1
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. CRISPR-Cas9-driven antigen conversion of clinically relevant blood group systems. Hum Mol Genet 2025:ddaf040. [PMID: 40172074 DOI: 10.1093/hmg/ddaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025] Open
Abstract
The common practice of blood transfusion entirely relies on blood donations from the population. Ensuring blood group compatibility between a donor and a recipient is paramount to prevent critical adverse reactions. Finding compatible blood can be challenging given the high diversity of blood group antigens, especially for chronically transfused patients at higher risk of alloimmunization owing to repeated exposures to foreign RBCs. In addition, due to the immunogenicity of the ABO blood group and the highly polymorphic nature of the Rhesus (Rh) system, they both remain of prime importance in transfusion medicine. Cultured red blood cells (cRBCs) may eventually provide an alternative for blood donations-at least in some circumstances. Combining cRBCs with blood group gene editing could broaden transfusion accessibility by making antigen expression compatible with rare phenotypes, thus meeting the needs of more patients. Starting from mobilized, erythroid-primed hematopoietic stem and progenitor cells (HSPCs), we used virus- and selection-free, CRISPR-Cas9-mediated knockouts to produce erythroid cells devoid of AB and Rh antigen. The approach yielded almost complete conversion to O- and RhNull phenotypes, as determined by standard hemagglutination and flow cytometry analyses. Combined with robust cRBC protocols, these clinically relevant phenotypic changes could eventually expand the accessibility of blood transfusion for specific and unmet clinical needs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Université Laval Cancer Research Centre, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Université Laval Cancer Research Centre, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Josée Laganière
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| |
Collapse
|
2
|
Yang J, Li A, Li M, Ruan S, Ye L. CRISPR/Cas9-Editing K562 Cell Line as a Potential Tool in Transfusion Applications: Knockout of Vel Antigen Gene. Transfus Med Hemother 2024; 51:265-273. [PMID: 39021420 PMCID: PMC11250041 DOI: 10.1159/000534012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 07/20/2024] Open
Abstract
Introduction The Vel- phenotype is a rare blood group, and it is challenging for identifying this phenotype due to limited available reagents. Moreover, there are relatively few studies on genomic editing of erythroid antigens and generation of knockout (KO) cell lines at present. Methods To identify the high-efficiency small-guiding RNA (sgRNA) sequence, candidate sgRNAs were transfected into HEK 293T cells and analyzed using Sanger sequencing. Following this, the high-efficiency sgRNA was transfected into K562 cells using lentivirus transduction to generate KO Vel blood group gene cells. The expression of the Vel protein was detected using Western blot on single-cell clones. Additionally, flow cytometry was used to detect the erythroid markers CD235a and CD71. Hemoglobin quantification and Giemsa staining were also performed to evaluate the erythroid differentiation of KO clones induced by hemin. Results The high-efficiency sgRNA was successfully obtained and used for CRISPR-Cas9 editing in K562 cells. After limiting dilution and screening, two KO clones had either deleted 2 or 4 bases and showed no expression of the Vel protein. In the hemin-induced KO clone, there was a significant difference in erythroid marker and hemoglobin quantification compared to untreated cells. The morphological changes were also observed for the hemin-induced KO clone. Conclusion In this study, a highly efficient sgRNA was screened out and used to generate Vel erythroid antigen KO single-cell clones in K562 cells. The edited cells could then be induced to undergo erythroid differentiation with the use of hemin.
Collapse
Affiliation(s)
- Jiaxuan Yang
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Aijing Li
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Minghao Li
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Shulin Ruan
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Luyi Ye
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| |
Collapse
|
3
|
Gunawardena N, Chou ST. Generation of red blood cells from induced pluripotent stem cells. Curr Opin Hematol 2024; 31:115-121. [PMID: 38362913 PMCID: PMC10959681 DOI: 10.1097/moh.0000000000000810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Human induced pluripotent stem cells (iPSCs) are an attractive source to generate in-vitro-derived blood for use as transfusable and reagent red cells. We review recent advancements in the field and the remaining limitations for clinical use. RECENT FINDINGS For iPSC-derived red blood cell (RBC) generation, recent work has optimized culture conditions to omit feeder cells, enhance red cell maturation, and produce cells that mimic fetal or adult-type RBCs. Genome editing provides novel strategies to improve cell yield and create designer RBCs with customized antigen phenotypes. SUMMARY Current protocols support red cell production that mimics embryonic and fetal hematopoiesis and cell yield sufficient for diagnostic RBC reagents. Ongoing challenges to generate RBCs for transfusion include recapitulating definitive erythropoiesis to produce functional adult-type cells, increasing scalability of culture conditions, and optimizing high-density manufacturing capacity.
