1
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Bermúdez M, Martínez-Barajas MG, Bueno-Urquiza LJ, López-Gutiérrez JA, Villegas-Mercado CE, López-Camarillo C. Role of MicroRNA-204 in Regulating the Hallmarks of Breast Cancer: An Update. Cancers (Basel) 2024; 16:2814. [PMID: 39199587 PMCID: PMC11352763 DOI: 10.3390/cancers16162814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
microRNA-204-5p (miR-204) is a small noncoding RNA with diverse regulatory roles in breast cancer (BC) development and progression. miR-204 is implicated in the instauration of fundamental traits acquired during the multistep development of BC, known as the hallmarks of cancer. It may act as a potent tumor suppressor by inhibiting key cellular processes like angiogenesis, vasculogenic mimicry, invasion, migration, and metastasis. It achieves this by targeting multiple master genes involved in these processes, including HIF-1α, β-catenin, VEGFA, TGFBR2, FAK, FOXA1, among others. Additionally, miR-204 modulates signaling pathways like PI3K/AKT and interacts with HOTAIR and DSCAM-AS1 lncRNAs, further influencing tumor progression. Beyond its direct effects on tumor cells, miR-204 shapes the tumor microenvironment by regulating immune cell infiltration, suppressing pro-tumorigenic cytokine production, and potentially influencing immunotherapy response. Moreover, miR-204 plays a crucial role in metabolic reprogramming by directly suppressing metabolic genes within tumor cells, indirectly affecting metabolism through exosome signaling, and remodeling metabolic flux within the tumor microenvironment. This review aims to present an update on the current knowledge regarding the role of miR-204 in the hallmarks of BC. In conclusion, miR-204 is a potential therapeutic target and prognostic marker in BC, emphasizing the need for further research to fully elucidate its complex roles in orchestrating aggressive BC behavior.
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico;
| | | | - Lesly Jazmín Bueno-Urquiza
- University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (M.G.M.-B.); (L.J.B.-U.)
| | - Jorge Armando López-Gutiérrez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Mexico;
| | | | - César López-Camarillo
- Genomic Sciences Program, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico
| |
Collapse
|
3
|
Ali A, Mahla SB, Reza V, Hossein A, Bahareh K, Mohammad H, Fatemeh S, Mostafa AB, Leili R. MicroRNAs: Potential prognostic and theranostic biomarkers in chronic lymphocytic leukemia. EJHAEM 2024; 5:191-205. [PMID: 38406506 PMCID: PMC10887358 DOI: 10.1002/jha2.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Small noncoding ribonucleic acids called microRNAs coordinate numerous critical physiological and biological processes such as cell division, proliferation, and death. These regulatory molecules interfere with the function of many genes by binding the 3'-UTR region of target mRNAs to inhibit their translation or even degrade them. Given that a large proportion of miRNAs behave as either tumor suppressors or oncogenes, any genetic or epigenetic aberration changeing their structure and/or function could initiate tumor formation and development. An example of such cancers is chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in Western nations, which is caused by unregulated growth and buildup of defective cells in the peripheral blood and lymphoid organs. Genetic alterations at cellular and molecular levels play an important role in the occurrence and development of CLL. In this vein, it was noted that the development of this disease is noticeably affected by changes in the expression and function of miRNAs. Many studies on miRNAs have shown that these molecules are pivotal in the prognosis of different cancers, including CLL, and their epigenetic alterations (e.g., methylation) can predict disease progression and response to treatment. Furthermore, miRNAs are involved in the development of drug resistance in CLL, and targeting these molecules can be considered a new therapeutic approach for the treatment of this disease. MiRNA screening can offer important information on the etiology and development of CLL. Considering the importance of miRNAs in gene expression regulation, their application in the diagnosis, prognosis, and treatment of CLL is reviewed in this paper.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sattarzadeh Bardsiri Mahla
- Stem Cells and Regenerative Medicine Innovation CenterKerman University of Medical SciencesKermanIran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Vahidi Reza
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Arezoomand Hossein
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Kashani Bahareh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Hosseininaveh Mohammad
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sharifi Fatemeh
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Amopour Bahnamiry Mostafa
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Rouhi Leili
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
4
|
Van Branteghem C, Augenlicht A, Demetter P, Craciun L, Maenhaut C. Unraveling the Roles of miR-204-5p and HMGA2 in Papillary Thyroid Cancer Tumorigenesis. Int J Mol Sci 2023; 24:10764. [PMID: 37445942 PMCID: PMC10341554 DOI: 10.3390/ijms241310764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignant tumor with an increasing incidence rate. Although differentiated types of thyroid cancer generally present good clinical outcomes, some dedifferentiate into aggressive and lethal forms. However, the molecular mechanisms governing aggressiveness and dedifferentiation are still poorly understood. Aberrant expression of miRNAs is often correlated to tumor development, and miR-204-5p has previously been identified in papillary thyroid carcinoma as downregulated and associated with aggressiveness. This study aimed to explore its role in thyroid tumorigenesis. To address this, gain-of-function experiments were performed by transiently transfecting miR-204-5p in thyroid cancer cell lines. Then, the clinical relevance of our data was evaluated in vivo. We prove that this miRNA inhibits cell invasion by regulating several targets associated with an epithelial-mesenchymal transition, such as SNAI2, TGFBR2, SOX4 and HMGA2. HMGA2 expression is regulated by the MAPK pathway but not by the PI3K, IGF1R or TGFβ pathways, and the inhibition of cell invasion by miR-204-5p involves direct binding and repression of HMGA2. Finally, we confirmed in vivo the relationship between miR-204-5p and HMGA2 in human PTC and a corresponding mouse model. Our data suggest that HMGA2 inhibition offers promising perspectives for thyroid cancer treatment.
