1
|
Fiorentino M, Philippe R, Palumbo CA, Prenna S, Cantaluppi V, Rosa SD. Epigenetic Mechanisms in Sepsis-Associated Acute Kidney Injury. Semin Respir Crit Care Med 2024; 45:491-502. [PMID: 39208853 DOI: 10.1055/s-0044-1789240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sepsis, the dysregulated immune response of the host to infections, leads to numerous complications, including multiple organ dysfunction with sepsis-associated acute kidney injury (SA-AKI) being a frequent complication associated with increased risk of mortality and the progression toward chronic kidney disease (CKD). Several mechanisms have been widely investigated in understanding the complex pathophysiology of SA-AKI, including hemodynamic alterations, inflammation, oxidative stress, and direct cellular injury driven by pathogens or cell-derived products (pathogen-associated molecular patterns and damage-associated molecular patterns). Despite advancements in the management of septic patients, the prognosis of SA-AKI patients remains significantly poor and is associated with high in-hospital mortality and adverse long-term outcomes. Therefore, recent research has focused on the early identification of specific SA-AKI endotypes and subphenotypes through epigenetic analysis and the use of potential biomarkers, either alone or in combination with clinical data, to improve prognosis. Epigenetic regulation, such as DNA methylation, histone modifications, and noncoding RNA modulation, is crucial in modulating gene expression in response to stress and renal injury in SA-AKI. At the same time, these modifications are dynamic and reversible processes that can alter gene expression in several pathways implicated in the context of SA-AKI, including inflammation, immune response, and tolerance status. In addition, specific epigenetic modifications may exacerbate renal damage by causing persistent inflammation or cellular metabolic reprogramming, leading to progression toward CKD. This review aims to provide a comprehensive understanding of the epigenetic characteristics that define SA-AKI, also exploring targeted therapies that can improve patient outcomes and limit the chronic progression of this syndrome.
Collapse
Affiliation(s)
- Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro," Bari, Italy
| | - Reginald Philippe
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | - Carmen A Palumbo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro," Bari, Italy
| | - Stefania Prenna
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento, Trento, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), "Maggiore della Carità" University Hospital, Novara, Italy
| | - Silva De Rosa
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Zheng Q, Li X, Xu X, Tang X, Hammad B, Xing J, Zhang D. The mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H axis mediates apoptosis in renal tubular cells in association with endoplasmic reticulum stress following ischemic acute kidney injury. Int Immunopharmacol 2024; 132:111956. [PMID: 38554447 DOI: 10.1016/j.intimp.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND While recent studies have suggested a potential involvement of circRNAs in acute kidney injury (AKI) after ischemia, mmu_circ_003062 role is undetermined. METHODS The levels of mmu_circ_003062, miR-490-3p, CACNA1H, GRP78, CHOP and hsa_circ_0075663 were detected by Relative qPCR in Boston University mouse proximal tubule (BUMPT) cells, mouse kidneys, and human renal tubular epithelial (HK-2) cells. Moreover, the levels of hsa_circ_0075663 in serum and urine of patients with AKI following cardiopulmonary resuscitation (CPR) were detected by absolute quantitative PCR. Western blot was used to detect the relative expression of the protein. The function and regulatory mechanism of mmu_circ_003062 and hsa_circ_0075663 were investigated through a series of in vitro and in vivo experiments, including bioinformatic prediction, luciferase reporter assays, FISH, FCM, TUNEL staining, and H&E staining. RESULTS It was found that mmu_circ_003062, hsa_circ_0075663 mediated apoptosis after ischemia/reperfusion (I/R) by interaction with miR-490-3p to enhance CACNA1H expression, thereby leading to the upregulation of endoplasmic reticulum stress (ERS)-relevant proteins GRP78 and CHOP. Ultimately, mmu_circ_003062 downregulation significantly ameliorated ischemic AKI by modulating the miR-490-3p/CACNA1H/GRP78 and CHOP pathway. Furthermore, the plasma and urinary levels of hsa_circ_0075663 in patients with AKI following CPR were significantly higher than non-AKI patients, exhibited a strongly correlation with serum creatinine. CONCLUSION The involvement of mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H/GRP78 and CHOP axis is significant in the development of ischemic AKI. Moreover, hsa_circ_0075663 has potential as an early diagnostic biomarker.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaozhou Li