Collapse
Affiliation(s)
| | - Stella T Chou
- Division of Hematology, Department of Pediatrics
- Division of Transfusion Medicine, Department of Pathology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Xu L, Zeng Q, Liang L, Yang Z, Qu M, Li H, Zhang B, Zhang J, Yuan X, Chen L, Fan Z, He L, Nan X, Yue W, Xie X, Pei X. Generation of Rh D-negative blood using CRISPR/Cas9. Cell Prolif 2023; 56:e13486. [PMID: 37096780 PMCID: PMC10623963 DOI: 10.1111/cpr.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Blood supply shortages, especially the shortage of rare blood types, threaten the current medical system. Research on stem cells has shed light on in vitro blood cell manufacturing. The in vitro production of universal red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) has become the focus of transfusion medicine. To obtain O-type Rh D-negative blood, we developed O-type Rh D-negative human (h)iPSCs using homology-directed repair (HDR)-based CRISPR/Cas9. HuAiPSCs derived from human umbilical arterial endothelial cells and showing haematopoietic differentiation preferences were selected for gene modification. Guide RNAs (gRNAs) were selected, and a donor template flanked by gRNA-directed homologous arms was set to introduce a premature stop code to RHD exon 2. CRISPR/Cas9 gene editing has resulted in the successful generation of an RHD knockout cell line. The HuAiPSC-A1-RHD-/- cell line was differentiated into haematopoietic stem/progenitor cells and subsequently into erythrocytes in the oxygen concentration-optimized differentiation scheme. HuAiPSC-A1-RHD-/- derived erythrocytes remained positive for the RBC markers CD71 and CD235a. These erythrocytes did not express D antigen and did not agglutinate in the presence of anti-Rh D reagents. In conclusion, taking the priority of haematopoietic preference hiPSCs, the HDR-based CRISPR/Cas9 system and optimizing the erythroid-lineage differentiation protocol, we first generated O-type Rh D-negative universal erythrocytes from RHD knockout HuAiPSCs. Its production is highly efficient and shows great potential for clinical applications.
Collapse
Affiliation(s)
- Lei Xu
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Quan Zeng
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Liqing Liang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Zhou Yang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Mingyi Qu
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Huilin Li
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Jing Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Xin Yuan
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Lin Chen
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Zeng Fan
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Lijuan He
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
- Institute of Health Service and Transfusion MedicineBeijingChina
| | - Xue Nan
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Wen Yue
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Xiaoyan Xie
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| |
Collapse
|
5
|
An HH, Gagne AL, Maguire JA, Pavani G, Abdulmalik O, Gadue P, French DL, Westhoff CM, Chou ST. The use of pluripotent stem cells to generate diagnostic tools for transfusion medicine. Blood 2022; 140:1723-1734. [PMID: 35977098 PMCID: PMC9707399 DOI: 10.1182/blood.2022015883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common medical treatments, with more than 10 million units transfused per year in the United States alone. Alloimmunization to foreign Rh proteins (RhD and RhCE) on donor RBCs remains a challenge for transfusion effectiveness and safety. Alloantibody production disproportionately affects patients with sickle cell disease who frequently receive blood transfusions and exhibit high genetic diversity in the Rh blood group system. With hundreds of RH variants now known, precise identification of Rh antibody targets is hampered by the lack of appropriate reagent RBCs with uncommon Rh antigen phenotypes. Using a combination of human-induced pluripotent stem cell (iPSC) reprogramming and gene editing, we designed a renewable source of cells with unique Rh profiles to facilitate the identification of complex Rh antibodies. We engineered a very rare Rh null iPSC line lacking both RHD and RHCE. By targeting the AAVS1 safe harbor locus in this Rh null background, any combination of RHD or RHCE complementary DNAs could be reintroduced to generate RBCs that express specific Rh antigens such as RhD alone (designated D--), Goa+, or DAK+. The RBCs derived from these iPSCs (iRBCs) are compatible with standard laboratory assays used worldwide and can determine the precise specificity of Rh antibodies in patient plasma. Rh-engineered iRBCs can provide a readily accessible diagnostic tool and guide future efforts to produce an alternative source of rare RBCs for alloimmunized patients.