Collapse
Affiliation(s)
- Cindy Van Branteghem
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, 1070 Brussels, Belgium; (C.V.B.); (A.A.)
| | - Alice Augenlicht
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, 1070 Brussels, Belgium; (C.V.B.); (A.A.)
| | - Pieter Demetter
- Anatomie Pathologique, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, 1070 Brussels, Belgium; (P.D.); (L.C.)
| | - Ligia Craciun
- Anatomie Pathologique, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, 1070 Brussels, Belgium; (P.D.); (L.C.)
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, 1070 Brussels, Belgium; (C.V.B.); (A.A.)
| |
Collapse
|
5
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
6
|
Lin C, Xie Y, Huang W, Lin D, Lin L. 5-Aza-dC promotes T-cell acute lymphoblastic leukemia cell invasion via downregulation of DNMT1 and upregulation of MMP-2 and MMP-9. Exp Hematol 2022; 114:43-53.e2. [PMID: 35908628 DOI: 10.1016/j.exphem.2022.07.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
5-Aza-2'-deoxycytidine (5-Aza-dC) is a demethylation agent known to deplete DNA methyltransferases (DNMTs) in leukemia cancer cells, and can restore the expression of their target genes in Jurkat cells. The goal of this study was to discern the potential effect of 5-Aza-dC on the invasion of T-ALL cells in acute lymphoblastic leukemia (ALL). The role of matrix metallopeptidase (MMP)-2, MMP-9, and DNMT1 in cell invasion was determined using loss- and gain-of-function investigations in Jurkat- and Sup-T1-R cells. A nude mouse model of ALL was established for further exploration of their roles in vivo. MMP-2 and MMP-9 exhibited high expression and low DNA methylation levels in 5-Aza-dC-resistant T-ALL cells. DNMT1 was poorly expressed in 5-Aza-dC-resistant T-ALL cells and exhibited decreased enrichment in the promoter region of MMP-2 and MMP-9. Silencing of MMP-2 and MMP-9 or DNMT1 overexpression reduced T-ALL cell invasion. After treatment of Sup-T1 cells with 5-Aza-dC, MMP-2 and MMP-9 presented with reduced DNA methylation levels but increased expression, and DNMT1 expression was identified to be suppressed. Further, in vivo assays revealed that DNMT1 alleviated T-ALL by reducing the expression of MMP-2 and MMP-9 in vivo. All in all, 5-Aza-dC activates MMP-2 and MMP-9 expression by reducing DNMT1-dependent DNA methylation levels and, hence, promotes the invasion of T-ALL cells.
Collapse
Affiliation(s)
- Congmeng Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yongxin Xie
- Department of Hematology, Second Hospital of Longyan, Longyan, China
| | - Wenwen Huang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China.
| | - Dayi Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|
7
|
Pulcrano S, De Gregorio R, De Sanctis C, Lahti L, Perrone-Capano C, Ponti D, di Porzio U, Perlmann T, Caiazzo M, Volpicelli F, Bellenchi GC. Lmx1a-Dependent Activation of miR-204/211 Controls the Timing of Nurr1-Mediated Dopaminergic Differentiation. Int J Mol Sci 2022; 23:6961. [PMID: 35805964 PMCID: PMC9266978 DOI: 10.3390/ijms23136961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211. Using published transcriptomic data, we found a significant enrichment of miR-204/211 target genes in midbrain dopaminergic neurons where Lmx1a was selectively deleted at embryonic stages. We further demonstrated that miR-204/211 controls the timing of the DA differentiation by directly downregulating the expression of Nurr1, a late DA differentiation master gene. Thus, our data indicate the Lmx1a-miR-204/211-Nurr1 axis as a key component in the cascade of events that ultimately lead to mature midbrain dopaminergic neurons differentiation and point to miR-204/211 as the molecular switch regulating the timing of Nurr1 expression.