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuan Xu
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bacha Hammad
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Guo Y, Wu D, Li X, Wang J, Li H, Li Y, Luo D, Yi F, Zhang D. Proximal tubular MBD2 promotes autophagy to drive the progression of AKI caused by vancomycin via regulation of miR-597-5p/S1PR1 axis. FASEB J 2024; 38:e23562. [PMID: 38578557 DOI: 10.1096/fj.202301500r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Our recent investigation has indicated that the global deletion of MBD2 can mitigate the progression of AKI induced by VAN. Nevertheless, the role and regulatory mechanisms of proximal tubular MBD2 in this pathophysiological process have yet to be elucidated. Our preceding investigation revealed that autophagy played a crucial role in advancing AKI induced by VAN. Consequently, we postulated that MBD2 present in the proximal tubule could upregulate the autophagic process to expedite the onset of AKI. In the present study, we found for the first time that MBD2 mediated the autophagy production induced by VAN. Through the utilization of miRNA chip analysis, we have mechanistically demonstrated that MBD2 initiates the activation of miR-597-5p through promoter demethylation. This process leads to the suppression of S1PR1, which results in the induction of autophagy and apoptosis in renal tubular cells. Besides, PT-MBD2-KO reduced autophagy to attenuate VAN-induced AKI via regulation of the miR-597-5p/S1PR1 axis, which was reversed by rapamycin. Finally, the overexpression of MBD2 aggravated the diminished VAN-induced AKI in autophagy-deficient mice (PT-Atg7-KO). These data demonstrate that proximal tubular MBD2 facilitated the process of autophagy via the miR-597-5p/S1PR1 axis and subsequently instigated VAN-induced AKI through the induction of apoptosis. The potentiality of MBD2 being a target for AKI was established.
Collapse
Affiliation(s)
- Yong Guo
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Organ Procurement Organization, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dengke Wu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhou Li
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Wang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiling Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijian Li
- Department of Urinary Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Luo
- Department of Emergency Medicine, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Feng Yi
- Department of Emergency Medicine, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Dongshan Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
5
|
Huang Y, Chen T, Jiang M, Xiong C, Mei C, Nie J, Zhang Q, Zhu Q, Huang X, Zhang X, Li Y. E3 ligase TRIM65 alleviates intestinal ischemia/reperfusion injury through inhibition of TOX4-mediated apoptosis. Cell Death Dis 2024; 15:29. [PMID: 38212319 PMCID: PMC10784301 DOI: 10.1038/s41419-023-06410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Intestinal ischemia-reperfusion (II/R) injury is an urgent clinical disease with high incidence and mortality, and impaired intestinal barrier function caused by excessive apoptosis of intestinal cells is an important cause of its serious consequences. Tripartite motif-containing protein 65 (TRIM65) is an E3 ubiquitin ligase that is recently reported to suppress the inflammatory response and apoptosis. However, the biological function and regulation of TRIM65 in II/R injury are totally unknown. We found that TRIM65 was significantly decreased in hypoxia-reoxygenation (H/R) induced intestinal epithelial cells and II/R-induced intestine tissue. TRIM65 knockout mice markedly aggravated intestinal apoptosis and II/R injury. To explore the molecular mechanism of TRIM65 in exacerbating II/R-induced intestinal apoptosis and damage, thymocyte selection-associated high mobility group box factor 4 (TOX4) was screened out as a novel substrate of TRIM65 using the yeast two-hybrid system. TRIM65 binds directly to the N-terminal of TOX4 through its coiled-coil and SPRY structural domains. Immunofluorescence confocal microscopy showed that they can co-localize both in the cytoplasm and nucleus. Furthermore, TRIM65 mediated the K48 ubiquitination and degradation of TOX4 depending on its E3 ubiquitin ligase activity. In addition, TRIM65 inhibits H/R-induced intestinal epithelial apoptosis via TOX4. In summary, our results indicated that TRIM65 promotes ubiquitination and degradation of TOX4 to inhibit apoptosis in II/R. These findings provide a promising target for the clinical treatment of II/R injury.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Ming Jiang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Chenlu Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Chao Mei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Jinping Nie
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 330031, Nanchang, PR China.