Collapse
Affiliation(s)
- Hyun Hyung An
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alyssa L. Gagne
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jean Ann Maguire
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Giulia Pavani
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
6
|
Petazzi P, Miquel‐Serra L, Huertas S, González C, Boto N, Muñiz‐Diaz E, Menéndez P, Sevilla A, Nogués N. ABO gene editing for the conversion of blood type A to universal type O in Rh null donor-derived human-induced pluripotent stem cells. Clin Transl Med 2022; 12:e1063. [PMID: 36281739 PMCID: PMC9593258 DOI: 10.1002/ctm2.1063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023] Open
Abstract
The limited availability of red cells with extremely rare blood group phenotypes is one of the global challenges in transfusion medicine that has prompted the search for alternative self-renewable pluripotent cell sources for the in vitro generation of red cells with rare blood group types. One such phenotype is the Rhnull , which lacks all the Rh antigens on the red cell membrane and represents one of the rarest blood types in the world with only a few active blood donors available worldwide. Rhnull red cells are critical for the transfusion of immunized patients carrying the same phenotype, besides its utility in the diagnosis of Rh alloimmunization when a high-prevalence Rh specificity is suspected in a patient or a pregnant woman. In both scenarios, the potential use of human-induced pluripotent stem cell (hiPSC)-derived Rhnull red cells is also dependent on ABO compatibility. Here, we present a CRISPR/Cas9-mediated ABO gene edition strategy for the conversion of blood type A to universal type O, which we have applied to an Rhnull donor-derived hiPSC line, originally carrying blood group A. This work provides a paradigmatic example of an approach potentially applicable to other hiPSC lines derived from rare blood donors not carrying blood type O.
Collapse
Affiliation(s)
- Paolo Petazzi
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
| | - Laia Miquel‐Serra
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Sergio Huertas
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Cecilia González
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Neus Boto
- Immunohematology LaboratoryBarcelonaSpain
| | - Eduardo Muñiz‐Diaz
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Department of Biomedicine, School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer‐CIBER‐ONCInstituto de Salud Carlos IIIBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)Instituto de Salud Carlos III (RICORS, RD21/0017/0029)
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Ana Sevilla
- Department of Cell BiologyPhysiology and Immunology, Faculty of Biology, University of BarcelonaBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Núria Nogués
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| |
Collapse
|
7
|
Jiang Y, Hoenisch RC, Chang Y, Bao X, Cameron CE, Lian XL. Robust genome and RNA editing via CRISPR nucleases in PiggyBac systems. Bioact Mater 2022; 14:313-320. [PMID: 35386818 PMCID: PMC8964983 DOI: 10.1016/j.bioactmat.2022.01.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas-mediated genome editing in human pluripotent stem cells (hPSCs) offers unprecedented opportunities for developing in vitro disease modeling, drug screening and cell-based therapies. To efficiently deliver the CRISPR components, here we developed two all-in-one vectors containing Cas9/gRNA and inducible Cas13d/gRNA cassettes for robust genome editing and RNA interference respectively. These vectors utilized the PiggyBac transposon system, which allows stable expression of CRISPR components in hPSCs. The Cas9 vector PB-CRISPR exhibited high efficiency (up to 99%) of inducing gene knockout in both protein-coding genes and long non-coding RNAs. The other inducible Cas13d vector achieved extremely high efficiency in RNA knockdown (98% knockdown for CD90) with optimized gRNA designs. Taken together, our PiggyBac CRISPR vectors can serve as powerful toolkits for studying gene functions in hPSCs.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rachel Catherine Hoenisch
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, Li Y, Wang B, Hu L, Yang L, Guo T. Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Front Cell Dev Biol 2022; 9:803252. [PMID: 35198566 PMCID: PMC8860194 DOI: 10.3389/fcell.2021.803252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems have revolutionized traditional gene-editing tools and are a significant tool for ameliorating gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic manipulation in almost any organism and cell type. Despite their numerous advantages, however, CRISPR/Cas systems have some inherent limitations, such as off-target effects, unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a desire to explore approaches to address these issues. Strategies for improving the efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects, improving the design and modification of sgRNA, optimizing the editing time and the temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively described in this review. Additionally, several newly emerging approaches, including the use of Cas variants, anti-CRISPR proteins, and mutant enrichment, are discussed in detail. Furthermore, the authors provide a deep analysis of the current challenges in the utilization of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various scenarios. This review not only serves as a reference for improving the maturity of CRISPR/Cas systems but also supplies practical guidance for expanding the applicability of this technology.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
