1
|
Song X, Lv T, Fang W, Lv J. Exploring the role of DLK1 in inducing NLRP3 inflammasome activation in bladder epithelial cells in patients with interstitial cystitis. Asian J Surg 2024; 47:1907-1908. [PMID: 38185550 DOI: 10.1016/j.asjsur.2023.12.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Xin Song
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Tingting Lv
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Weilin Fang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Jianwei Lv
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China.
| |
Collapse
|
2
|
Mormone E, Cisternino A, Capone L, Caradonna E, Sbarbati A. The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans. Int J Mol Sci 2024; 25:2326. [PMID: 38397003 PMCID: PMC10889234 DOI: 10.3390/ijms25042326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Given the recent evidence in the clinical application of regenerative medicine, mostly on integumentary systems, we focused our interests on recent bladder regeneration approaches based on mesenchymal stem cells (MSCs), platelet-rich plasma (PRP), and hyaluronic acid (HA) in the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS) in humans. IC/BPS is a heterogeneous chronic disease with not-well-understood etiology, characterized by suprapubic pain related to bladder filling and urothelium dysfunction, in which the impairment of immunological processes seems to play an important role. The histopathological features of IC include ulceration of the mucosa, edema, denuded urothelium, and increased detection of mast cells and other inflammatory cells. A deeper understanding of the molecular mechanism underlying this disease is essential for the selection of the right therapeutic approach. In fact, although various therapeutic strategies exist, no efficient therapy for IC/BPS has been discovered yet. This review gives an overview of the clinical and pathological features of IC/BPS, with a particular focus on the molecular pathways involved and a special interest in the ongoing few investigational therapies in IC/BPS, which use new regenerative medicine approaches, and their synergetic combination. Good knowledge of the molecular aspects related to stem cell-, PRP-, and biomaterial-based treatments, as well as the understanding of the molecular mechanism of this pathology, will allow for the selection of the right and best use of regenerative approaches of structures involving connective tissue and epithelia, as well as in other diseases.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Intitute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Antonio Cisternino
- Santa Maria di Bari Hospital, Via Antonio de Ferraris 22, 70124 Bari, Italy;
| | - Lorenzo Capone
- Department of Urology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy;
| | | | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, Human Anatomy and Histology Section, University of Verona, 37129 Verona, Italy;
| |
Collapse
|
3
|
Li J, Tang Y, Yin L, Lin X, Luo Z, Wang S, Yuan L, Liang P, Jiang B. Mesenchymal stem cell-derived exosomes in myocardial infarction: Therapeutic potential and application. J Gene Med 2024; 26:e3596. [PMID: 37726968 DOI: 10.1002/jgm.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial infarction refers to the irreversible impairment of cardiac function resulting from the permanent loss of numerous cardiomyocytes and the formation of scar tissue. This condition is caused by acute and persistent inadequate blood supply to the heart's arteries. In the treatment of myocardial infarction, Mesenchymal stem cells (MSCs) play a crucial role because of their powerful therapeutic effects. These effects primarily stem from the paracrine secretion of multiple factors by MSCs, with exosome-carried microRNAs being the most effective component in promoting cardiac function recovery after infarction. Exosome therapy has emerged as a promising cell-free treatment for myocardial infarction as a result of its relatively simple composition, low immunogenicity and controlled transplantation dose. Despite these advantages, maintaining the stability of exosomes after transplantation and enhancing their targeting effect remain significant challenges in clinical applications. In recent developments, several approaches have been designed to optimize exosome therapy. These include enhancing exosome retention, improving their ability to target specific effects, pretreating MSC-derived exosomes and employing transgenic MSC-derived exosomes. This review primarily focuses on describing the biological characteristics of exosomes, their therapeutic potential and their application in treating myocardial infarction.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
O'Sullivan JA, Youngblood BA, Schleimer RP, Bochner BS. Siglecs as potential targets of therapy in human mast cell- and/or eosinophil-associated diseases. Semin Immunol 2023; 69:101799. [PMID: 37413923 PMCID: PMC10528103 DOI: 10.1016/j.smim.2023.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of vertebrate glycan-binding cell-surface proteins. The majority mediate cellular inhibitory activity once engaged by specific ligands or ligand-mimicking molecules. As a result, Siglec engagement is now of interest as a strategy to therapeutically dampen unwanted cellular responses. When considering allergic inflammation, human eosinophils and mast cells express overlapping but distinct patterns of Siglecs. For example, Siglec-6 is selectively and prominently expressed on mast cells while Siglec-8 is highly specific for both eosinophils and mast cells. This review will focus on a subset of Siglecs and their various endogenous or synthetic sialoside ligands that regulate eosinophil and mast cell function and survival. It will also summarize how certain Siglecs have become the focus of novel therapies for allergic and other eosinophil- and mast cell-related diseases.
Collapse
Affiliation(s)
- Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Diaz-Salmeron R, Cailleau C, Denis S, Ponchel G, Bouchemal K. Hyaluronan nanoplatelets exert an intrinsic anti-inflammatory activity in a rat model of bladder painful syndrome/interstitial cystitis. J Control Release 2023; 356:434-447. [PMID: 36921722 DOI: 10.1016/j.jconrel.2023.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Glycosaminoglycan (GAG) replenishment therapy consists of the instillation of GAG solutions directly in the bladder to alleviate Bladder Painful Syndrome/Interstitial Cystitis (BPS/IC). However, several issues were reported with this strategy because the GAG solutions are rapidly eliminated from the bladder by spontaneous voiding, and GAG have low bioadhesive behaviors. Herein, GAG nanomaterials with typical flattened morphology were obtained by a self-assembly process. The formation mechanism of those nanomaterials, denoted as nanoplatelets, involves the interaction of α-cyclodextrin cavity and alkyl chains covalently grafted on the GAG. Three GAG were used in this investigation, hyaluronan (HA), chondroitin sulfate (CS), and heparin (HEP). HA NP showed the best anti-inflammatory activity in an LPS-induced in vitro inflammation model of macrophages. They also exhibited the best therapeutic efficacy in a BPS/IC rat inflammation model. Histological examinations of the bladders revealed that HA NP significantly reduced bladder inflammation and regenerated the bladder mucosa. This investigation could open new perspectives to alleviate BPS/IC through GAG replenishment therapy.
Collapse
Affiliation(s)
| | | | - Stéphanie Denis
- Université Paris-Saclay, CNRS UMR 8612, IGPS, 91400 Orsay, France
| | - Gilles Ponchel
- Université Paris-Saclay, CNRS UMR 8612, IGPS, 91400 Orsay, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
7
|
Dayem AA, Song K, Lee S, Kim A, Cho SG. New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome. BMB Rep 2022. [PMID: 35410640 PMCID: PMC9152582 DOI: 10.5483/bmbrep.2022.55.5.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Kwonwoo Song
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Soobin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
8
|
Dayem AA, Song K, Lee S, Kim A, Cho SG. New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome. BMB Rep 2022; 55:205-212. [PMID: 35410640 PMCID: PMC9152582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 03/08/2024] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development. [BMB Reports 2022; 55(5): 205-212].
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Kwonwoo Song
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Soobin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| |
Collapse
|