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
| |
Collapse
|
6
|
LncRNA 148400 Promotes the Apoptosis of Renal Tubular Epithelial Cells in Ischemic AKI by Targeting the miR-10b-3p/GRK4 Axis. Cells 2022; 11:cells11243986. [PMID: 36552750 PMCID: PMC9776552 DOI: 10.3390/cells11243986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Although recent studies have reported that long non-coding RNA (lncRNA) is involved in the development of ischemic acute kidney injury (AKI), the exact function and regulatory mechanism of lncRNAs in ischemic AKI remain largely unknown. Herein, we found that ischemic injury promoted the expression of lncRNA 148400 in mouse proximal tubule-derived cell line (BUMPT) and C57BL/6J mice. Furthermore, the lncRNA148400 mediates ischemic injury-induced apoptosis of BUMPT cells. Mechanistically, lncRNA 148400 sponged miR-10b-3p to promote apoptosis via GRK4 upregulation. Finally, knockdown of lncRNA 148400 alleviated the I/R-induced deterioration of renal function, renal tubular injury, and cell apoptosis. In addition, cleaved caspase-3 is increased via targeting the miR-10b-3p/GRK4 axis. Collectively, these results showed that lncRNA 148400/miR-10b-3p/GRK4 axis mediated the development of ischemic AKI.
Collapse
|
7
|
Sun T, Wu D, Deng Y, Zhang D. EGFR mediated the renal cell apoptosis in rhabdomyolysis-induced model via upregulation of autophagy. Life Sci 2022; 309:121050. [DOI: 10.1016/j.lfs.2022.121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
|
8
|
MiR-6918-5p prevents renal tubular cell apoptosis by targeting MBD2 in ischemia/reperfusion-induced AKI. Life Sci 2022; 308:120921. [PMID: 36057400 DOI: 10.1016/j.lfs.2022.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/28/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022]
Abstract
AIMS Although previous studies reported that miRNAs are involved in the progression of acute kidney injury (AKI), their exact function and mechanism in ischemic AKI remains largely unknown. This study aims to define the role of miR-6918-5p in ischemia-reperfusion AKI. Materials and methods The renal arteries of C57BL/6J mice were clamped to establish a model of ischemia-reperfusion renal injury. BUMPT cells were added with Antimycin A and calcium ionophore to establish a model of ATP depletion in vitro. Cell apoptosis was detected by CCK8, flow cytometry and western blot, while HE staining and TUNEL staining were used to assess the degree of kidney damage. KEY FINDINGS We suppressed mmu_miR-6918-5p by ischemic injury in vitro and in vivo. We found that ischemia-reperfusion (I/R)-induced renal tubular cell apoptosis and the expression of cleaved caspase3 were enhanced by the inhibitor of mmu_miR-6918-5p; this effect was attenuated by an mmu_miR-6918-5p mimic. Mechanistically, mmu_miR-6918-5p binds to the 3' UTR region of MBD2 and represses its expression. The mmu_miR-6918-5p mimic alleviated the ischemic AKI by targeting MBD2. Conversely, the inhibitor of mmu_miR-6918-5p enhanced the ischemic AKI; this was diminished by MBD2-KO. SIGNIFICANCE Mmu_miR-6918-5p protected against the development of ischemic AKI by targeting MBD2.
Collapse
|
9
|
Ai K, Li X, Zhang P, Pan J, Li H, He Z, Zhang H, Yi L, Kang Y, Wang Y, Chen J, Li Y, Xiang X, Chai X, Zhang D. Genetic or siRNA inhibition of MBD2 attenuates the UUO- and I/R-induced renal fibrosis via downregulation of EGR1. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:77-86. [PMID: 35356685 PMCID: PMC8933641 DOI: 10.1016/j.omtn.2022.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
DNA methylation plays a pivotal role in the progression of renal fibrosis. Methyl-CpG–binding domain protein 2 (MBD2), a protein reader of methylation, is involved in the development of acute kidney injury (AKI) caused by vancomycin. However, the role and mechanism of action of MBD2 in renal remain unclear. In this study, MBD2 mediated extracellular matrix (ECM) production induced by TGF-β1 in Boston University mouse proximal tubule (BUMPT) cells,and upregulated the expression EGR1 to promote ECM production in murine embryonic NIH 3T3 fibroblasts. ChIP analysis demonstrated that MBD2 physically interacted with the promoter region of the CpG islands of EGR1 genes and then activated their expression by inducing hypomethylation of the promoter region. In vivo, PT-MBD2-KO attenuated unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial fibrosis via downregulation of EGR1, which was demonstrated by the downregulation of fibronectin (FN), collagen I and IV, α-SMA, and EGR1. Injection of MBD2-siRNA attenuated the UUO- and I/R-induced renal fibrosis. Those molecular changes were verified by biopsies from patients with obstructive nephropathy (OB). These data collectively demonstrated that inhibition of MBD2 reduces renal fibrosis via downregulating EGR1, which could be a target for treatment of fibrotic kidney disease.