Rao I, Crisafulli L, Paulis M, Ficara F. Hematopoietic Cells from Pluripotent Stem Cells: Hope and Promise for the Treatment of Inherited Blood Disorders. Cells 2022; 11:cells11030557. [PMID: 35159366 PMCID: PMC8834203 DOI: 10.3390/cells11030557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Inherited blood disorders comprise a large spectrum of diseases due to germline mutations in genes with key function in the hematopoietic system; they include immunodeficiencies, anemia or metabolic diseases. For most of them the only curative treatment is bone marrow transplantation, a procedure associated to severe complications; other therapies include red blood cell and platelet transfusions, which are dependent on donor availability. An alternative option is gene therapy, in which the wild-type form of the mutated gene is delivered into autologous hematopoietic stem cells using viral vectors. A more recent therapeutic perspective is gene correction through CRISPR/Cas9-mediated gene editing, that overcomes safety concerns due to insertional mutagenesis and allows correction of base substitutions in large size genes difficult to incorporate into vectors. However, applying this technique to genomic disorders caused by large gene deletions is challenging. Chromosomal transplantation has been proposed as a solution, using a universal source of wild-type chromosomes as donor, and induced pluripotent stem cells (iPSCs) as acceptor. One of the obstacles to be addressed for translating PSC research into clinical practice is the still unsatisfactory differentiation into transplantable hematopoietic stem or mature cells. We provide an overview of the recent progresses in this field and discuss challenges and potential of iPSC-based therapies for the treatment of inherited blood disorders.
Collapse
Affiliation(s)
- Ilaria Rao
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Laura Crisafulli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (I.R.); (L.C.); (M.P.)
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- Correspondence:
| |
Collapse
|
10
|
Pandey P, Zhang N, Curtis BR, Newman PJ, Denomme GA. Generation of 'designer erythroblasts' lacking one or more blood group systems from CRISPR/Cas9 gene-edited human-induced pluripotent stem cells. J Cell Mol Med 2021; 25:9340-9349. [PMID: 34547166 PMCID: PMC8500969 DOI: 10.1111/jcmm.16872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the recent advancements in transfusion medicine, red blood cell (RBC) alloimmunization remains a challenge for multiparous women and chronically transfused patients. At times, diagnostic laboratories depend on difficult-to-procure rare reagent RBCs for the identification of different alloantibodies in such subjects. We have addressed this issue by developing erythroblasts with custom phenotypes (Rh null, GPB null and Kx null/Kell low) using CRISPR/Cas9 gene-editing of a human induced pluripotent stem cell (hiPSC) parent line (OT1-1) for the blood group system genes: RHAG, GYPB and XK. Guide RNAs were cloned into Cas9-puromycin expression vector and transfected into OT1-1. Genotyping was performed to select puromycin-resistant hiPSC KOs. CRISPR/Cas9 gene-editing resulted in the successful generation of three KO lines, RHAG KO, GYPB KO and XK KO. The OT1-1 cell line, as well as the three KO hiPSC lines, were differentiated into CD34+ CD41+ CD235ab+ hematopoietic progenitor cells (HPCs) and subsequently to erythroblasts. Native OT1-1 erythroblasts were positive for the expression of Rh, MNS, Kell and H blood group systems. Differentiation of RHAG KO, GYPB KO and XK KO resulted in the formation of Rh null, GPB null and Kx null/Kell low erythroblasts, respectively. OT1-1 as well as the three KO erythroblasts remained positive for RBC markers-CD71 and BAND3. Erythroblasts were mostly at the polychromatic/ orthochromatic stage of differentiation. Up to ~400-fold increase in erythroblasts derived from HPCs was observed. The availability of custom erythroblasts generated from CRISPR/Cas9 gene-edited hiPSC should be a useful addition to the tools currently used for the detection of clinically important red cell alloantibodies.
Collapse
Affiliation(s)
| | | | - Brian R. Curtis
- Versiti Blood Research InstituteMilwaukeeWIUSA
- Diagnostic LaboratoriesVersiti Blood Center of WisconsinMilwaukeeWIUSA
| | - Peter J. Newman
- Versiti Blood Research InstituteMilwaukeeWIUSA
- Departments of Pharmacology and Cellular BiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Gregory A. Denomme
- Versiti Blood Research InstituteMilwaukeeWIUSA
- Diagnostic LaboratoriesVersiti Blood Center of WisconsinMilwaukeeWIUSA
| |
Collapse
|