1
|
Uttam V, Rana MK, Sharma U, Singh K, Jain A. Circulating long non-coding RNA EWSAT1 acts as a liquid biopsy marker for esophageal squamous cell carcinoma: A pilot study. Noncoding RNA Res 2024; 9:1-11. [PMID: 38028735 PMCID: PMC10679462 DOI: 10.1016/j.ncrna.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The widespread public health problem of esophageal squamous cell carcinoma (ESCC) is the cause of an increasing number of deaths each year due to delayed diagnosis. Therefore, we require specific and sensitive new biomarkers to manage ESCC better. The detection of diseases, such as cancer, can now be achieved through non-invasive circulating blood-based methods. Blood-based circulating non-coding RNAs, such as miRNA and lncRNA, have been extensively used as valuable markers for lung, esophageal, and breast cancer diagnostic purposes, as quoted in our previous research. Herein, we investigated the role of novel long non-coding RNA EWSAT1 as a blood-based liquid biopsy biomarker for the ESCC. Our findings indicate that EWSAT1 lncRNA has an increased tumor suppressive activity in ESCC, as it reduces by ∼2.59-fold relative to healthy controls. Moreover, we established that EWSAT1 expression can significantly distinguish between clinicopathological characteristics, including age, gender, and lifestyle choices such as smoking, alcohol consumption, and drinking hot beverages among patients with ESCC and healthy individuals. In addition, the expression levels of lncRNA EWSAT1 could distinguish between individuals with more advanced ESCC cancer and those without it, as illustrated by the ROC curve (AUC = 0.7174, 95 % confidence intervals = 0.5901 to 0.8448, p-value = 0.001). Our in-silico prediction methods demonstrated that miR-873-5p is the direct target of EWSAT1, which competes with the tumor suppressor candidate 3 (TUSC3) and EGL-9 family hypoxia-inducible factor 3 (EGLN3) mRNAs through a sponging mechanism, creating the EWSAT1/miR-873-5p/mRNA axis. We have analyzed the role of EWSAT1 in various cellular processes and signaling pathways, including mTOR, Wnt, and MAPK signaling pathways. Circulating EWSAT1 can be used as a liquid biopsy marker for diagnosis of ESCC and has the potential to serve as an effective therapeutic biomarker, according to this pilot study.
Collapse
Affiliation(s)
- Vivek Uttam
- Department of Zoology, Central University of Punjab, Ghudda, 151401, Bathinda, Punjab, India
| | - Manjit Kaur Rana
- Department of Pathology/Laboratory Medicine, All India Institute of Medical Sciences, 151001, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Ghudda, 151401, Bathinda, Punjab, India
| | - Karuna Singh
- Department of Radiotherapy, Advanced Cancer Institute, 151001, Bathinda, Affiliated with Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
2
|
Zhang X, Feng N, Wu B, Guo Z, Pan T, Tao X, Zheng H, Zhang W. Prognostic value and immune landscapes of cuproptosis-related lncRNAs in esophageal squamous cell carcinoma. Aging (Albany NY) 2023; 15:10473-10500. [PMID: 37812189 PMCID: PMC10599721 DOI: 10.18632/aging.205089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Precisely forecasting the prognosis of esophageal squamous cell carcinoma (ESCC) patients is a formidable challenge. Cuproptosis has been implicated in ESCC pathogenesis; however, the prognostic value of cuproptosis-associated long noncoding RNAs (CuRLs) in ESCC is unclear. METHODS Transcriptomic and clinical data related to ESCC were sourced from The Cancer Genome Atlas (TCGA). Using coexpression and Cox regression analysis to identify prognostically significant CuRLs, a prognostic signature was created. Nomogram models were established by incorporating the risk score and clinical characteristics. Tumor Immune Dysfunction and Rejection (TIDE) scores were derived by conducting an immune landscape analysis and evaluating the tumor mutational burden (TMB). Drug sensitivity analysis was performed to explore the underlying molecular mechanisms and guide clinical dosing. RESULTS Our risk score based on 5 CuRLs accurately predicted poorer prognosis in high-risk ESCC patients across almost all subgroups. The nomogram that included the risk score provided more precise prognostic predictions. Immune pathways, such as the B-cell receptor signaling pathway, were enriched in the datasets from high-risk patients. High TMB in high-risk patients indicated a relatively poor prognosis. High-risk patients with lower TIDE scores were found to benefit more from immunotherapy. High-risk patients exhibited greater responsiveness to Nilotinib, BI-2536, P22077, Zoledronate, and Fulvestrant, as revealed by drug sensitivity analysis. Real-time PCR validation demonstrated significant differential expression of four CuRLs between ESCC and normal cell lines. CONCLUSIONS The above risk score and nomogram can accurately predict prognosis in ESCC patients and provide guidance for chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zishun Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tiewen Pan
