020; 24:11465-11476. [PMID: 32820613 PMCID: PMC7576276 DOI: 10.1111/jcmm.15760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
Fatty acid synthase (FASN) has been shown to be selectively up‐regulated in cancer cells to drive the development of cancer. However, the role and associated mechanism of FASN in regulating the malignant progression of salivary adenoid cystic carcinoma (SACC) still remains unclear. In this study, we demonstrated that FASN inhibition attenuated invasion, metastasis and EMT of SACC cells as well as the expression ofPRRX1, ZEB1, Twist, Slug and Snail, among which the level of PRRX1 changed the most obviously. Overexpression of PRRX1 restored migration and invasion in FASN knockdown cells, indicating that PRRX1 is an important downstream target of FASN signalling. Levels of cyclin D1 and c‐Myc, targets of Wnt/β‐catenin pathway, were significantly decreased by FASN silencing and restored by PRRX1 overexpression. In addition, FASN expression was positively associated with metastasis and poor prognosis of SACC patients as well as with the expression of PRRX1, cyclin D1 and c‐Myc in SACC tissues. Our findings revealed that FASN in SACC progression may induce EMT in a PRRX1/Wnt/β‐catenin dependent manner.
Collapse
Affiliation(s)
- Wei-Long Zhang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Sha-Sha Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ping Jiang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China.,Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiang-Hua Yu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jing-Biao Wu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ke Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin Pang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Peng Liao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin-Hua Liang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ling Tang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| |
Collapse
|