Collapse
Affiliation(s)
- Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Roberto De Gregorio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Laura Lahti
- The Ludwig Institute, Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden; (L.L.); (T.P.)
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, 040100 Latina, Italy;
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Thomas Perlmann
- The Ludwig Institute, Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden; (L.L.); (T.P.)
| | - Massimiliano Caiazzo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
8
|
Luo C, Li JJ, Wen F, Cao YX, Luo ZY, Long XX. CircFBXW7 inhibits the tumorigenesis of T-cell acute lymphoblastic leukemia through modulating miR-494-3p/SOX1 axis. Cell Death Dis 2022; 8:256. [PMID: 35538053 PMCID: PMC9091256 DOI: 10.1038/s41420-022-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a type of leukemia with high malignant behaviors, which seriously threatens the health of people. It has been reported that circFBXW7 is downregulated in lymphoblastic leukemia. Nevertheless, the exact role of circFBXW7 in T-ALL remains elusive. MTT assay was used to assess the cell viability. Cell apoptosis was assessed by flow cytometry. In addition, mRNA expressions were assessed by RT-qPCR, and a western blot was applied to investigate the protein levels. Meanwhile, the correlation among circFBXW7, miR-494-3p, and SOX1 was explored by RNA pull-down and dual-luciferase reporter assays. Furthermore, a xenograft mice model was conducted to verify the function of circFBXW7 in T-ALL in vivo. CircFBXW7 was significantly downregulated in T-ALL, of which overexpression inhibited the cell viability and induced the apoptosis of Jurkat cells. Moreover, miR-494-3p was identified to be a functional downstream effector to be involved in circFBXW7-mediated T-ALL cell proliferation. Besides, SOX1 was a direct target of miR-494-3p, and the impact of miR-494-3p mimics on T-ALL cell growth was inhibited in the presence of SOX1 overexpression. Furthermore, overexpression of circFBXW7 dramatically inhibited T-ALL tumor growth. In summary, circFBXW7 attenuated the tumorigenesis of T-ALL through the mediation of the miR-494-3p/SOX1 axis, which might be novel targets for T-ALL treatment.
Collapse
Affiliation(s)
- Cong Luo
- Department of Hematology, the First Affiliated Hospital, Hengyang Medical school, University of South China, Hengyang421001, Hengyang, Hunan Province, China
| | - Jun-Jun Li
- Department of Hematology, the First Affiliated Hospital, Hengyang Medical school, University of South China, Hengyang421001, Hengyang, Hunan Province, China
| | - Feng Wen
- Department of Hematology, the First Affiliated Hospital, Hengyang Medical school, University of South China, Hengyang421001, Hengyang, Hunan Province, China
| | - Yi-Xiong Cao
- Department of Hematology, the First Affiliated Hospital, Hengyang Medical school, University of South China, Hengyang421001, Hengyang, Hunan Province, China
| | - Ze-Yu Luo
- Department of Hematology, the First Affiliated Hospital, Hengyang Medical school, University of South China, Hengyang421001, Hengyang, Hunan Province, China
| | - Xing-Xing Long
- Department of Hematology, the First Affiliated Hospital, Hengyang Medical school, University of South China, Hengyang421001, Hengyang, Hunan Province, China.
| |
Collapse
|
9
|
Sbirkov Y, Vergov B, Mehterov N, Sarafian V. miRNAs in Lymphocytic Leukaemias-The miRror of Drug Resistance. Int J Mol Sci 2022; 23:ijms23094657. [PMID: 35563051 PMCID: PMC9103677 DOI: 10.3390/ijms23094657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Refractory disease and relapse remain the main causes of cancer therapy failure. Refined risk stratification, treatment regimens and improved early diagnosis and detection of minimal residual disease have increased cure rates in malignancies like childhood acute lymphoblastic leukaemia (ALL) to 90%. Nevertheless, overall survival in the context of drug resistance remains poor. The regulatory role of micro RNAs (miRNAs) in cell differentiation, homeostasis and tumorigenesis has been under extensive investigation in different cancers. There is accumulating data demonstrating the significance of miRNAs for therapy outcomes in lymphoid malignancies and some direct demonstrations of the interplay between these small molecules and drug response. Here, we summarise miRNAs' impact on chemotherapy resistance in adult and paediatric ALL and chronic lymphocytic leukaemia (CLL). The main focus of this review is on the modulation of particular signaling pathways like PI3K-AKT, transcription factors such as NF-κB, and apoptotic mediators, all of which are bona fide and pivotal elements orchestrating the survival of malignant lymphocytic cells. Finally, we discuss the attractive strategy of using mimics, antimiRs and other molecular approaches pointing at miRNAs as promising therapeutic targets. Such novel strategies to circumvent ALL and CLL resistance networks may potentially improve patients' responses and survival rates.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| | - Bozhidar Vergov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| |