- Department of Thoracic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai 201805, China
| | - Xiandong Tao
- Department of Thoracic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai 201805, China
| | - Hongyang Zheng
- Department of Thoracic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai 201805, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Xiao X, Liu M, Xie S, Liu C, Huang X, Huang X. Long non-coding HOXA-AS3 contributes to osteosarcoma progression through the miR-1286/TEAD1 axis. J Orthop Surg Res 2023; 18:730. [PMID: 37752588 PMCID: PMC10523635 DOI: 10.1186/s13018-023-04214-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Long non-coding RNA (lncRNA) HOXA cluster antisense RNA 3 (HOXA-AS3) regulates the progression of several types of human malignancy. However, the role and potential mechanism of HOXA-AS3 in osteosarcoma (OS) remain unknown. In this study, upregulation of HOXA-AS3 was observed in OS tissues and cell lines and associated with poor clinical outcomes. Silencing of HOXA-AS3 significantly inhibited the proliferation, migration and invasion of OS cells in vitro and suppressed the tumorigenesis of OS cells in vivo. Furthermore, knockdown of HOXA-AS3 inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) and epithelial-to-mesenchymal transition (EMT) in OS. Further investigation of this mechanism revealed that HOXA-AS3 could directly upregulate the expression of TEAD1 via its competing endogenous RNA (ceRNA) activity on miR-1286. This study clarified the oncogenic roles of the HOXA-AS3/miR-1286/TEAD1 axis in OS progression, suggesting a novel therapeutic target for OS.
Collapse
Affiliation(s)
- Xiangjun Xiao
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Mingjiang Liu
- Department of Orthopedic Trauma and Hand Surgery, Changsha Central Hospital Affiliated to Nanhua University, NO. 161 Shaoshan Nan Road, Changsha, 410018, China.
| | - Songlin Xie
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Changxiong Liu
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Xinfeng Huang
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Xiongjie Huang
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| |
Collapse
|
4
|
Wang P, Zhu J, Long Q, Wang Y, Xu H, Tao H, Wu B, Li J, Wu Y, Liu S. LncRNA SATB2-AS1 promotes tumor growth and metastasis and affects the tumor immune microenvironment in osteosarcoma by regulating SATB2. J Bone Oncol 2023; 41:100491. [PMID: 37601080 PMCID: PMC10436287 DOI: 10.1016/j.jbo.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Our previous report has identified a lncRNA SATB2-AS1, which was significantly up-regulated in osteosarcoma tissue and promotes the proliferation of osteosarcoma cells in vitro. However, the mechanisms of SATB2-AS1 regulating the growth and metastasis of osteosarcoma cells in vivo and its role in the prognosis of osteosarcoma patients are still unclear. In this study, the transcriptome sequencing data of 87 patients with osteosarcoma from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and 7 patients from our clinical center (GZFPH) was used to evaluate the importance of SATB2-AS1 and SATB2 on the prognosis. The effect of SATB2-AS1 on the growth and metastasis of osteosarcoma cells in vivo was verified by a mouse tumor model. The potential mechanisms of SATB2-AS1 regulating SATB2 were further explored by dual-luciferase reporter gene assay, RNA pull-down assay, and bioinformatics analysis. The results suggested that increased co-expression of SATB2-AS1 and SATB2 was significantly associated with poor overall survival (OS) and relapse-free survival (RFS), and was a biomarker for risk stratification in patients with osteosarcoma. Mechanistically, SATB2-AS1 promotes tumor growth and lung metastasis by regulating SATB2 in vivo. SATB2-AS1 directly binds to POU3F1 for mediating SATB2 expression in MNNG/HOS cells. In addition, SATB2-AS1 and SATB2 might be potential immunomodulators for negatively affecting immune cell infiltration by the IL-17 signaling pathway. In summary, SATB2-AS1 promoted tumor cell growth and lung metastasis by activating SATB2, thereby associated with poor prognosis in patients with osteosarcoma, which indicated that SATB2-AS1 and SATB2 might be novel biomarkers for risk stratification and promising therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Oncology, the Second Affiliated Hospital, and School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jianwei Zhu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Qingqin Long
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yan Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Huihua Xu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Huimin Tao
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Biwen Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jiajun Li
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Sihong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| |