Collapse
Affiliation(s)
- Kai Ai
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Pan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Huiling Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zhibiao He
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Hongliang Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Lei Yi
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Ye Kang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Junxiang Chen
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yijian Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
10
|
Wu D, Pan J, Zhang D. Inhibition of PKC-δ reduce rhabdomyolysis-induced acute kidney injury. J Cell Mol Med 2022; 26:3243-3253. [PMID: 35502493 PMCID: PMC9170808 DOI: 10.1111/jcmm.17331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research, the mechanisms underlying rhabdomyolysis-induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis-induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC-δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC-δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC-δ-mediated myoglobin-induced cell apoptosis and the expression of TNF-α and IL1-β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC-δ in renal cell apoptosis and suggests that PKC-δ is a viable therapeutic target for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Dengke Wu
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Changsha, China
| |
Collapse
|
11
|
Liu J, Yao S, Jia J, Chen Z, Yuan Y, He Y, Wasti B, Duan W, Li D, Wang G, Jia A, Sun W, Qiu S, Ma L, Li J, Liu Y, Zheng J, Xiang X, Zhang X, Liu S, He Z, Peng Z, Zhang H, Zhang D, Xiao B. Loss of MBD2 ameliorates LPS‐induced alveolar epithelial cell apoptosis and ALI in mice via modulating intracellular zinc homeostasis. FASEB J 2022; 36:e22162. [PMID: 35061304 DOI: 10.1096/fj.202100924rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Jiqiang Liu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Shuo Yao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Jingsi Jia
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhifeng Chen
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yu Yuan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yi He
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Binaya Wasti
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Wentao Duan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Danhong Li
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Guyi Wang
- Department of Intensive Care Medicine The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Aijun Jia
- Department of the Third Emergency of Yuelushan Hospital District Hunan Provincial People's Hospital Changsha P.R. China
| | - Wenjin Sun
- Department of General Medicine West China Hospital, Sichuan University Chengdu P.R. China
| | - Shuangfa Qiu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine The Affiliated Hospital of Guilin Medical University Guangxi P.R. China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine Hunan Provincial People's Hospital Changsha P.R. China
| | - Yi Liu
- Department of Respiratory Medicine Zhuzhou City Central Hospital Zhuzhou P.R. China
| | - Jianfei Zheng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xudong Xiang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xiufeng Zhang
- Department of Respiratory Medicine The Second Affiliated Hospital of Hainan Medical University Haikou P.R. China
| | - Shaokun Liu
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Zhibiao He
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhenyu Peng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Hongliang Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Dongshan Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Bing Xiao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| |
Collapse
|
12
|
Sun T, Liu Q, Wang Y, Deng Y, Zhang D. MBD2 mediates renal cell apoptosis via activation of Tox4 during rhabdomyolysis-induced acute kidney injury. J Cell Mol Med 2021; 25:4562-4571. [PMID: 33764669 PMCID: PMC8107094 DOI: 10.1111/jcmm.16207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Our study investigated the role of Methyl‐CpG–binding domain protein 2 (MBD2) in RM‐induced acute kidney injury (AKI) both in vitro and in vivo. MBD2 was induced by myoglobin in BUMPT cells and by glycerol in mice. MBD2 inhibition via MBD2 small interfering RNA and MBD2‐knockout (KO) attenuated RM‐induced AKI and renal cell apoptosis. The expression of TOX high mobility group box family member 4 (Tox4) induced by myoglobin was markedly reduced in MBD2‐KO mice. Chromatin immunoprecipitation analysis indicated that MBD2 directly bound to CpG islands in the Tox4 promoter region, thus preventing promoter methylation. Furthermore, siRNA inhibition of Tox4 attenuated myoglobin‐induced apoptosis in BUMPT cells. Finally, MBD2‐KO mice exhibited glycerol‐induced renal cell apoptosis by inactivation of Tox4. Altogether, our results suggested that MBD2 plays a role in RM‐induced AKI via the activation of Tox4 and represents a potential target for treatment of RM‐associated AKI.
Collapse
Affiliation(s)
- Tianshi Sun
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China
| | - Qing Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Wang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China.,Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|