Collapse
|
10
|
Xia J, Wang M, Zhu Y, Bu C, Li T. Differential mRNA and long noncoding RNA expression profiles in pediatric B-cell acute lymphoblastic leukemia patients. BMC Pediatr 2022; 22:10. [PMID: 34980027 PMCID: PMC8722040 DOI: 10.1186/s12887-021-03073-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides (nt) that are involved in the pathogenesis and development of various cancers including B cell acute lymphoblastic leukemia (B-ALL). To determine the potential roles of lncRNAs involved in pathogenesis of B-ALL, we analyzed the expression profile of lncRNAs and mRNAs in B-ALL, respectively, and constructed lncRNAs/mRNAs interaction network. METHODS We performed RNA sequencing of 10 non-leukemic blood disease donors and 10 B-ALL patients for Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Interactions among mRNAs were predicted using the STRING database. Quantitative real time PCR (qRT-PCR) was performed to verify the RNA-seq data of lncRNAs and mRNAs. Potential functions of subtype-specific lncRNAs were determined by using coexpression-based analysis on distally (trans-pattern) located protein-coding genes. RESULTS A total of 1813 differentially expressed transcripts (DETs) and 2203 lncRNAs were identified. Moreover, 10 dysregulated lncRNAs and 10 mRNAs were randomly selected, and further assessed by RT-qPCR in vitro. Go and KEGG analysis demonstrated that the differentially expressed mRNAs were most closely associated with myeloid leukocyte activation and in transcriptional misregulation in cancer, respectively. In addition, co-expression analysis demonstrated that these lncRNAs, including MSTRG.27994.3, MSTRG.21740.1, ENST00000456341, MSTRG.14224.1 and MSTRG.20153.1, may mediate the pathogenesis and development of B-ALL via lncRNA-mRNA network interactions. CONCLUSIONS These results showed that several mRNAs and lncRNAs are aberrantly expressed in the bone marrow of B-ALL patients and play potential roles in B-ALL development, and be useful for diagnostic and/or prognostic purposes in pediatric B-ALL. DATA AVAILABILITY The datasets used during our study are available through HARVARD Dataverse Persistent ID doi: https://doi.org/10.7910/DVN/LK9T4Z .
Collapse
Affiliation(s)
- Jing Xia
- Department of Pediatric Laboratory, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Mengjie Wang
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Yi Zhu
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Chaozhi Bu
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, China.
| | - Tianyu Li
- Department of hematology & oncology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
11
|
Lin C, Chen D, Xiao T, Lin D, Lin D, Lin L, Zhu H, Xu J, Huang W, Yang T. DNA methylation-mediated silencing of microRNA-204 enhances T cell acute lymphoblastic leukemia by up-regulating MMP-2 and MMP-9 via NF-κB. J Cell Mol Med 2021; 25:2365-2376. [PMID: 33566449 PMCID: PMC7933971 DOI: 10.1111/jcmm.15896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023] Open
Abstract
T cell acute lymphoblastic leukaemia (T‐ALL) is a highly aggressive haematological cancer of the bone marrow. The abnormal expression of microRNAs (miRNAs) is reportedly involved in T‐ALL development and progression. Thus, we aimed to decipher the involvement of miR‐204 silencing mediated by DNA methylation in the occurrence of T cell acute lymphoblastic leukaemia (T‐ALL). miR‐204 expression was determined in bone marrow and peripheral blood samples from T‐ALL patients by real‐time quantitative PCR (RT‐qPCR) with its effect on cell proliferation evaluated by functional assays. In addition, bisulphite sequencing PCR was employed to detect the DNA methylation level of the miR‐204 promoter region, and the binding site between miR‐204 and IRAK1 was detected by luciferase assay. We found that miR‐204 was down‐regulated in T cells of T‐ALL patients, which was caused by the increased DNA methylation in the promoter region of miR‐204. Moreover, overexpression of miR‐204 inhibited T‐ALL cell proliferation while enhancing their apoptosis through interleukin receptor‐associated kinase 1 (IRAK1), which enhanced the expression of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 through activation of p‐p65. Thus, miR‐204 modulated MMP‐2 and MMP‐9 through IRAK1/NF‐κB signalling pathway, which was confirmed by in vivo assay. Taken together, DNA methylation‐mediated miR‐204 silencing increased the transcription of IRAK1, thus activating the NF‐κB signalling pathway and up‐regulating the downstream targets MMP‐2/MMP‐9.
Collapse
Affiliation(s)
- Congmeng Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Dabing Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tingting Xiao
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dandan Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China.,Minxi Vocational & Technical College, Longyan, China
| | - Dayi Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Haojie Zhu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingjing Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenwen Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|