Collapse
|
5
|
He X, Chen J, Zhou J, Mao A, Xu W, Zhu H, Pan Q, Zhao Y, Zhang N, Wang L, Wang M, Liu Z, Zhu W, Wang L. LncRNA-EWSAT1 promotes hepatocellular carcinoma metastasis via activation of the Src-YAP signaling axis. FASEB J 2022; 36:e22663. [PMID: 36421017 DOI: 10.1096/fj.202200825r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Regardless of the improvements in diagnostic and therapeutic methods, the clinical outcomes of hepatocellular carcinoma (HCC) patients remain poor. Although accumulating evidence indicates that lncRNAs (long noncoding RNAs) are essential within the control of tumorigenesis and the metastasis of cancer, the underlying mechanisms remain largely unknown. This work explored the pattern of expression and functional significance of a newly found lncRNA, Ewing sarcoma-associated transcript 1 (EWSAT1), in HCC metastasis. The results indicated that EWSAT1 was upregulated significantly in HCC relative to that in normal tissues and was correlated with an aggressive phenotype and low patient survival. Functional experiments demonstrated that EWSAT1 could promote proliferation and HCC cell metastasis both in vitro and in vivo. Mechanistically, EWSAT1 binds directly to Yes-associated protein (YAP), promotes Sarcoma gene (Src)-induced phosphorylation of YAP, facilitates nuclear translocation of YAP, and consequently, activates the transcription of Hippo-YAP signaling target genes involved in cancer evolution. This study found that EWSAT1 plays a crucial role in HCC metastasis and that it has the potential to be a prognosis biomarker and a target for therapeutics.
Collapse
Affiliation(s)
- Xigan He
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinggui Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiamin Zhou
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Xu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongxu Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Pan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longrong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zeyang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ren X, Zhu H, Deng K, Ning X, Li L, Liu D, Yang B, Shen C, Wang X, Wu N, Chen S, Gu D, Wang L. Long Noncoding RNA TPRG1-AS1 Suppresses Migration of Vascular Smooth Muscle Cells and Attenuates Atherogenesis via Interacting With MYH9 Protein. Arterioscler Thromb Vasc Biol 2022; 42:1378-1397. [PMID: 36172865 DOI: 10.1161/atvbaha.122.318158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Migration of human aortic smooth muscle cells (HASMCs) contributes to the pathogenesis of atherosclerosis. This study aims to functionally characterize long noncoding RNA TPRG1-AS1 (tumor protein p63 regulated 1, antisense 1) in HASMCs and reveal the underlying mechanism of TPRG1-AS1 in HASMCs migration, neointima formation, and subsequent atherosclerosis. METHODS The expression of TPRG1-AS1 in atherosclerotic plaques was verified a series of in silico analysis and quantitative real-time polymerase chain reaction analysis. Northern blot, rapid amplification of cDNA ends and Sanger sequencing were used to determine its full length. In vitro transcription-translation assay was used to investigate the protein-coding capacity of TPRG1-AS1. RNA fluorescent in situ hybridization was used to confirm its subcellular localization. Loss- and gain-of-function studies were used to investigate the function of TPRG1-AS1. Furthermore, the effect of TPRG1-AS1 on the pathological response was evaluated in carotid balloon injury model, wire injury model, and atherosclerosis model, respectively. RESULTS TPRG1-AS1 was significantly increased in atherosclerotic plaques. TPRG1-AS1 did not encode any proteins and its full length was 1279nt, which was bona fide a long noncoding RNA. TPRG1-AS1 was mainly localized in cytoplasmic and perinuclear regions in HASMCs. TPRG1-AS1 directly interacted with MYH9 (myosin heavy chain 9) protein in HASMCs, promoted MYH9 protein degradation through the proteasome pathway, hindered F-actin stress fiber formation, and finally inhibited HASMCs migration. Vascular smooth muscle cell-specific transgenic overexpression of TPRG1-AS1 significantly reduced neointima formation, and attenuated atherosclerosis in apolipoprotein E knockout (Apoe-/-) mice. CONCLUSIONS This study demonstrated that TPRG1-AS1 inhibited HASMCs migration through interacting with MYH9 protein and consequently suppressed neointima formation and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxiao Ren
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keyong Deng
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaotong Ning
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Li
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Liu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyang Shen
- Department of Vascular Surgery, State Key Laboratory of Cardiovascular Disease (C.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianqiang Wang
- Department of Surgery (X.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naqiong Wu
- Cardiometabolic Center (N.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Laiyuan Wang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease (X.R., H.Z., K.D., X.N., D.L., B.Y., S.C., D.G., L.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
García-Padilla C, Muñoz-Gallardo MDM, Lozano-Velasco E, Castillo-Casas JM, Caño-Carrillo S, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. New Insights into the Roles of lncRNAs as Modulators of Cytoskeleton Architecture and Their Implications in Cellular Homeostasis and in Tumorigenesis. Noncoding RNA 2022; 8:ncrna8020028. [PMID: 35447891 PMCID: PMC9033079 DOI: 10.3390/ncrna8020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
The importance of the cytoskeleton not only in cell architecture but also as a pivotal element in the transduction of signals that mediate multiple biological processes has recently been highlighted. Broadly, the cytoskeleton consists of three types of structural proteins: (1) actin filaments, involved in establishing and maintaining cell shape and movement; (2) microtubules, necessary to support the different organelles and distribution of chromosomes during cell cycle; and (3) intermediate filaments, which have a mainly structural function showing specificity for the cell type where they are expressed. Interaction between these protein structures is essential for the cytoskeletal mesh to be functional. Furthermore, the cytoskeleton is subject to intense spatio-temporal regulation mediated by the assembly and disassembly of its components. Loss of cytoskeleton homeostasis and integrity of cell focal adhesion are hallmarks of several cancer types. Recently, many reports have pointed out that lncRNAs could be critical mediators in cellular homeostasis controlling dynamic structure and stability of the network formed by cytoskeletal structures, specifically in different types of carcinomas. In this review, we summarize current information available about the roles of lncRNAs as modulators of actin dependent cytoskeleton and their impact on cancer pathogenesis. Finally, we explore other examples of cytoskeletal lncRNAs currently unrelated to tumorigenesis, to illustrate knowledge about them.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Correspondence: (C.G.-P.); (C.L.-S.)
| | - María del Mar Muñoz-Gallardo
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Juan Manuel Castillo-Casas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Sheila Caño-Carrillo
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Correspondence: (C.G.-P.); (C.L.-S.)
| |
Collapse
|
8
|
Aryee DNT, Fock V, Kapoor U, Radic-Sarikas B, Kovar H. Zooming in on Long Non-Coding RNAs in Ewing Sarcoma Pathogenesis. Cells 2022; 11:1267. [PMID: 35455947 PMCID: PMC9032025 DOI: 10.3390/cells11081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcoma (ES) is a rare aggressive cancer of bone and soft tissue that is mainly characterized by a reciprocal chromosomal translocation. As a result, about 90% of cases express the EWS-FLI1 fusion protein that has been shown to function as an aberrant transcription factor driving sarcomagenesis. ES is the second most common malignant bone tumor in children and young adults. Current treatment modalities include dose-intensified chemo- and radiotherapy, as well as surgery. Despite these strategies, patients who present with metastasis or relapse still have dismal prognosis, warranting a better understanding of treatment resistant-disease biology in order to generate better prognostic and therapeutic tools. Since the genomes of ES tumors are relatively quiet and stable, exploring the contributions of epigenetic mechanisms in the initiation and progression of the disease becomes inevitable. The search for novel biomarkers and potential therapeutic targets of cancer metastasis and chemotherapeutic drug resistance is increasingly focusing on long non-coding RNAs (lncRNAs). Recent advances in genome analysis by high throughput sequencing have immensely expanded and advanced our knowledge of lncRNAs. They are non-protein coding RNA species with multiple biological functions that have been shown to be dysregulated in many diseases and are emerging as crucial players in cancer development. Understanding the various roles of lncRNAs in tumorigenesis and metastasis would determine eclectic avenues to establish therapeutic and diagnostic targets. In ES, some lncRNAs have been implicated in cell proliferation, migration and invasion, features that make them suitable as relevant biomarkers and therapeutic targets. In this review, we comprehensively discuss known lncRNAs implicated in ES that could serve as potential biomarkers and therapeutic targets of the disease. Though some current reviews have discussed non-coding RNAs in ES, to our knowledge, this is the first review focusing exclusively on ES-associated lncRNAs.
Collapse
Affiliation(s)
- Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
| | - Utkarsh Kapoor
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
| | - Branka Radic-Sarikas
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
- Department of Pediatric Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (V.F.); (U.K.); (B.R.-S.); (H.K.)
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Wen J, Li H, Li D, Dong X. Clinicopathological and prognostic significance of long non-coding RNA EWSAT1 in human cancers: A review and meta analysis. PLoS One 2022; 17:e0265264. [PMID: 35286362 PMCID: PMC8920262 DOI: 10.1371/journal.pone.0265264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Ewing sarcoma-associated transcript 1 (lncRNA EWSAT1) is reported to have a close relationship with the overall survival in many cancers. However, the role of its prognosis and correlations with the clinicopathological features in different cancers haven’t been explored yet. Herein, we intend to assess the prognostic value and correlations with the clinicopathological features in several cancers.
Methods
PubMed, Embase, Web of Science, and The Cochrane Library were searched for literature review from inception to October 25, 2021. Valid data was extracted to make forest and sensitivity analysis plots using Review Manager 5.4 and Stata software. Hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) was used to evaluate the relationship between different expression of EWSAT1 and patients’ prognosis and clinicopathological features.
Results
7 studies were screened for this review, including 550 samples. Meta-analysis showed that high expression of lncRNA EWSAT1 was associated with poor overall survival (OS) (HR = 2.10, 95% CI, 1.60–2.75, p < 0.0001) in cancers reported. In addition, patients in high expression group of EWAST1 tended to have more metastasis (OR = 2.20, 95% CI 1.47–3.31, p = 0.0001), and higher TNM stage (I+II vs. III: OR = 0.34, 95% CI 0.21–0.56, p < 0.0001), but in the same time with higher differentiation (well + moderate vs. Poor: OR = 2.21, 95% CI 1.02–4.76, p = 0.04). Age (OR = 1.47, 95% CI 0.94–2.30, p = 0.09) was not significantly different in patients with aberrant expression of EWSAT1.
Conclusions
Our study shows that high expression of EWSAT1 may indicate poor overall survival and associated with several clinicopathological features, which can be used as a potential prognosis biomarker for multiple cancers.
Collapse
Affiliation(s)
- Jian Wen
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Haima Li
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Dongdong Li
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Xieping Dong
- People’s Clinical Medical College affiliated to Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- * E-mail:
| |
Collapse
|
10
|
Barrett C, Budhiraja A, Parashar V, Batish M. The Landscape of Regulatory Noncoding RNAs in Ewing's Sarcoma. Biomedicines 2021; 9:933. [PMID: 34440137 PMCID: PMC8391329 DOI: 10.3390/biomedicines9080933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Ewing's sarcoma (ES) is a pediatric sarcoma caused by a chromosomal translocation. Unlike in most cancers, the genomes of ES patients are very stable. The translocation product of the EWS-FLI1 fusion is most often the predominant genetic driver of oncogenesis, and it is pertinent to explore the role of epigenetic alterations in the onset and progression of ES. Several types of noncoding RNAs, primarily microRNAs and long noncoding RNAs, are key epigenetic regulators that have been shown to play critical roles in various cancers. The functions of these epigenetic regulators are just beginning to be appreciated in ES. Here, we performed a comprehensive literature review to identify these noncoding RNAs. We identified clinically relevant tumor suppressor microRNAs, tumor promoter microRNAs and long noncoding RNAs. We then explored the known interplay between different classes of noncoding RNAs and described the currently unmet need for expanding the noncoding RNA repertoire of ES. We concluded the review with a discussion of epigenetic regulation of ES via regulatory noncoding RNAs. These noncoding RNAs provide new avenues of exploration to develop better therapeutics and identify novel biomarkers.
Collapse
Affiliation(s)
| | | | | | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA; (C.B.); (A.B.); (V.P.)
| |
Collapse
|